• 제목/요약/키워드: Schottky diodes

Search Result 159, Processing Time 0.095 seconds

Characterization of Schottky Diodes and Design of Voltage Multiplier for UHF-band Passive RFID Transponder (UHF 대역 수동형 RFID 태그 쇼트키 다이오드 특성 분석 및 전압체배기 설계)

  • Lee, Jong-Wook;Tran, Nham
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.9-15
    • /
    • 2007
  • In this paper, we present the design of Schottky diodes and voltage multiplier for UHF-band passive RFID applications. The Schottky diodes were fabricated using Titanium (Ti/Al/Ta/Al)-Silicon (n-type) junction in $0.35\;{\mu}m$ CMOS process. The Schottky diode having $4{\times}10{\times}10\;{\mu}m^{2}$ contact area showed a turn-on voltage of about 150 mV for the forward diode current of $20\;{\mu}A$. The breakdown voltage is about -9 V, which provides sufficient peak inverse voltage necessary for the voltage multiplier in the RFID tag chip. The effect of the size of Schottky diode on the turn-on voltage and the input impedance at 900 MHz was investigated using small-signal equivalent model. Also, the effect or qualify factor of the diode on the input voltage to the tag chip is examined, which indicates that high qualify factor Schottky diode is desirable to minimize loss. The fabricated voltage multiplier resulted in a output voltage of more than 1.3 V for the input RF signal of 200mV, which is suitable for long-range RFID applications.

Characterization of Conduction Mechanism in Cu Schottky Contacts to p-type Ge

  • Kim, Se Hyun;Jung, Chan Yeong;Kim, Hogyoung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.324-327
    • /
    • 2014
  • Germanium (Ge) is a promising material for next generation nanoelectronics and multiple junction solar cells. This work investigated the electrical properties in Cu/p-type Ge Schottky diodes, using current-voltage (I-V) measurements. The Schottky barrier heights were 0.66, 0.59, and 0.70 eV from the forward ln(I)-V, Cheung, and Norde methods, respectively. The ideality factors were 1.92 and 1.78 from the forward ln(I)-V method and Cheung method, respectively. Such high ideality factor could be associated with the presence of an interfacial layer and interface states at the Cu/p-Ge interface. The reverse-biased current transport was dominated by the Poole-Frenkel emission rather than the Schottky emission.

Titanium Dioxide Sol-gel Schottky Diodes and Effect of Titanium Dioxide Nanoparticle

  • Maniruzzaman, Mohammad;Zhai, Lindong;Mun, Seongcheol;Kim, Jaehwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2343-2347
    • /
    • 2015
  • This paper reports the effect of Titanium dioxide (TiO2) nanoparticles on a TiO2 sol-gel Schottky diode. TiO2 nanoparticles were blended with TiO2 sol-gel to fabricate the Schottky diode. TiO2 nanoparticles showed strong anatase and rutile X-ray diffraction peaks. However, the mixture of TiO2 sol-gel and TiO2 nanoparticles exhibited no anatase and rutile peaks. The forward current of the Schottky diode drastically increased as the concentration of TiO2 nanoparticles increased up to 10 wt. % and decreased after that. The possible conduction mechanism is more likely space charge limited conduction.

Characteristics of $RuO_2$/n-GaN Schottky Diode ($RuO_2$/n-GaN 구조의 Schottky Diode 특성)

  • Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • In this paper, we study the electrical characteristics of $RuO_2$/n-GaN Schottky diodes fabricated by using electrochemical metallization. The solution for GaN Schottky electrodes of $RuO_2$ is perchloric acid($HClO_4$). Thickness of $RuO_2$ layer depend on supplied voltage and dipping time. We verified the possibility of the rectifying and non-rectifying devices' electrode which was depend on the thickness of $RuO_2$ layer.

Electrical Characteristics of Metal/n-InGaAs Schottky Contacts Formed at Low Temperature

  • 이홍주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.365-370
    • /
    • 2000
  • Schottky contacts on n-In$\_$0.53//Ga$\_$0.47//As have been made by metal deposition on substrates cooled to a temperature of 77K. The current-voltage and capacitance-voltage characteristics showed that the Schottky diodes formed at low temperature had a much improved barrier height compared to those formed at room temperature. The Schottky barrier height ø$\_$B/ was found to be increased from 0.2eV to 0.6eV with Ag metal. The saturation current density of the low temperature diode was about 4 orders smaller than for the room temperature diode. A current transport mechanism dominated by thermionic emission over the barrier for the low temperature diode was found from current-voltage-temperature measurement. Deep level transient spectroscopy studies exhibited a bulk electron trap at E$\_$c/-0.23eV. The low temperature process appears to reduce metal induced surface damage and may form an MIS (metal-insulator-semiconductor)-like structure at the interface.

  • PDF

Fabrication of a Pd/poly 3C-SiC Schottky diode hydrogensensor and its characteristics (Pd/다결정 3C-SiC 쇼트키 다이오드형 수소센서의 제작과 그 특성)

  • Chung, Gwiy-Sang;Ahn, Jeong-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.222-225
    • /
    • 2009
  • This paper describes the fabrication and characteristics of Schottky micro hydrogen sensors for high temperatures by using polycrystalline(poly) 3C-SiC thin films grown on Si substrates with thermal oxide layer using APCVD. Pd/poly 3C-SiC Schottky diodes were made and evaluated by I-V and C-V measurements. Electric current density and barrier height voltage were $2{\times}10^{-3}A/cm^2$ and 0.58 eV, respectively. These devices could operate stably at about 400 $^{\circ}$. The characteristics of implemented sensors have been investigated in terms of sensitivity, linearity of response, response rate, and response time. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature $H_2$ sensor applications.

Fabrication and Characterization of ZnO Schottky Diode Using Sol-Gel Process (Sol-Gel 공정을 이용한 ZnO 쇼트키 다이오드의 제작 및 특성평가)

  • Lee, Deuk-Hee;Kim, Kyoung-Won;Park, Ki-Ho;Kim, Sang-Sig;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.390-390
    • /
    • 2010
  • We fabricate Schottky diodes with the contact between a sol-gel derived ZnO layer and Au that guarantees the expected Schottky contact due to the high work function. The formed single metal Schottky barrier shows characteristics comparable to the barrier formed by alloys. Au is deposited by thermal evaporation on a ZnO thin film that is optimally formed under sol-gel process conditions of a 1-mol zinc acetate concentration and a 3000-rpm coating speed. Possible defects. which can provide deleterious current paths. are minimized by patterning the deposited Au. The I-V curve verifies the formation of a Schottky contact. Measurements showed that the Schottky barrier height and leakage current at -5 V were 0.6 eV and $1{\times}10^{-12}A$. respectively.

  • PDF

Tandem Structured Hot Electron-based Photovoltaic Cell with Double Schottky Barriers

  • Lee, Young Keun;Lee, Hyosun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.310.1-310.1
    • /
    • 2013
  • We show the novel hot electron based-solar energy conversion using tandem structured Schottky diode with double Schottky barriers. In this report, we show the effect of the double Schottky barriers on solar cell performance by enhancing both of internal photoemission and band-to-band excitation. The tandem structured Au/Si diode capped with TiO2 layer as second semiconductor exhibited improved ability for light harvesting. The proposed mechanisms consist of multiple reflections of hot electrons and additional pathway of solar energy conversion due to presence of multiple interfaces between thin gold film and semiconductors. Short-circuit photocurrent measured on the tandem structured Au/Si diodes under illumination of AM1.5 increased by approximately 70% from 3.1% to 5.3% and overall incident photon to electron conversion efficiency (IPCE) was enhanced in visible light, revealing that the concept of the double Schottky barriers have significant potential as novel strategy for light harvesting.

  • PDF

Properties and SPICE modeling for a Schottky diode fabricated on the cracked GaN epitaxial layers on (111) silicon

  • Lee, Heon-Bok;Baek, Kyong-Hum;Lee, Myung-Bok;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.96-100
    • /
    • 2005
  • The planar Schottky diodes were fabricated and modeled to probe the device applicability of the cracked GaN epitaxial layer on a (111) silicon substrate. On the unintentionally n-doped GaN grown on silicon, we deposited Ti/Al/Ni/Au as the ohmic metal and Pt as the Schottky metal. The ohmic contact achieved a minimum contact resistivity of $5.51{\times}10.5{\Omega}{\cdot}cm^{2}$ after annealing in an $N_{2}$ ambient at $700^{\circ}C$ for 30 sec. The fabricated Schottky diode exhibited the barrier height of 0.7 eV and the ideality factor was 2.4, which are significantly lower than those parameters of crack free one. But in photoresponse measurement, the diode showed the peak responsivity of 0.097 A/W at 300 nm, the cutoff at 360 nm, and UV/visible rejection ratio of about $10^{2}$. The SPICE(Simulation Program with Integrated Circuit Emphasis) simulation with a proposed model, which was composed with one Pt/GaN diode and three parasitic diodes, showed good agreement with the experiment.

The Effect of thin Stepped Oside Structure Along Contact Edge on the Breakdown Voltage of Al-nSi Schottky Diode (Al-nSi 쇼트키 다이오드의 접합면 주위의 얇은 계단형 산화막 구조가 항복 전압에 미치는 영향)

  • 장지근;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.3
    • /
    • pp.33-39
    • /
    • 1983
  • New Schottky devices with thin stepped oxide layer (about 1000 ${\AA}$) along the edge of metal-semiconductor junction have been designed and fabricated. The breakdown voltages of these diodes have been compared with those of conventional metal overlap and P guard ring Schottky diode structures. Thin stepped oxide layer has been grown by the process of T.C.E. oxidation. In order to compare and demonstrate the improved down phenomena of these devices, conventional metal overlap diode and P guard ring which have the same dimension with new devices have also been integrated in a same New Schottty devices structured with thin stepped oxide layer have shown significant improvement in breakdown phenomena compared with conventional diodes.

  • PDF