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COMMUTATIVE p-SCHUR RINGS OVER NON-ABELIAN
GROUPS OF ORDER p?

Kuune Kim

ABSTRACT. Recently, it was proved that every p-Schur ring over an abel-
ian group of order p3 is Schurian. In this paper, we prove that every com-
mutative p-Schur ring over a non-abelian group of order p3 is Schurian.

1. Introduction

Let H be a finite group. We denote by CH the group algebra of H over the
complex number field C. For a nonempty subset ' C H, we set T':= >, .t
which is treated as an element of CH.

A subalgebra A of the group algebra CH is called a Schur ring over H if there
exists a partition Bsets(A) := {To,T1,...,T,} of H satisfying the following
conditions:

(i) {73 | T; € Bsets(A)} is a linear basis of A;
(i) To = {1n};

(iii) T, ' := {t~' | t € T3} € Bsets(A) for all T; € Bsets(A).

A Schur ring A over a p-group H is called a p-Schur ring if the size of every
element in Bsets(A) is a power of p, where p is a prime.

Let G be a subgroup of Sym(H) containing the left regular representation
of H. We denote by Ty = {1g}, T1,...,T; the orbits of the stabilizer G1,,.
The transitivity module V(H,G1,) of G is the vector space spanned by {T; |
0 <4 < r}. It was proved in [16] that V(H,G1,) is a Schur ring over H.
Customarily, a Schur ring A over H is called Schurian if A is the transitivity
module V(H, G1,,) of some group G containing the left regular representation
of H.

A family of Schur rings which are not Schurian was given in [16, Theorem
26.4]. Tt is known that every Schur ring over a cyclic p-group is Schurian (see
[12]). In 1979, M. Klin conjectured that every Schur ring over a cyclic group is
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Schurian. But, it was proved in [3] that there exist non-Schurian Schur rings
over cyclic groups.

In [15], Spiga and Wang proved that every p-Schur ring over an elementary
abelian p-group of rank 3 is Schurian. Recently, Kim showed that every p-
Schur ring over an abelian group of order p3 is Schurian (see [10]). In this
paper, we focus on p-Schur rings over non-abelian groups of order p3. The
following example is a non-Schurian 7-Schur ring over a non-abelian group of
order 73. We conjecture that such examples can be constructed for each prime
p=>T.

Example 1.1. Let H = {(a,b | a’ =7 = 1,ab = ba®) be a non-abelian group
of order 73. Then a partition Bsets(.A) of H determines a non-commutative
7-Schur ring which is not Schurian, where

Bsets(A )—{{Z}UE a’ b}U{a |0<z<6}
Ufe*(b(a )|0<z<6}U{a )*) (@) |0 <i<6}
Ufa*(b(a )|0<z<6}U{a )M (@) [0 <i<6}
J{aba™)(a™)' 0 < i < 6}.

So we restrict our attention on commutative p-Schur rings. The following is
our main theorem.

Theorem 1.2. FEvery commutative p-Schur ring over a non-abelian group of
order p* is Schurian.

Note that every 2-Schur ring over a group of order 8 is commutative and
Schurian (see [6]).

This paper is organized as follows. In Section 2, we review notations and
known facts about Schur rings. In Section 3, we give a proof of the main
theorem.

2. Preliminaries

Throughout this paper, we use the notations given in [12].

Let A be a Schur ring over H. We say that a subgroup K of H is an A-
subgroup if K € A. For each A-subgroup E of H, one can define a subring Ag
by setting Ag = ANCE. It is easy to see that Ag is a Schur ring over F and
Bsets(Ag) = {T | T € Bsets(A),T C E}.

For a group H, we denote by Ry the set of all binary relations on H that
invariant with respect to the left regular representation of H. Then the map-
ping

2" Ry (T — Ry (T)),
where Ry (T) = {(h,ht) | h € H,t € T}, is a bijection. If A is a Schur ring
over H, then the pair

C(A) = (H, Ry (Bsets(A))),



COMMUTATIVE p-SCHUR RINGS OVER NON-ABELIAN GROUPS 1691

where Ry (Bsets(A))={Ru(T) | T € Bsets(A)}, is called a Cayley (association)
scheme over H. (See [18] for association schemes.)

Let C = (H, R) be a Cayley scheme. For each r € R, we set r(1y) = {h €
H | (1g,h) € r}. Then the vector space spanned by {r(1g) | r € R} is a Schur
ring over H.

Theorem 2.1 ([11]). The correspondence A — C(A), C(A) — A induces a
bijection between the Schur rings and Cayley schemes over the group H that
preserves the natural partial orders on these sets.

The following propositions are results in [16, 18].

Proposition 2.2. Let A be a Schur ring over H. If T € Bsets(A), then the
stabilizer St(T) :=={h € H | Th=T = hT} is an A-subgroup of H.

Proposition 2.3. Let A be a Schur ring over H and m an element of H. If
T,{m} € Bsets(A), then Tm = {tm |t € T} lies in Bsets(.A).
Proposition 2.4. Let A be a p-Schur ring over a group H of order p™. Then
(i) the group Ogp(A) := {h € H | {h} € Bsets(A)} is a non-trivial A-
subgroup;
(ii) the group O%(A) := ({T~'T | T € Bsets(A)}) is a proper A-subgroup;
(ili) there exists a series Hy = {1y} < Hy < --- < Hp, = H of A-subgroups
such that [Hiy1 : Hi] =p fori=0,1,...,m — 1.
Proposition 2.5 ([8]). Let A be a Schur ring over an abelian group H of
order p™. If there exists T € Bsets(A) with size p™~!, then Bsets(A) =
Bsets(Agoa)) U{TW |1 <i<p—1}, where TV = {t' |t € T}.
The following lemma follows straightforwardly from Propositions 2.4 and
2.5.

Lemma 2.6. Let A be a p-Schur ring over a group H of order p?>. Then
Bsets(A) is either {{h} | h € H} or {{e},T | e € E,T € (H/E)\ {E}} for
some subgroup E of H.
Lemma 2.7 ([9]). Let A be a commutative p-Schur ring over a group H of or-
der p® and L an A-subgroup of order p?>. Then {|T| | T € Bsets(A)\Bsets(Az)}
is either {p} or {p*}.

Let H be a group and L a subgroup of H. We denote by H/L the set of left
cosets. For h € H we define a permutation hr as follows:

hr(x) = hx for each x € H.

For h € H and e € H/L we define a permutation h. as follows:

| hgr(z) ifzee,
he(z) = { x otherwise.

A relative (m,n, k, \)-difference set (RDS) in a finite group G of order mn
relative to a subgroup N of order n is a k-subset R of G such that every element
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g € G\ N has exactly A representations g = T17’51 with r1,72 € R, and no
non-identity element of N has such a representation.

Proposition 2.8 ([4, 7, 14]). Let R be a (p,p,p,1)-RDS in G, where p is an
odd prime. Then G is elementary abelian.

A function f : F, — F, is called planar if f(z + a) — f(z) is a permutation
function of F,, for each a # 0. It is known that a planar function over I, with
odd prime p can be written as the form of a quadratic polynomial (see [4, 14]).

Proposition 2.9 ([13]). A function f is planar if and only if the set R =
{(z, f(z)) € Fp, xFp, | « € Fp} is a (p,p,p,1)-RDS in F, x F, relative to
{0} x IF,,.

3. p-Schur rings over non-abelian groups of odd prime-cube order

Let p be an odd prime. It is well known that there are exactly two non-
abelian groups of order p* up to isomorphism, namely

H, = (a,b|a”2 =0 = 1,ab = ba?™') and
Hy = (a,b,c|a? =b =P =1,[a,b] =¢,[a,c] = [b,c] = 1).

Remark 3.1. (i) Every ¢ € Aut(H;) is a mapping defined by a + a’b’ and
b aP™b, where i € Z,2, i # 0 (mod p) and j,m € Z, (see [5, Section 1.5.1]).

(ii) Every ¢ € Aut(Hz) is a mapping defined by a +— a’bck, b — alb™c"
and ¢ — ¢®, where i,5,k,l,m,n,s € Z, and s = im — jl # 0 (see [5, Section
1.5.3)).

For the remainder of this section, we assume that A is a commutative p-
Schur ring over H; (i = 1,2). For convenience, we often omit the subindex i of
H;.

Lemma 3.2. Let A be a commutative p-Schur ring over H. Then there exists a
series of A-subgroups of H. Moreover, by replacing the generators if necessary,
it is one of the following types:

(Type(1)) {1} < (a7} < {a) < Hi,

(Type(2)) {1} < (a’V?) < (aP,b) < Hy,

(Type(3)) {1} < (a'¢?) < (a,c) < Ha, where i,j € Zy.

Proof. By Proposition 2.4(iii), there exists a series of A-subgroups of H, i.e.,
{I}<L<M<H.

When H = Hy, M is either (a'd’) (i # 0) or (aP,b). If M = (a’b’), then
replacing the generator a‘b’ by a, we have Type(1). If M = (aP,b), then we
have Type(2).

When H = Hy, M is either (a,c) or (b,c). If M = (b,c), then using an
automorphism of H (b+ a,a+— b~ ¢+ c), we have Type(3). O

Lemma 3.3. Let A be a commutative p-Schur ring over H. Suppose that there
exists an element T € Bsets(A) with size p>. Then A is Schurian.



COMMUTATIVE p-SCHUR RINGS OVER NON-ABELIAN GROUPS 1693

Proof. By Proposition 2.4(iii), there exists an A-subgroup L of order p?. By
Lemma 2.7, every element of Bsets(A) \ Bsets(Ay) has size p.

First of all, we claim that each element of Bsets(A) \ Bsets(Ay) belongs to
(H/L) \ {L}. Suppose hli,hily € T, where l1,lo € L,h € H\ L and j # 1.
Then (hl1)"'h/ly € T71T. By Proposition 2.4(ii), this is a contradiction.

By Lemma 2.6, we divide our consideration into two cases.

(i) Bsets(Ar) ={{l} |l € L}.

Define a subgroup G of Sym(H) by (I;,hr |l € L,h € H, f € H/L). Clearly,
G contains the left regular representation of H. It is easy to see that, for given
ly,hr, we have hi'lshp = I}, for some I € L, f" € H/L. So, we can check
Gi=(ly|leL,fe(H/L)\{L}). Thus, the set of orbits of G; is Bsets(A).

(ii) Bsets(Ar) = {{e},T | T € (L/E) \ {E}, e € E}, where E is an A-
subgroup of order p.

For fixed e € E, f € L\ E and g € H, we set z := (1 e--- P71, y :=
af--- fp—l)(e fe --- fp—le) .. (ep—l fer—1... fp—lep—l), Z = 2129 2p,
where 21 = (Lg--- g*~ ") (fgf -+ ¢" ") (f2gf*--- g"7 ) - (fP~ 1 gfP?

9P ), 2 = (e ge oo gP7le) (fe gfe -+ gP ' fe) (fPe gf?e -
gp*1f2e) e (fpfle gfrlte.. .gznflfpfle)7 B (epfl geP~1... gpflep%)
(fepfl gfer—t ... gpflfepfl) (fpflepfl gfPlter—1 ... gpflfpflep%),

It is known that (x,y,z) is a Sylow p-subgroup of Sym(H) (see Exercise
2.6.10 of [2]). This implies that Bsets(A) is the set of orbits of a Sylow p-
subgroup of Sym(H). O

By Lemma 3.3, from now on, we assume that every element of Bsets(.A) has
at most size p.

Lemma 3.4. Let A be a commutative p-Schur ring over H such that |Og(A)| =
p and L an A-subgroup of order p*. If T is an element of Bsets(A)\ Bsets(Ay)
such that St(T) = {1}, then T=1 - T = pl+> 7, ;I , where I = Bsets(AL) \
{{h} | h € Og(A)}.

Proof. Since p > 3, we have T-! N T = (. By Proposition 2.4(ii), we have
T-1.T=pl+ 21 eBsets(Ap ({13} €T L. Since St(T") = {1}, we have ¢y = 0
for each T” € Og(A) \ {1}. Thus, we have 7= - T = pl+ > . o er I’

We claim that ¢y = 1 for each 7" € 1.

First of all, we show that T = {bx, bzic, ... ,bx,_1cP~1}, where b € H \ L,
c € L\ Og(A), z; € Op(A). By Proposition 2.4(ii), all elements of T belong
to a coset in H/L, i.e., T = {bao,bay,...,bap_1}, where b € H\ L, a; € L.
Suppose that, for distinct 7, j, a; and a; belong to the same coset in L/Og(A).
Then a;d = a; for some d € Og(A). By Proposition 2.3, we have Td = T, a
contradiction.

Next, we calculate 771 - T = (25 "0  + ¢ tay o7 4o 4 ey 1y b1 ) (bao +
bric+ -+ bxp_lcp_l). Using the fact that L is abelian, we can check that
every element of I should appear in 7—! - T.
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Thus, the size of T implies that ¢y = 1 for each T € I. (I

Lemma 3.5. Let A be a commutative p-Schur ring over H and L an A-
subgroup of order p?. If there exists T € Bsets(A)\Bsets(Ay) such that St(T) #
{1}, then OY(A) is the center of H.

Proof. We consider three types of A-subgroup series. Fix an element T €
Bsets(A) \ Bsets(Ay) such that St(T") # {1}.

In Type(l), we have St(T) = (a?). We claim that, for each element of
Bsets(.A) \ Bsets(Ar), its stabilizer is (a?). Without loss of generality, we can
assume T = (aP)b by replacing the generators if necessary. Then we have
T -T = p(a?)b®. This implies O%(A) = (aP).

In Type(2), We claim St(T) = (a?). Suppose St(T) = (aPb’) for some
j # 0. Then we can put T = (aPb/)a. Since A is commutative, we have
(aPb)a-aPb) # aPb’ - (aPb?)a by the direct computation. This is a contradiction.
Thus, we have St(7) = (a?). This implies O?(A) = (a?).

Type(3) is similar to the second one. O

Now we divide our consideration into cases depending on |O%(A)|. By Propo-
sition 2.4(ii), we have |O?(A)| = p or p?.

Proposition 3.6. If A is a commutative p-Schur ring over H satisfying one
of the following conditions:

1) 0" =p,

(2) [04(A) = [O°(A)| = p*,
then A is Schurian.

Proof. If A satisfies condition(1), then A is Schurian by the main theorem of
[17].

If A satisfies condition(2), then O?(A) is either cyclic or elementary abelian
Suppose OY(A) is elementary abelian. By [1, Lemma 3.3], Bsets(.A) has el-
ements with size p?, a contradiction. Thus, O%(A) is cyclic. By the main
theorem of [17], A is Schurian. O

Lemma 3.7. Let A be a commutative p-Schur ring over H such that |Og(A)| =
p and |OY(A)| = p%. Then OY(A) is elementary abelian.

Proof. Fix an element 7' € Bsets(A) \ Bsets(Ago(4)) with size p. By Lemma
3.5, we have St(T') = {1}. By Lemma 3.4, we have 7' - T = pl + > 7o, I,
where I = Bsets(Age(a)) \ Bsets(Aop,(4)). This implies that there exists a
(p, p,p, 1)-RDS in O?(A). By Proposition 2.8, O?(A) is elementary abelian. [J

Proposition 3.8. Let A be a commutative p-Schur ring over H such that
|06(A)| = p and |O%(A)| = p®. Then A is Schurian.

Proof. By Lemma 3.3, we assume that every element of Bsets(A) has at most
size p. By Lemma 3.7, OY(A) is elementary abelian. Then .A-subgroup series
is either Type(2) or Type(3). We fix an element 7" € Bsets(A) \ Bsets(Age (.4))-
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In the case of Type(2), we have Bsets(Ar py) = {{h} | h € (a?V’)} U{L |
L € ((a?,B)/(abi)) \ {{a'?b}}}.

First of all, we assume j # 0. Without loss of generality, we can put
0y (A) = (a®™b). Since St(T) = {1}, we can assume T = {azxo, ar1a?, axgaP?,

.oy arpy_1aPP~ D} where 7; € Og(A). Since A is commutative, it must be
satisfied (a®?b)™T = T (a®b)™ for each 1 < m < p — 1. Thus, all z; are same,
ie., T = {ab’,ablaP, ..., ab’a?P~D} for some j. This implies St(T) = (a?), a
contradiction.

Next, we assume j = 0. Then we have Op(A) = (a?). By Lemma 3.4,
we can assume T = {ayo, ay1b,ayab, ..., ay,—1bP~'}, where y; € Og(A). This
implies that there exists a (p,p,p,1)-RDS in (a?,b). By Proposition 2.9, we
have T' = {ab’a?/ | 0 < i < p — 1}, where f(4) is a planar function.

Replacing the generator a by aa?’(?)| we can assume f(i) such that f(0) = 0.
By the same argument, i.e., replacing b by ba?f(!) | we also assume f()y=o.

It is well known that f(x) is a quadratic polynomial. So we assume that
f(z) = dz? + ex. 1t is easy to see that f(i + 1) — f(i) = 2di for each i € Fp.

Now we define v € Aut(H) by a — ab and b +— (a?)??b. Then P := (hp |
h € H) x () is a subgroup of Sym(H). Using f(i + 1) — f(¢) = 2di, we can
check y(ab’a?! ) = ab?*+1aP/+1) | Thus, it follows that the set of orbits of Py
is Bsets(.A).

In the case of Type(3), we have Bsets(A, o)) = {{h} | h € (a’¢/)}U{L | L €
({a,c)/{a’c?))\{{a’c?)}}. Using the fact that c corresponds to a? in Type(2), we
can induce f(i+1)— f(i) = 2di as mentioned in Type(2). Defining v € Aut(H)
by a — ac®*®, b+ ba and ¢ — ¢, we can check that A is Schurian. O

In conclusion, it is proved that every commutative p-Schur ring over a non-
abelian group of order p? is Schurian.
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