• Title/Summary/Keyword: Scan-based test

Search Result 208, Processing Time 0.029 seconds

The Research of Comparison Evaluation on the Decline in Artifact Using Respiratory Gating System in PET-CT (PET-CT 검사 시 호흡동조 시스템을 이용한 인공물 감소에 대한 비교 평가)

  • Kim, Jin-Young;Lee, Seung Jae;jung, Suk;Park, Min-Soo;Kang, Chun-Goo;Im, Han-Sang;Kim, Jae-Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.63-67
    • /
    • 2015
  • Purpose Among various causes that influence image quality degradation, various methods for decrease in Artifact occurred by respiration of patients are being used. Among them, this study intended to evaluate CTAC Shift correction method and additional scan compare to the Scan(Q static scan) using respiratory gated system. Materials and Methods This study was conducted on 10 patients, and used PET-CT Discovery 710 (GE Healthcare, MI, USA) and Varian's RPM system. 5.18 Mbq per kg of $^{18}F$-FDG was injected on patients, asked them to take a rest for 1 hour in the bed, and conducted test after urination. Images were visualized through Q static scan, CTAC Shift correction method, Additional scan based on the Whole body scan(WBS) with Artifact. Decrease in Artifact was compared in each image, conducted Gross Evalution, and measured changes of SUVmax. Results For image obtained through the CTAC Shift correction method through WBS with Artifact, 12~56%, Q static scan image showed 17~54% of change rate and Additional Scan showed -27~46% of change rate. In Blind Test, the CTAC Shift correction image showed the highest point with 4 points, Q static scan image showed 3.5 points, and Additional scan image showed 3.4 points. The standardized WBS scan through Oneway ANOVA and three types of Scan method showed significant difference(p<0.05), and did not show significant difference between the three Scan methods(p>0.05). However, the three Scan methods showed significant difference in Blind test. Conclusion Additional scan and Q static scan require more time than the CTAC Shift correction method, there is concern about excessive exposure to patients by CT rescan and Q static scan is difficult to apply on patients with inconsistent respiration or irregular respiration cycle due to pain. For CTAC Shift correction method, limited correction is possible and the range is limited as well. It is considered as a useful method of improving diagnostic value when hospitals use the system appropriately and develop various advantageous factors of each method.

  • PDF

Development of selectable observation point test architecture in the Boundry Scan (경계면스캔에서의 선택가능한 관측점 시험구조의 개발)

  • Lee, Chang-Hee;Jhang, Young-Sig
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.87-95
    • /
    • 2008
  • In this paper, we developed a selectable observation Point test architecture and test procedure for clocked 4-bit synchronous counter circuit based on boundary scan architecture. To develope, we analyze the operation of Sample/Preload instruction on boundary scan architecture. The Sample/Preload instruction make Possible to snapshot of outputs of CUT(circuit under test) at the specific time. But the changes of output of CUT during normal operation are not possible to observe using Sample/Preload in typical scan architecture. We suggested a selectable observation point test architecture that allows to select output of CUT and to observe of the changes of selected output of CUT during normal operation. The suggested a selectable observation point test architecture and test procedure is simulated by Altera Max 10.0. The simulation results of 4-bit counter shows the accurate operation and effectiveness of the proposed test architecture and procedure.

  • PDF

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.

Optimizing the maximum reported cluster size for normal-based spatial scan statistics

  • Yoo, Haerin;Jung, Inkyung
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.373-383
    • /
    • 2018
  • The spatial scan statistic is a widely used method to detect spatial clusters. The method imposes a large number of scanning windows with pre-defined shapes and varying sizes on the entire study region. The likelihood ratio test statistic comparing inside versus outside each window is then calculated and the window with the maximum value of test statistic becomes the most likely cluster. The results of cluster detection respond sensitively to the shape and the maximum size of scanning windows. The shape of scanning window has been extensively studied; however, there has been relatively little attention on the maximum scanning window size (MSWS) or maximum reported cluster size (MRCS). The Gini coefficient has recently been proposed by Han et al. (International Journal of Health Geographics, 15, 27, 2016) as a powerful tool to determine the optimal value of MRCS for the Poisson-based spatial scan statistic. In this paper, we apply the Gini coefficient to normal-based spatial scan statistics. Through a simulation study, we evaluate the performance of the proposed method. We illustrate the method using a real data example of female colorectal cancer incidence rates in South Korea for the year 2009.

Compression-Friendly Low Power Test Application Based on Scan Slices Reusing

  • Wang, Weizheng;Wang, JinCheng;Cai, Shuo;Su, Wei;Xiang, Lingyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.463-469
    • /
    • 2016
  • This paper presents a compression-friendly low power test scheme in EDT environment. The proposed approach exploits scan slices reusing to reduce the switching activity during shifting for test scheme based on linear decompressor. To avoid the impact on encoding efficiency from resulting control data, a counter is utilized to generate control signals. Experimental results obtained for some larger ISCAS'89 and ITC'99 benchmark circuits illustrate that the proposed test application scheme can improve significantly the encoding efficiency of linear decompressor.

Establishment of Injection Protocol of Contrast Material in Pulmonary Angiography using Test Bolus Method and 16-Detector-Row Computed Tomography in Normal Beagle Dogs

  • Choi, Sooyoung;Kwon, Younghang;Park, Hyunyoung;Kwon, Kyunghun;Lee, Kija;Park, Inchul;Choi, Hojung;Lee, Youngwon
    • Journal of Veterinary Clinics
    • /
    • v.34 no.5
    • /
    • pp.330-334
    • /
    • 2017
  • The aim of this study was to establish an injection protocol of a test bolus and a main bolus of contrast material for computed tomographic pulmonary angiography (CTPA) for visualizing optimal pulmonary arteries in normal beagle dogs. CTPA using a test bolus method from either protocol A or B were performed in each of four normal beagle dogs. In protocol A, CTPA was conducted with a scan duration for around 8 s, setting the contrast enhancement peak of the pulmonary trunk in the middle of the scan duration. The arrival time to the contrast enhancement peak was predicted from a previous dynamic scan using a test bolus (150 mg iodine/kg) injected with the same injection duration using for a main bolus (450 mg iodine/kg). In protocol B, CTPA was started at the predicted appearance time of contrast material in the pulmonary trunk based on a previous dynamic scan using a test bolus injected with the same injection rate as a main bolus. CTPA using protocol A showed the optimal opacification of the pulmonary artery with pulmonary venous contamination. Proper CTPA images in the absence of venous contamination were obtained in protocol B. CTPA with a scan duration for 8 s should be started at the appearance time of contrast enhancement in the pulmonary trunk, which can be identified exactly when a test bolus is injected at the same injection rate used for the main bolus.

Test Generation for Sequential Circuits Based on Circuit Partitioning (회로 분할에 의한 순차회로의 테스트생성)

  • 최호용
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.4
    • /
    • pp.30-37
    • /
    • 1998
  • In this paper, we propose a test generation method for large scale sequential circuits based on circuit partitioning to increase the size of circuits that the implicit product machine traversal (IPMT) method can handle. Our method paratitions a circuit under test into subset circuits with only single output, and performs a partial scan design using the state transtition cost that represents a degree of the connectivity of the subset circuit. The IPMT method is applied to the partitioned partial scan circuits in test generation. Experimental results for ISCAS89 benchmark circuits with more thatn 50 flip-flops show that our method has generated test patterns with almost 100% fault coverage at high speed by use of 34%-73% scanned flip-flops.

  • PDF

A Clustered Reconfigurable Interconnection Network BIST Based on Signal Probabilities of Deterministic Test Sets (결정론적 테스트 세트의 신호확률에 기반을 둔 clustered reconfigurable interconnection network 내장된 자체 테스트 기법)

  • Song Dong-Sup;Kang Sungho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.79-90
    • /
    • 2005
  • In this paper, we propose a new clustered reconfigurable interconnect network (CRIN) BIST to improve the embedding probabilities of random-pattern-resistant-patterns. The proposed method uses a scan-cell reordering technique based on the signal probabilities of given test cubes and specific hardware blocks that increases the embedding probabilities of care bit clustered scan chain test cubes. We have developed a simulated annealing based algorithm that maximizes the embedding probabilities of scan chain test cubes to reorder scan cells, and an iterative algorithm for synthesizing the CRIN hardware. Experimental results demonstrate that the proposed CRIN BIST technique achieves complete fault coverage with lower storage requirement and shorter testing time in comparison with the conventional methods.

Development of Simple Reconfigurable Access Mechanism for SoC Testing (재구성 가능한 시스템 칩 테스트 제어기술의 개발)

  • 김태식;민병우;박성주
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.9-16
    • /
    • 2004
  • For a System-on-a-Chip(SoC) comprised of multiple IP cores, test control techniques have been developed to perform the internal and external test efficiently relying on the various design for testability techniques such as scan and BIST(Built-In Self-Test). However the test area overhead is too expensive to guarantee diverse test link configurations. In this paper, at first we introduce a new flag based Wrapped Core Linking Module(WCLM) that enables systematic integration of IEEE 1149.1 TAP'd cores and P1500 wrapped cores. Then a simple test control technique, which can interconnect internal scan chains of different cores, is described with requiring least amount of area overhead compared with other state-of-art techniques. The design preserves compatibility with standards and scalability for hierarchical access.

An Non-Scan DFT Scheme for RTL Circuit Datapath (RTL 회로의 데이터패스를 위한 비주사 DFT 기법)

  • Chang, Hoon;Yang, Sun-Woong;Park, Jae-Heung;Kim, Moon-Joon;Shim, Jae-Hun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.55-65
    • /
    • 2004
  • In this paper, An efficient non-scan DFT method for datapaths described in RTL is proposed. The proposed non-scan DFT method improves testability of datapaths based on hierarchical testability analysis regardless to width of the datapath. It always guarantees higher fault efficiency and faster test pattern generation time with little hardware overhead than previous methods. The experimental result shows the superiority of the proposed method of test pattern generation time, application time, and area overhead compared to the scan method.