International Journal of Control, Automation, and Systems
/
제1권4호
/
pp.503-510
/
2003
This paper describes the synthesis of robust and non-fragile $H^{i~}$state feedback controllers for linear varying systems with time delay and affine parameter uncertainties, as well as static state feedback controller with structural uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile $H^{i~}$static state feedback controller, and the region of controllers satisfying non-fragility are presented. Also, using some change of variables and Schur complements, the obtained conditions can be rewritten as parameterized Linear Matrix Inequalities (PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of time delay and controller gain variations within a resulted polytopic region.
본 논문에서는 상태와 제어입력에 시간지연을 가지는 이산 불확실성 시스템의 견실 H/sub ∞/ 상태궤환 제어기 설계문제를 다룬다. 동일한 제어기에 대해서, 파라미터 불확실성을 가지는 시간지연 시스템이 자승적 안정성(quadratic stability)과 폐루프 시스템의 H/sub ∞/ 노옴의 한계를 유지하면서 파라미터 불확실성이 없는 등가의 시스템으로 변형된다. 그리고 주어진 이산 불확실성 시간지연 시스템의 견실 H/sub ∞/ 상태궤환 제어기가 존재할 충분조건과 제어기 설계 알고리듬을 제시한다. 또한 변수치환과 Schur 여수(complement) 정리를 이용하면 구한 충분조건은 LMI(linear matrix inequality) 형태로 쓸 수 있다. 예제를 통하여 제시한 결과의 타당성을 보인다.
Kim, Jong-Hae;Jeung, Eun-Tae;Lee, Sang-Kyung;Park, Hong-Bae
Journal of Electrical Engineering and information Science
/
제3권2호
/
pp.163-169
/
1998
In this paper, we consider the problem of designing H$\infty$ state feedback controller for the generalized time systems with delayed states and control inputs in continuous and discrete time cases, respectively. The generalized time delay system problems are solved on the basis of LMI(linear matrix inequality) technique considering time delays. The sufficient condition for the existence of controller and H$\infty$ state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be rewritten as a LMI form in terms of transformed variables. The propose controller design method can be extended into the problem of robust H$\infty$ state feedback controller design method easily.
This paper provides an observer-based $H_{\infty}$ controller design method for singular systems with and without time-varying delay by just one LMI condition. The sufficient condition for the existence of controller and the controller design method are presented by perfect LMI (linear matrix inequality) approach. The design procedure involves solving an LMI. The observer-based $H_{\infty}$ controller in the existing results can be constructed from the coupled two or more conditions while the proposed controller design method can be obtained from an LMI condition, which can be solved efficiently by convex optimization. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables. An example is given to illustrate the results.
본 논문에서는 시변 시간지연을 가지는 특이시스템에 대한 보장비용 상태제환 제어기 설계방법을 제시한다. 보장비용 제어기가 존재할 충분조건과 보장비용 제어기 설계방법 및 보장비용 함수의 상한치를 구하는 최적화 문제를 선형행렬부등식, 특이치 분해(singular value decomposition), 슈어 여수(Schur complements) 정리, 변수 치환 등에 의하여 제시한다. 구한 충분조건은 선형행렬부등식의 형태로 되기 때문에 보장비용 제어기의 이득과 보장비용 함수의 상한치를 포함하는 충분조건의 모든 해를 동시에 구할 수 있다, 또한, 제안한 알고리듬을 이용하면 변수 불확실성과 시변 시간지연을 동시에 가지는 특이시스템에 대한 강인 보장비용 제어기 설계문제에도 쉽게 확장됨을 보인다. 마지막으로, 제안한 알고리듬의 타당성을 수치예제를 통하여 확인한다.
본 논문은 변수 불확실성과 제어기의 곱셈형 섭동을 가지는 특이시스템에 대한 비약성 강인 보장비용 제어기 설계 알고리듬을 제안한다. 제어기가 존재할 조건, 비약성 보장비용 제어기 설계 방법, 제어기에서의 비약성 척도와 보장비용 성능지수를 최소화하는 보장비용의 상한치(upper bound)를 선형행렬부등식 접근방벙으로 제안한다. 또한, 특이치분해와 변수치환 및 슈어 여수정리를 이용하여 구한 충분조건은 구하고자 하는 변수의 견지에서 볼록최적화(convex optimization)가 가능한 선형행렬부등식으로 변형된다. 따라서, 제안한 비약성 강인 보장비용 제어기는 변수 불확실성과 제어기의 곱셈형 섭동을 가지는 폐루프 특시이스템의 점근적 안정성과 보장비용 성능지수를 최소화하고 제어기의 섭동에 대해서도 안정성을 보장한다. 마지막으로, 수치예제를 통하여 제안한 알고리듬의 타당성을 검증한다.
본 논문은 특이시스템과 곱셈형 섭동을 가지는 제어기에 대한 비약성 $H_{\infty}$ 제어기 설계 알고리듬을 제안한다. 제어기가 존재할 조건과 비약성 $H_{\infty}$ 제어기 설계 방법 및 제어기에서의 비약성 척도를 선형행렬부등식 접근방법으로 제안한다. 또한, 특이치 분해와 변수치환 및 슈어 여수정리를 이용하여 구한 충분조건은 구하고자 하는 모든 변수의 견지에서 볼록최적화(convex optimization)가 가능한 하나의 선형행렬부등식으로 변형된다. 따라서, 제안한 비약성 $H_{\infty}$ 제어기는 점근적 안정성과 폐루프 특이시스템의 $H_{\infty}$ 노옴 유계 및 제어기의 곱셈형 섭동에 대한 안정성을 보장한다. 또한, 제안한 알고리듬을 이용하면 변수 불확실성을 가지는 특이시스템에 대한 강인 비약성 $H_{\infty}$ 제어기 설계 문제에도 쉽게 확장됨을 보인다. 마지막으로, 수치예제를 통하여 제안한 알고리듬의 타당성을 검증한다.
본 논문에서는 구조화된 어파인(affine) 파라미터 불확실성을 가지는 시변 선형시스템과 구조적 불확실성을 가지는 상태궤환 제어기에 대한 견실 비약성 H∞ 제어기 설계방법을 다루었다. 또한 견실 비약성 H∞ 제어기가 존재할 충분조건, 제어기 설계방법 및 비약성을 만족하는 제어기의 꽉찬 집합(compact set)을 제시하였다. 이 때 제시한 조건은 변수치환과 슈어 여수(Schur complement)정리를 통하여 선형행렬부등식 (LMI : Linear Matrix Inequality)의 계수가 꽉찬 집합 내의 파라미터의 함수로 정의되는 파라미터화 선형 행렬부등식(PLMls: parameterized Linear Matrix Inequalities)으로 표현되므로 분리 볼록개념 (separated convexity concepts)에 기초한 완화기법을 이용하여 유한개의 LMI로 변환하였다. 그리고 본론문에서 제시한 견실 비약성 H∞ 제어기가 제어기이득의 변화에도 불구하고 폐루프시스템의 점근적 안정성 (asymptotic stability)과 외란감쇠 성능을 보장함을 보였다.
본 논문에서는 시변 시간지연을 가지는 특이시스템에 대한 관측기 기반 Η∞ 출력궤환 제어기 설계방법을 단 하나의 선형행렬부등식 조건을 이용하여 제시한다. 제어기가 존재할 충분조건과 제어기 설계방법을 모든 변수의 견지에서 완벽한 하나의 선형행렬부등식으로 표현하여 볼록최적화가 가능하도록 한다. 제어기의 설계과정은 제안한 하나의 충분조건으로부터 직접 구해진다. 구한 충분조건은 하나의 선형행렬부등식으로 표현되어지므로, 슈어 여수정리와 변수치환 및 특이치 분해의 기법에 의하여 궤환이득과 추정이득을 포함하는 모든 해로부터 관측기 기반 Η∞ 출력궤환 제어기를 동시에 구할 수 있다. 또한 제안한 알고리듬을 이용하여 파라미터 불확실성과 시간지연을 가지는 특이시스템에 대한 관측기 기반 견실 Η∞ 출력제환 제어기 설계도 가능함을 보인다. 마지막으로, 제안한 알고리듬의 타당성을 수치예제를 통하여 확인한다.
본 논문에서는 폴리토프 불확실성과 시간지연, 그리고 제어기 섭동을 가지는 비선형 상호연결시스템의 상태궤환 제어기에 대한 견실비약성 $H_{\infty}$ 분산 퍼지제어기 설계 방법을 다룬다. 먼저 시간지연을 가지는 비선형 상호연결시스템을 Takagi-Sugeno 퍼지모델로 나타내고, 이로부터 지연종속 견실비약성 $H_{\infty}$ 퍼지제어기가 존재하기 위한 충분조건, 제어기 설계방법 및 비약성을 만족하는 제어기의 꽉찬집합(compact set)을 제시한다. 이 때 제시한 조건은 변수치환과 슈어여수(Schur complement)정리를 통해 선형행렬부등식(LMI: Linear Matrix Inequality)의 계수가 꽉찬 집합 내의 파라미터의 함수로 정의되는 파라미터화 선형행렬부등식(PLMIs: Parameterized Linear Matrix Inequalities)으로 표현되며, 이를 완화기법(relaxation technique)를 사용하여 유한개의 선형행렬부등식으로 변환하고, 제어기와 비약성을 만족하는 제어기 영역을 구한다. 마지막으로 예제와 모의실험을 통해 불확실성과 시간지연, 제어기이득 섭동에도 불구하고 제안한 퍼지제어기가 폐루프시스템을 안정화시키고 외란감쇠를 보장함을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.