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COMMUTATIVE p-SCHUR RINGS OVER NON-ABELIAN

GROUPS OF ORDER p
3

Kijung Kim

Abstract. Recently, it was proved that every p-Schur ring over an abel-
ian group of order p3 is Schurian. In this paper, we prove that every com-
mutative p-Schur ring over a non-abelian group of order p3 is Schurian.

1. Introduction

Let H be a finite group. We denote by CH the group algebra of H over the

complex number field C. For a nonempty subset T ⊆ H , we set T :=
∑

t∈T t

which is treated as an element of CH .

A subalgebraA of the group algebraCH is called a Schur ring overH if there

exists a partition Bsets(A) := {T0, T1, . . . , Tr} of H satisfying the following

conditions:

(i) {Ti | Ti ∈ Bsets(A)} is a linear basis of A;

(ii) T0 = {1H};
(iii) T−1

i := {t−1 | t ∈ Ti} ∈ Bsets(A) for all Ti ∈ Bsets(A).

A Schur ring A over a p-group H is called a p-Schur ring if the size of every

element in Bsets(A) is a power of p, where p is a prime.

Let G be a subgroup of Sym(H) containing the left regular representation

of H . We denote by T0 = {1H}, T1, . . . , Tr the orbits of the stabilizer G1H .

The transitivity module V (H,G1H ) of G is the vector space spanned by {Ti |
0 ≤ i ≤ r}. It was proved in [16] that V (H,G1H ) is a Schur ring over H .

Customarily, a Schur ring A over H is called Schurian if A is the transitivity

module V (H,G1H ) of some group G containing the left regular representation

of H .

A family of Schur rings which are not Schurian was given in [16, Theorem

26.4]. It is known that every Schur ring over a cyclic p-group is Schurian (see

[12]). In 1979, M. Klin conjectured that every Schur ring over a cyclic group is
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Schurian. But, it was proved in [3] that there exist non-Schurian Schur rings

over cyclic groups.

In [15], Spiga and Wang proved that every p-Schur ring over an elementary

abelian p-group of rank 3 is Schurian. Recently, Kim showed that every p-

Schur ring over an abelian group of order p3 is Schurian (see [10]). In this

paper, we focus on p-Schur rings over non-abelian groups of order p3. The

following example is a non-Schurian 7-Schur ring over a non-abelian group of

order 73. We conjecture that such examples can be constructed for each prime

p ≥ 7.

Example 1.1. Let H = 〈a, b | a72 = b7 = 1, ab = ba8〉 be a non-abelian group

of order 73. Then a partition Bsets(A) of H determines a non-commutative

7-Schur ring which is not Schurian, where

Bsets(A) = {{l} | l ∈ 〈a7, b〉}
⋃

{a〈b〉(a7)i | 0 ≤ i ≤ 6}
⋃

{a2〈b(a7)2〉(a7)i | 0 ≤ i ≤ 6}
⋃

{a3〈b(a7)3〉(a7)i | 0 ≤ i ≤ 6}
⋃

{a4〈b(a7)6〉(a7)i | 0 ≤ i ≤ 6}
⋃

{a5〈b(a7)4〉(a7)i | 0 ≤ i ≤ 6}
⋃

{a6〈ba7〉(a7)i | 0 ≤ i ≤ 6}.
So we restrict our attention on commutative p-Schur rings. The following is

our main theorem.

Theorem 1.2. Every commutative p-Schur ring over a non-abelian group of

order p3 is Schurian.

Note that every 2-Schur ring over a group of order 8 is commutative and

Schurian (see [6]).

This paper is organized as follows. In Section 2, we review notations and

known facts about Schur rings. In Section 3, we give a proof of the main

theorem.

2. Preliminaries

Throughout this paper, we use the notations given in [12].

Let A be a Schur ring over H . We say that a subgroup K of H is an A-

subgroup if K ∈ A. For each A-subgroup E of H , one can define a subring AE

by setting AE = A∩CE. It is easy to see that AE is a Schur ring over E and

Bsets(AE) = {T | T ∈ Bsets(A), T ⊆ E}.
For a group H , we denote by RH the set of all binary relations on H that

invariant with respect to the left regular representation of H . Then the map-

ping

2H → RH (T 7→ RH(T )),

where RH(T ) = {(h, ht) | h ∈ H, t ∈ T }, is a bijection. If A is a Schur ring

over H , then the pair

C(A) = (H,RH(Bsets(A))),
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whereRH(Bsets(A))={RH(T ) | T ∈ Bsets(A)}, is called a Cayley (association)

scheme over H . (See [18] for association schemes.)

Let C = (H,R) be a Cayley scheme. For each r ∈ R, we set r(1H) = {h ∈
H | (1H , h) ∈ r}. Then the vector space spanned by {r(1H) | r ∈ R} is a Schur

ring over H .

Theorem 2.1 ([11]). The correspondence A 7→ C(A), C(A) 7→ A induces a

bijection between the Schur rings and Cayley schemes over the group H that

preserves the natural partial orders on these sets.

The following propositions are results in [16, 18].

Proposition 2.2. Let A be a Schur ring over H. If T ∈ Bsets(A), then the

stabilizer St(T ) := {h ∈ H | Th = T = hT } is an A-subgroup of H.

Proposition 2.3. Let A be a Schur ring over H and m an element of H. If

T, {m} ∈ Bsets(A), then Tm = {tm | t ∈ T } lies in Bsets(A).

Proposition 2.4. Let A be a p-Schur ring over a group H of order pm. Then

(i) the group Oθ(A) := {h ∈ H | {h} ∈ Bsets(A)} is a non-trivial A-

subgroup;

(ii) the group Oθ(A) := 〈{T−1T | T ∈ Bsets(A)}〉 is a proper A-subgroup;

(iii) there exists a series H0 = {1H} < H1 < · · · < Hm = H of A-subgroups

such that [Hi+1 : Hi] = p for i = 0, 1, . . . ,m− 1.

Proposition 2.5 ([8]). Let A be a Schur ring over an abelian group H of

order pm. If there exists T ∈ Bsets(A) with size pm−1, then Bsets(A) =

Bsets(AOθ(A)) ∪ {T (i) | 1 ≤ i ≤ p− 1}, where T (i) = {ti | t ∈ T }.
The following lemma follows straightforwardly from Propositions 2.4 and

2.5.

Lemma 2.6. Let A be a p-Schur ring over a group H of order p2. Then

Bsets(A) is either {{h} | h ∈ H} or {{e}, T | e ∈ E, T ∈ (H/E) \ {E}} for

some subgroup E of H.

Lemma 2.7 ([9]). Let A be a commutative p-Schur ring over a group H of or-

der p3 and L an A-subgroup of order p2. Then {|T | | T ∈ Bsets(A)\Bsets(AL)}
is either {p} or {p2}.

Let H be a group and L a subgroup of H . We denote by H/L the set of left

cosets. For h ∈ H we define a permutation hR as follows:

hR(x) = hx for each x ∈ H.

For h ∈ H and e ∈ H/L we define a permutation he as follows:

he(x) =

{

hR(x) if x ∈ e,

x otherwise.

A relative (m,n, k, λ)-difference set (RDS) in a finite group G of order mn

relative to a subgroupN of order n is a k-subset R of G such that every element
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g ∈ G \ N has exactly λ representations g = r1r
−1
2 with r1, r2 ∈ R, and no

non-identity element of N has such a representation.

Proposition 2.8 ([4, 7, 14]). Let R be a (p, p, p, 1)-RDS in G, where p is an

odd prime. Then G is elementary abelian.

A function f : Fp → Fp is called planar if f(x+ a)− f(x) is a permutation

function of Fp for each a 6= 0. It is known that a planar function over Fp with

odd prime p can be written as the form of a quadratic polynomial (see [4, 14]).

Proposition 2.9 ([13]). A function f is planar if and only if the set R =

{(x, f(x)) ∈ Fp × Fp | x ∈ Fp} is a (p, p, p, 1)-RDS in Fp × Fp relative to

{0} × Fp.

3. p-Schur rings over non-abelian groups of odd prime-cube order

Let p be an odd prime. It is well known that there are exactly two non-

abelian groups of order p3 up to isomorphism, namely

H1 = 〈a, b | ap2

= bp = 1, ab = bap+1〉 and
H2 = 〈a, b, c | ap = bp = cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉.

Remark 3.1. (i) Every ϕ ∈ Aut(H1) is a mapping defined by a 7→ aibj and

b 7→ apmb, where i ∈ Zp2 , i 6≡ 0 (mod p) and j,m ∈ Zp (see [5, Section 1.5.1]).

(ii) Every ϕ ∈ Aut(H2) is a mapping defined by a 7→ aibjck, b 7→ albmcn

and c 7→ cs, where i, j, k, l,m, n, s ∈ Zp and s = im − jl 6= 0 (see [5, Section

1.5.3]).

For the remainder of this section, we assume that A is a commutative p-

Schur ring over Hi (i = 1, 2). For convenience, we often omit the subindex i of

Hi.

Lemma 3.2. Let A be a commutative p-Schur ring over H. Then there exists a

series of A-subgroups of H. Moreover, by replacing the generators if necessary,

it is one of the following types:

(Type(1)) {1} < 〈ap〉 < 〈a〉 < H1,

(Type(2)) {1} < 〈aipbj〉 < 〈ap, b〉 < H1,

(Type(3)) {1} < 〈aicj〉 < 〈a, c〉 < H2, where i, j ∈ Zp.

Proof. By Proposition 2.4(iii), there exists a series of A-subgroups of H , i.e.,

{1} < L < M < H .

When H = H1, M is either 〈aibj〉 (i 6= 0) or 〈ap, b〉. If M = 〈aibj〉, then
replacing the generator aibj by a, we have Type(1). If M = 〈ap, b〉, then we

have Type(2).

When H = H2, M is either 〈a, c〉 or 〈b, c〉. If M = 〈b, c〉, then using an

automorphism of H (b 7→ a, a 7→ bp−1, c 7→ c), we have Type(3). �

Lemma 3.3. Let A be a commutative p-Schur ring over H. Suppose that there

exists an element T ∈ Bsets(A) with size p2. Then A is Schurian.
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Proof. By Proposition 2.4(iii), there exists an A-subgroup L of order p2. By

Lemma 2.7, every element of Bsets(A) \ Bsets(AL) has size p2.

First of all, we claim that each element of Bsets(A) \ Bsets(AL) belongs to

(H/L) \ {L}. Suppose hl1, h
jl2 ∈ T , where l1, l2 ∈ L, h ∈ H \ L and j 6= 1.

Then (hl1)
−1hj l2 ∈ T−1T . By Proposition 2.4(ii), this is a contradiction.

By Lemma 2.6, we divide our consideration into two cases.

(i) Bsets(AL) = {{l} | l ∈ L}.
Define a subgroupG of Sym(H) by 〈lf , hR | l ∈ L, h ∈ H, f ∈ H/L〉. Clearly,

G contains the left regular representation of H . It is easy to see that, for given

lf , hR, we have h−1
R lfhR = l′f ′

for some l′ ∈ L, f ′ ∈ H/L. So, we can check

G1 = 〈lf | l ∈ L, f ∈ (H/L) \ {L}〉. Thus, the set of orbits of G1 is Bsets(A).

(ii) Bsets(AL) = {{e}, T | T ∈ (L/E) \ {E}, e ∈ E}, where E is an A-

subgroup of order p.

For fixed e ∈ E, f ∈ L \ E and g ∈ H , we set x := (1 e · · · ep−1), y :=

(1 f · · · fp−1)(e fe · · · fp−1e) · · · (ep−1 fep−1 · · · fp−1ep−1), z := z1z2 · · · zp,
where z1 = (1 g · · · gp−1) (f gf · · · gp−1f) (f2 gf2 · · · gp−1f2) · · · (fp−1 gfp−1

· · · gp−1fp−1), z2 = (e ge · · · gp−1e) (fe gfe · · · gp−1fe) (f2e gf2e · · ·
gp−1f2e) · · · (fp−1e gfp−1e · · · gp−1fp−1e), . . . , zp = (ep−1 gep−1 · · · gp−1ep−1)

(fep−1 gfep−1 · · · gp−1fep−1) · · · (fp−1ep−1 gfp−1ep−1 · · · gp−1fp−1ep−1).

It is known that 〈x, y, z〉 is a Sylow p-subgroup of Sym(H) (see Exercise

2.6.10 of [2]). This implies that Bsets(A) is the set of orbits of a Sylow p-

subgroup of Sym(H). �

By Lemma 3.3, from now on, we assume that every element of Bsets(A) has

at most size p.

Lemma 3.4. Let A be a commutative p-Schur ring over H such that |Oθ(A)| =
p and L an A-subgroup of order p2. If T is an element of Bsets(A)\Bsets(AL)

such that St(T ) = {1}, then T−1 · T = p1 +
∑

T ′∈I T
′ , where I = Bsets(AL) \

{{h} | h ∈ Oθ(A)}.
Proof. Since p ≥ 3, we have T−1 ∩ T = ∅. By Proposition 2.4(ii), we have

T−1 · T = p1 +
∑

T ′∈Bsets(AL)\{{1}} cT ′T ′. Since St(T ) = {1}, we have cT ′ = 0

for each T ′ ∈ Oθ(A) \ {1}. Thus, we have T−1 · T = p1 +
∑

T ′∈I cT ′T ′.

We claim that cT ′ = 1 for each T ′ ∈ I.

First of all, we show that T = {bx0, bx1c, . . . , bxp−1c
p−1}, where b ∈ H \ L,

c ∈ L \Oθ(A), xi ∈ Oθ(A). By Proposition 2.4(ii), all elements of T belong

to a coset in H/L, i.e., T = {ba0, ba1, . . . , bap−1}, where b ∈ H \ L, ai ∈ L.

Suppose that, for distinct i, j, ai and aj belong to the same coset in L/Oθ(A).

Then aid = aj for some d ∈ Oθ(A). By Proposition 2.3, we have Td = T , a

contradiction.

Next, we calculate T−1 · T = (x−1
0 b−1 + c−1x−1

1 b−1 + · · ·+ cx−1
p−1b

−1)(bx0 +

bx1c + · · · + bxp−1c
p−1). Using the fact that L is abelian, we can check that

every element of I should appear in T−1 · T .
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Thus, the size of T implies that cT ′ = 1 for each T ′ ∈ I. �

Lemma 3.5. Let A be a commutative p-Schur ring over H and L an A-

subgroup of order p2. If there exists T ∈ Bsets(A)\Bsets(AL) such that St(T ) 6=
{1}, then Oθ(A) is the center of H.

Proof. We consider three types of A-subgroup series. Fix an element T ∈
Bsets(A) \ Bsets(AL) such that St(T ) 6= {1}.

In Type(1), we have St(T ) = 〈ap〉. We claim that, for each element of

Bsets(A) \ Bsets(AL), its stabilizer is 〈ap〉. Without loss of generality, we can

assume T = 〈ap〉b by replacing the generators if necessary. Then we have

T · T = p〈ap〉b2. This implies Oθ(A) = 〈ap〉.
In Type(2), We claim St(T ) = 〈ap〉. Suppose St(T ) = 〈apbj〉 for some

j 6= 0. Then we can put T = 〈apbj〉a. Since A is commutative, we have

〈apbj〉a·apbj 6= apbj ·〈apbj〉a by the direct computation. This is a contradiction.

Thus, we have St(T ) = 〈ap〉. This implies Oθ(A) = 〈ap〉.
Type(3) is similar to the second one. �

Nowwe divide our consideration into cases depending on |Oθ(A)|. By Propo-
sition 2.4(ii), we have |Oθ(A)| = p or p2.

Proposition 3.6. If A is a commutative p-Schur ring over H satisfying one

of the following conditions:

(1) |Oθ(A)| = p,

(2) |Oθ(A)| = |Oθ(A)| = p2,

then A is Schurian.

Proof. If A satisfies condition(1), then A is Schurian by the main theorem of

[17].

If A satisfies condition(2), then Oθ(A) is either cyclic or elementary abelian

Suppose Oθ(A) is elementary abelian. By [1, Lemma 3.3], Bsets(A) has el-

ements with size p2, a contradiction. Thus, Oθ(A) is cyclic. By the main

theorem of [17], A is Schurian. �

Lemma 3.7. Let A be a commutative p-Schur ring over H such that |Oθ(A)| =
p and |Oθ(A)| = p2. Then Oθ(A) is elementary abelian.

Proof. Fix an element T ∈ Bsets(A) \ Bsets(AOθ(A)) with size p. By Lemma

3.5, we have St(T ) = {1}. By Lemma 3.4, we have T−1 · T = p1 +
∑

T ′∈I T
′,

where I = Bsets(AOθ(A)) \ Bsets(AOθ(A)). This implies that there exists a

(p, p, p, 1)-RDS inOθ(A). By Proposition 2.8,Oθ(A) is elementary abelian. �

Proposition 3.8. Let A be a commutative p-Schur ring over H such that

|Oθ(A)| = p and |Oθ(A)| = p2. Then A is Schurian.

Proof. By Lemma 3.3, we assume that every element of Bsets(A) has at most

size p. By Lemma 3.7, Oθ(A) is elementary abelian. Then A-subgroup series

is either Type(2) or Type(3). We fix an element T ∈ Bsets(A)\Bsets(AOθ(A)).
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In the case of Type(2), we have Bsets(A〈ap,b〉) = {{h} | h ∈ 〈aipbj〉} ∪ {L |
L ∈ (〈ap, b〉/〈aipbj〉) \ {〈aipbj〉}}.

First of all, we assume j 6= 0. Without loss of generality, we can put

Oθ(A) = 〈aipb〉. Since St(T ) = {1}, we can assume T = {ax0, ax1a
p, ax2a

p2,

. . . , axp−1a
p(p−1)}, where xl ∈ Oθ(A). Since A is commutative, it must be

satisfied (aipb)mT = T (aipb)m for each 1 ≤ m ≤ p− 1. Thus, all xl are same,

i.e., T = {abj, abjap, . . . , abjap(p−1)} for some j. This implies St(T ) = 〈ap〉, a
contradiction.

Next, we assume j = 0. Then we have Oθ(A) = 〈ap〉. By Lemma 3.4,

we can assume T = {ay0, ay1b, ay2b, . . . , ayp−1b
p−1}, where yl ∈ Oθ(A). This

implies that there exists a (p, p, p, 1)-RDS in 〈ap, b〉. By Proposition 2.9, we

have T = {abiapf(i) | 0 ≤ i ≤ p− 1}, where f(i) is a planar function.

Replacing the generator a by aapf(0), we can assume f(i) such that f(0) = 0.

By the same argument, i.e., replacing b by bapf(1), we also assume f(1) = 0.

It is well known that f(x) is a quadratic polynomial. So we assume that

f(x) = dx2 + ex. It is easy to see that f(i+ 1)− f(i) = 2di for each i ∈ Fp.

Now we define γ ∈ Aut(H) by a 7→ ab and b 7→ (ap)2db. Then P := 〈hR |
h ∈ H〉 ⋊ 〈γ〉 is a subgroup of Sym(H). Using f(i + 1) − f(i) = 2di, we can

check γ(abiapf(i)) = abi+1apf(i+1). Thus, it follows that the set of orbits of P1

is Bsets(A).

In the case of Type(3), we have Bsets(A〈a,c〉) = {{h} | h ∈ 〈aicj〉}∪{L | L ∈
(〈a, c〉/〈aicj〉)\{〈aicj〉}}. Using the fact that c corresponds to ap in Type(2), we

can induce f(i+1)−f(i) = 2di as mentioned in Type(2). Defining γ ∈ Aut(H)

by a 7→ ac2d, b 7→ ba and c 7→ c, we can check that A is Schurian. �

In conclusion, it is proved that every commutative p-Schur ring over a non-

abelian group of order p3 is Schurian.
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