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CAUCHY DECOMPOSITION
FORMULAS FOR SCHUR MODULES

Hyounc J. Ko

1. Introduction

The characteristic free representation theory of the general linear
group is one of the powerful tools in the study of invariant theory,
algebraic geometry, and commutative algebra. Recently the study of
such representations became a popular theme. In this paper we study
the representation-theoretic structures of the symmetric algebra and
the exterior algebra over a commutative ring with unity 1. We shall
first illustrate with some simple examples.

If F and G are two finitely generated free modules over a commu-
tative ring R, then the symmetric algebra S(F @ G) is naturally a
GL(F) x GL(G)-module. When R is a field of characteristic zero the
symmetric algebra decomposes into a direct sum of all irreducible poly-

nomial GL(F) x GL(G)-modules:

S(F&G) =) L\FeL\G
A

This is equivalent to the identity on symmetric functions which is due
to Cauchy. This is a special case of the notion of plethysm of Schur
functions[8]. Notice that the above decomposition is not true over an
arbitrary commutative ring because the modules Ly F & LG need not
be irreducible. Over an arbitrary commutative ring such decomposi-
tion holds only up to a natural filtration (where "natural” means that
all modules of this filtration have the structure of GL(F) x GL(G)-
modules).
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Another context, in which we will be mainly concerned in this paper,
1s that of realizing the plethysm formulas in the category of homoge-
neous polynomial representations of the general linear group. More
precisely, are there natural decompositions of Sx(A?F) and Si(S2F)?

D.A.Buchsbaum asked whether both the modules admits natural fil-
trations whose associated graded modules are isomorphic to direct sums
of Schur modules. De Concini and Procesi essentially constructed a nat-
ural filtration for Si(S2F') in [4]. This affirms his question. However,
we prove in this paper that the answer is negative in general.

Section 2 is a review of background material on Schur modules and
Weyl modules, as well as Schur complexes.

In Section 3, we provide Pieri formulas in a form that is valid over
any commutative ring.

In Section 4, we prove that the universal filtration for Sk(A%F") does
not exist in the category of the homogeneous polynornial representations
of the general linear group over an arbitrary commutative ring .

2. Preliminaries

Throughout this paper, unless otherwise specified, we adopt the defi-
nitions and notations of [1] and {2]. We also quote without proof several
results contained therein.

Let N°° denote the set of all finite sequences of nonnegative integers,
eg.,, A = (A1, A2,---), with A; = 0 for almost all indices . If A €
N the dual or conjugate of X is defined by A= (:\1,:\2, -+ ), where
;\j = number of i's with A\; > j. A partition is a finite sequence
A= (A1, Az,--+ , A,) of nonnegative integers A; > Ay > --- > A,. We
say that the number of nonzero terms in a sequence A € N° is its
length. The weight of a sequence A in N*° is the sum of the terms of
A and is denoted by |A|.

A relative sequence is a pair (A, 1) of sequences in N such that p C
A meaning that p; < A; for all 7. We will use the notation A/u to repre-
sent relative sequences. If both A and p are partitions, then the relative
sequence A/u will be called a skew partition. Observe that a sequence A
in V°° can be regarded as a relative sequence A/(0). We will often iden-
tify relative sequences with their diagrams or their shape matrices. A
diagram of a relative sequence A/p = (A1, Ao, A ) (1, ptay -0 i)
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is a finite subset Vy/, = {(4,J)]1 <i <rui+1<j <A} of NxN,
but drawn as with matrices. The shape matriz of a relative sequence

A/wis ar x A matrix A = (a;;) defined by the rule
1 fpi+1<; <)\
%= {0 otherwise.
As an example take A\ = (4,3,2) and g = (2,1). Then the shape
matrix of A/u is
0011

0110 |,
1100

and the diagram of A/u is

where each box represents an ordered pair (7, j). The weight of a relative
sequence A/ is defined to be |A| — |¢| and is denoted by |A/pul.
To an r x t shape matrix A = (a;;) we associate the row sequence

aq = (ay,az, -+ ,a,) of A, where a; = E;zl aijj fort =1,--- ,r, and
the column sequence 84 = (81,82, -+ ,Br) of A, where B =i aij
for j =1, ,t. Clearly, 84 = a4, where A is the transpose of A.

Let R be a commutative ring and let ¢ : G — F be any homomor-
phism of finitely generated free R-modules. We let A¢ and S¢é denote
the exterior and symmetric algebras on the map ¢. A¢ is the antisym-
metric tensor product AF®DG of the Hopf algebras AF and DG, and
S¢ is the usual tensor product SF ® AG of the Hopf algebras SF and
AG. A¢ and S¢ are nonnegatively graded Hopf algebras ( with the
multiplication M and the comultiplications or diagonalizations A )

ng =Y Ak, S¢ = Sio
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meaning that the Hopf algebra structure maps are homogeneous with
respect to the above gradings. Moreover, A¢ and S¢ can be naturally
made into chain complexes in manner compatible with their Hopf alge-
bra structures. For descriptions of the boundary maps and for details
on the Hopf algebra structures of A¢ and S¢, see [2, Chap.V].

If o = (a1,-- ,a,) is any sequence of nonnegative integers, we define
complexes Ay¢ and S, ¢

Ao = /\“‘¢®...®/\“r¢,
Sa¢:Sa1¢®"'®5a1¢

as tensor products of complexes over R. If 4 is an r x t shape matrix,
we set

/\A¢ = /\(al,--- ,a,.)d)
Sa9 = S(ay - an)®

where (a1, -+, ) is the row sequence of A. We can then define a map
of chain complexes, called the Schur map,

dA((ﬁ) AAD — SA(Zﬁ

to be the composition

Aad = Na,d (AR QAN Q - QA" ® - QA @)
%(/\allgb@...®/\a'1¢)®...®(/\“H¢®...®/\an¢)
—"‘.:(Sa“¢®...®Sa“¢)®...®(5‘m¢®...®Sa”¢)
—55,¢® - RS58,6=S;9,

where the first map is diagonalization, the second is the isomorphism
rearranging terms, the third is the isomorphism identifying A% ¢ with
Sai; ¢ (for a;; = 0 or 1), and the last map is multiplication. It should
be observed that the Schur map d4(¢) does not depend on ¢, for only
G and F are used. Since each of the maps comprising d4(¢) is a map of
complexes, the Schur map d4(#) is a morphism of complexes. Hence,
its image is a complex and we make the following definition.
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DEFINITION 2.1. The image of d4(¢), denoted by L a¢, is called the
Schur complex on ¢ associated to the shape matrix A. When A is the
shape matrix of a skew partition A/u , we write L/, ¢ instead of L 4¢.
It should be noted that the Schur complexes L a¢ are the complexes of
GL(G) x GL(F)-modules (“GL($)-complex”, for short) because M and
A are morphisms of GL(¢)-complexs (“GL(¢)-morphism”, for short).

If we restrict our attention to the maps of the form ¢ : O — F, then
we write dao(F) for da(¢) and recover the usual Schur module L4 F (in
dimension zero) as the image of d4(F). Similarly, if the map is of the
form ¢ : G — O we write d'4(G) for d4(4) and obtain the Weyl module
K 4G ( in dimension |A| ) as the image of d',(G). When R is a field
of characteristic zero, LyF is an irreducible homogeneous polynomial
G L(F)-module of degree || corresponding to the partition A. Schur
and Weyl module are isomorphic over the rationals, but far from being
isomorphic over the integers.

PROPOSION 2.2 [2, THEOREM V.1.10]. For any R,¢, and \/u,
Ly;u¢ is a complex of universally free R-modules.

DEFINITION 2.3. When qa,b, and k are positive integers with k <

b, we have the GL(¢)-morphisms A*t*¢ @ nb=Fg 281 N @ AP R

L oM A @ Abé. This composite map will be denoted by ®)
O

orp,. Similarly when o = (aq,- - , a,) is a sequence of positive integers
we define a G L(¢)-morphism as
r—1 Qi1

Z Z A1 bR ® /\ai_1¢ ® /\a;+v¢ ® /\(r;+1——v¢®

=1 v=1

AGi+2 ¢® R /\U‘r¢

r—1aiqn

l Y X 10--0190,®18 - ®1

=1 v=1

Nad=N"9Q---RN"¢
and denote it by O (¢) or 7.
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PROPOSITION 2.4 [2, THEOREM V.1.10 ]. For any skew partion
A/, the following sequence of G L{$)-morphisms is exact :

drsu(d)
O = Im(@,,, () = Asud 5" Lasué — O.

Suppose now that ¢ : G — F' is the direct sum ¢; @ ¢2 of two maps
¢:i 1 Gi — F;, i = 1,2,. For any nonnegative integer p we have the
direct sum decomposition

(1) NP¢ = Z A1 ® Ay

a+b=p

of chain complexes. If P = (py,---,p,) € N, then (1) immediately
yields a natural direct sum decomposition of the chain complexes as
follows

(2) AP® = Nat1 ® Agda,

where the sum is taken over all sequences @ = (ay, - ,a,), and 8 =
(81, ,Br) in N such that a; + 8; = p; fori = 1,--- ,r. Fix integers
a and b such that a+b = |P|, and define Ap(¢1,¢2;a,b) tobe 3" Agd1 ®
Ap@2 over all sequences a, 3 satisfying « + 8 = P, |a| = a, and || = b.
It follows from (2) that there is a direct sum decomposition Ap¢ =
Y. Ap(é1,¢2;a,b). The above discussion and definitions may be
a+b=|P|
repeated with S in place of A.
If A is a shape matrix, then we can apply the above discussion to
the row and column sequences of A to obtain two natural direct sum
decompositions

Nagd = Z Aa(or, ¢2;a,b)
a+b=|A|

Sio= > Si(¢1,62,50,b)

a+b=|/i|

of chain complexes. It is immediate from homogeneity that the Schur

map da(¢) decomposes into a direct sum Y, da(é1,é2;a,b) where
a+b=|A|
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each da(¢1, ¢2; a, b) is a map of complexes A 4(¢1, 2;a,b) — S;(¢1, ¢2;
a,b). We can then define La(¢1,#2;a,b) to be the image of the map
da(¢1,¢2;a,b) and obtain the natural direct sum decomposition

(3) Lag= Y La(¢1,¢2;0,b)

a+b=|A|

of complexes.

DEFINITION 2.5. Let ¢ = ¢y @ ¢2 as above and let A be the shape
matrix of a skew partition A\/p. If v is any partition such that p C v C
A, define GL(¢)-subcomplexes M., and M., of La¢ as M, = > da(®)

+Co

(Noju1 & Arjed2), M7 = 3. da(#)(Ay7u01 ® Axsgb2) where the sums
vCo
are over the partitions o satisfying u C o C A.
It is easy to see that A‘lw C M, and My = L¢, and Ms C A.Ar if
v € 8. So we have a natural filtration of L 4¢:

M\C---CM,CM,C---CM,:==La¢.

PROPOSITION 2.6 [2. THEOREM V.1.13]. If~ is any partition such
that u C v C A, there exists an isomorphism of chain G L(¢)-complexes,
MM, = Lv/,,d)] & L,\/7¢2.

Hence, the complexes {M,|p C v C A} give & natural filtration of
the complex Ly, ¢ whose associated graded complex is isomorphic to

2. Lyjudr © Lajy¢2.
2CyCA

Form the decomposition result (3) for a direct sum, this proposition
can be reformulated for convenience as follows.

CoROLLARY 2.7 [ 6, COROLLARY 2.5 |. If A is the shape ma-
trix corresponding to a skew partition A/u, and integers a,b satisfy
a+ b = |A|, then the complex La(¢1,d2;a,b) admits a natural fil-
tration {M,(La(1,¢2;a,0))[p € v C A |y/pl = a, and |A/y] = b}

by complexes so that the associated graded complex is isomorphic to
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2Lyt ® Ly/y¢2 where the sum is taken over all partitions v such
that p C v C A, |v/u| = a, and |A /7| = b.

To complete this section, we stress the fact that all the same results
for Schur and Weyl modules will follow by specialzation in which G = 0
or FF=0.

3. Pieri Formulas

In this section, we provide Pieri formulas, which play an essential
role in Section 4. Essentially, Pieri formulas for Schur complexes were
constructured in [6]. Specializing these formulas into the formulas for

Schur modules, we obtain Pieri formulas for Schur modules constructed
in [1].

THEOREM 3.1. Let ¢ : G — F be any homomorphism of finitely
generated free modules over an arbitrary commutative ring R, and let
A be any partition. Then

(a) Lx/ar)¢ admits a natural filtration whose associated graded
complex is isomorphic to Y L,¢ where the sum is taken over all par-

u
titions u C A such that |u| = |A\| —p and A; — 1 < 1 < A, for all
i

(b) Lx/p)¢ admits a natural filtration whose associated graded
complex is isomorphic to YL, ¢ where the sum is taken over all par-

titions v C X such that |v| = [A\| —p and A\; — | < &; < A for all
J-

Proof. (a) Let us take ¢ : O — R to be the zero map. Using
Corollary 2.7 we know that Lx(3), ¢;p, |A\|—p) has two natural filtrations
which yield the following two decompositions: L(v, é:p, |A| — p) =
2 Ly ® Ly/y¢ up to filtration, La(¢, %5 (Al ~p,p) = S L,é®
~CA i CA
Ivi=p 1A/ ni=p
Ly, up to filtration.

Since 1 : O — R is the zero map, L,y = 0 unless v is the partition
(17), and in this case Laryw =2 (0O — R — O). Therefore, we have
La(v, ¢;p, |A| —p) = Lxs(1)¢. On the other hand, we have Ly,,¢ =0
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unless A/u contains at most one box in each row, in which case Ly, % =
(O — R — O). Hence, we get exactly the statement (a).

(b) The formula (b) follows eaisly from the same line of reasoning
as that of formula (a) with a zero map % : R — O ( See the difference
in the zero maps here and there ).

A = (A,---,A;) is a partition with A, = 0, then it follows
from the definition of the Schur complexes that Lx¢ @ Sp¢ is isomor-
phic to Ly ), where X' is the partition (A1 + 1, A2 + 1,---, A, +
1,1,---,1). Also, Lx¢ ® AP¢ is isomorphic to Lysj(x,), where A" =

e,

P
(A1 + p, A1, A2,--- ,A;). Hence we have Pieri formulas for Schur com-
plexes.

COROLLARY 3.2. Let ¢ : G — F be any homomorphism of finitely
generated free modules over an arbitrary commutative ring R, and let
A be any partition. Then

(a) Li¢ ® Sp¢ admits a natural filtration whose associated graded
complex is isomorphic to Y L,¢ where the sum is taken over all parti-

tions o such that |o| = |A|+ p and A\; < o; < A\ + 1 for all ¢;
(b) Lr¢ ® AP¢ admits a natural filtration whose associated graded

complex is isomorphic to Y L.,¢ where the sum is taken over all parti-
R

tions v such that |y| = |A\|+p and X\; <; < Aj + 1 for all j.
Specializing Pieri formulas in the formulas for Schur and Weyl mod-
ules which we need in the next section, we obtain

COROLLARY 3.3 [1,6]. Let R be any commutative ring, F' a free
R-module of finite type, and \ any partition. Then

(a) LAF ®S,F admits a natural filtration whose associated graded
module is isomorphic to Y L, F where the sum is taken over all parti-

tions ¢ such that |o| = |A|+p and A; < o; < A; + 1 for all ¢;
(b) LyF® APF admits a natural filtration whose associated graded

module is isomorphic to Y L F where the sum is taken over all parti-
Y

tions  such that |y| = |A\|+ p and X; < %; < 5\1- + 1 for all j.
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4. Plethysm formulas

If R contains the rationals @, and k is any nonnegative integer, then
we have the direct sum decompositions:

(1) Sk(S:F) =) LsF.
A

where A runs over all partitions of weight 2k such that each }; is even;

(2) Sk(APF) =Y LyF.
A

where A runs over all partitions of weight 2k such that each A; is even;
(3) N(APF)) = L3 F
)

where A runs over all partitions of weight 2k such that the “Frobenius
form” of A is (ay,-- ,a,|a1 +1,--+ ,a, + 1) when the rank of A is r.

Over an arbitrary commutative ring R, we may wonder whether they
have (universally free ) natural filtrations whose associated graded mod-
ules are isomorphic to the direct sums of the Schur modules described
in (1), (2), and (3). In fact, we will prove in this section that Sk(A*F)
and A¥(A?F) do not admit such filtrations. But Sk(S2F) admits such
a filtration.

PROPOSITION 4.1 [4,7]. Let F be a finitely generated free mod-
ule over an arbitrary commutative ring R, and let k be an arbitrary
nonnegative integer. Then Si(S,F) admits a natural filtration whose

associated graded module is isomorphic to Y.Ly F. where A runs over
A

all partitions of weight 2k such that each \; is ever.

The formulas as in Proposition 4.1 are called plethysm formulas.
Now we will show that plethysm formulas for A¥(A2F) and Sy(A%F)
do not exist over an arbitrary commutative ring . To do this, we need
the following proposition.
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PROPOSITON 4.2. Let F be a finitely generated free module over
an arbitrary commutative ring R. Then Sy(A*F) admits a(universally
free ) natural filtration whose associated graded module is isomorphic

to A*F @ Ly ) F.

Proof. To see this, we start with the natural Pfaffian embedding & :
ANF o S2(A? F) which sends the elements fi A fa faa f4 in A*F to the
Pfaffian fl A f2‘f3 A f4—f1 A f3'f2/\ f4+f1/\ f4'f2 A f3 in 32(/\2F), where
- is a multiplication in S2(A*F). Here we used the fact (proved in [4])
that the standard monomials form a free basis for S(A?F). Identifying
A*F with its image in S2(A2F), we get A*F with its image in S2(A%F),
we get A*F as the first piece of the filtration. Now we have to show that
Sy(A?F)/ A* F is isomorphic to L3 2)F. Consider a natural projection
M A FRA'F — S3(A?F) sending fin f2@ fan fa to fin f2- fan fu.
Now we have the commutative diagram

Oz, 2y d2,2)(F)
MEFONFQF —— ANFRAF 5 Loy F

ML \*"“

P(2,2)

S2(AF) S2(AF)) A*F

where p(3 2y is the projection and (2 2y is the composite map pz 2y M.
In order to construct the isomorphism ¢ : Lz 9y F — S2(A2F)/AYF it
is sufficient to show that Ker(d; 2)(F)) = Ker(y(22)), or equivalently
Im([](z,z)) = Ker(p(z,2)) by Proposition 2.4. But it is easy to see
that M - D(M)(fl Afonfanfa) = 262(f1n fan fon fa) € Im(6y) and
M T afinfan fs @ f4) = 62(fin fon fsa fa) € Im(82). Thus we
have an induced epimorphism ¢ : L(; 9)F — So(A2F)/ A* F. Because
A'F @ L3 ) F and Sy(A2F) are free modules of the same rank (by the
universal freeness described in Porposition 2.2, the ranks of both the
modules are independent of the ground ring R), the map ¢ must be an
tsomorphism. This completes the proof.

As a consequence of this proposition we have a short exact sequence

O — NF 35 S0 F)" L% LiyaF - 0.

Now we prove the main result.
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THEOREM 4.2. Let F be an n-dimensional vector space over a field
R. Then

(a) /\2(/\2F) = L 1)F if charR # 2;

(b) A2(AF) = A*F @ (K(2,1,1)F/ At F) if charR = 2.

Proof. Consider the following commutative diagram, with exact rows
and column:

< »)
Ry B
-3 g
: ]
&

—_ o —
k < K
O — < @ — < — 0O
P 5 &
<
Dv] {

[

®

Iz,
T
= <
22

by

<

-~
5"———40
<

&)
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where the bottom row is given by Proposition 4.2, and A sends an
element z in A*F to the element ~2z + A(z) in A*F@(A*F@F),and g
sends an element £ +y®z in A*FH(A3F®F) to the element 2z +y A 2
in A*F (see also [9)).

(Here 2 and -2 stand for multiplication by 2 and -2, respectively.)
Take now the kernel of the vertical columns: A2(A%F) is precisely the
first homologgy module of

F:AFLSAMF@(ANFQF) S A'E,

(a) Suppose that charR # 2. As the bottom row of

A
MF — 5 ANFQF
(4) “Ql lM
2
ANF ———— AYF

is an isomorphism, the first homology module of F is (A*F@ F)/Im( ),
Le., coker(A) = L(3,1)F. Hence A*(A?F) = L3 1) F.

(b) Suppose that charR = 2. As the bottom row of (4) is zero,
Hi(F)is A*F @ Ker(A*F ® F — A*F)/ A* F. Since

O — D4F - F@DsF - N’F@DyF - NNFQF — AF - 0
is exact (it is the dual of the Koszul complex), and since
Im(A’F @ D2F — A*F @ F) = Im(dy, , 4)(F)),

it follows A2(A*F) = A*F @ Koy 1 F/ A* F.

As we have seen in the above proof, A2 (A?F) has two different de-
compositions according to the characteristic of R. On the other hand,
it follows from (3) ( or by computing the characters [8] ) that AZ(A%F)
is isomorphic to L3 1)F over the field of characteristic zero. Therefore
we have
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COROLLARY 4.3. There does not exist plethysm formulas of the
form (3) for AF(A2) which hold for any commutative ring R and any
nonnegative integer k.

Now we consider the module Sk(A?F). When R is a field of char-
acteristic zero, Sy(AF) is isomorphic to A*F @ L35 F by (2) (or by
computing the characters [8] ). But the Koszul complex

0 — AX(APF) S APF @ APF 24 55(A2F) - 0

is universally free by Proposition 2.2. Furthermore, by Pieri formulas
(Corollary 3.3. (b)), A2F ® A’F admits a universally free natural filtra-
tion whose associated graded module is isomorphic to A*F & L(3,1)F &
L(3,9)F. Therefore, it is obvious that any universally free natural filtra-
tion of S;(A?F) yields a universally free natural filtration of A2(AZF).
But A%(A%F) does not have such a filtration by Corollary 4.3. Hence
we have the result.

COROLLARY 4.4. There does not exist plethysm formulas of the
form (2) for Sx(A%) which hold for any commutative ring R and any
nonnegative integer k.
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