• 제목/요약/키워드: STI(shallow trench isolation) CMP

검색결과 45건 처리시간 0.022초

STI-CMP 공정의 질화막 잔존물 및 패드 산화막 손상에 대한 연구 (A Study on the Nitride Residue and Pad Oxide Damage of Shallow Trench Isolation(STI)-Chemical Mechanical Polishing(CMP) Process)

  • 이우선;서용진;김상용;장의구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권9호
    • /
    • pp.438-443
    • /
    • 2001
  • In the shallow trench isolation(STI)-chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control, within-wafer-non-uniformity, and the possible defects such as pad oxide damage and nitride residue. The defect like nitride residue and silicon (or pad oxide) damage after STI-CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI fill and STI-CMP were discussed. Consequently, we could conclude that law trench depth and high CMP thickness can cause nitride residue, and high trench depth and over-polishing can cause silicon damage.

  • PDF

CMP 연마를 통한 STI에서 결함 감소 (A Study of Chemical Mechanical Polishing on Shallow Trench Isolation to Reduce Defect)

  • 백명기;김상용;김창일;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.501-504
    • /
    • 1999
  • In the shallow trench isolation(STI) chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control within- wafer-non-uniformity, and the possible defects such as nitride residue and pad oxide damage. These defects after STI CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI filling and STI CMP were discussed. It is represented that the nitride residue can be occurred in the condition of high post CMP thickness and low trench depth. In addition there are remaining oxide on the moat surface after reverse moat etch. It means that reverse moat etching process can be the main source of nitride residue. Pad oxide damage can be caused by over-polishing and high trench depth.

  • PDF

Reproducible Chemical Mechanical Polishing Characteristics of Shallow Trench Isolation Structure using High Selectivity Slurry

  • Jeong, So-Young;Seo, Yong-Jin;Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권4호
    • /
    • pp.5-9
    • /
    • 2002
  • Chemical mechanical polishing (CMP) has become the preferred planarization method for multilevel interconnect technology due to its ability to achieve a high degree of feature level planarity. Especially, to achieve the higher density and greater performance, shallow trench isolation (STI)-CMP process has been attracted attention for multilevel interconnection as an essential isolation technology. Also, it was possible to apply the direct STI-CMP process without reverse moat etch step using high selectivity slurry (HSS). In this work, we determined the process margin with optimized process conditions to apply HSS STI-CMP process. Then, we evaluated the reliability and reproducibility of STI-CMP process through the optimal process conditions. The wafer-to-wafer thickness variation and day-by-day reproducibility of STI-CMP process after repeatable tests were investigated. Our experimental results show, quite acceptable and reproducible CMP results with a wafer-to-wafer thickness variation within 400$\AA$.

STI--CMP 공정에서 Torn oxide 결함 해결에 관한 연구 (A Study for the Improvement of Torn Oxide Defects in Shallow Trench Isolation-Chemical Mechanical Polishing (STI-CMP) Process)

  • 서용진;정헌상;김상용;이우선;이강현;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제14권1호
    • /
    • pp.1-5
    • /
    • 2001
  • STI(shallow trench isolation)-CMP(chemical mechanical polishing) process have been substituted for LOCOS(local oxidation of silicon) process to obtain global planarization in the below sub-0.5㎛ technology. However TI-CMP process, especially TI-CMP with RIE(reactive ion etching) etch back process, has some kinds of defect like nitride residue, torn oxide defect, etc. In this paper, we studied how to reduced torn oxide defects after STI-CMP with RIE etch back processed. Although torn oxide defects which can occur on trench area is not deep and not severe, torn oxide defects on moat area is not deep and not severe, torn oxide defects on moat area is sometimes very deep and makes the yield loss. Thus, we did test on pattern wafers which go through trench process, APECVD process, and RIE etch back process by using an IPEC 472 polisher, IC1000/SUVA4 PAD and KOH base slurry to reduce the number of torn defects and to study what is the origin of torn oxide defects.

  • PDF

트랜치 깊이가 STI-CMP 공정 결함에 미치는 영향 (Effects of Trench Depth on the STI-CMP Process Defects)

  • 김기욱;서용진;김상용
    • 마이크로전자및패키징학회지
    • /
    • 제9권4호
    • /
    • pp.17-23
    • /
    • 2002
  • 최근 반도체 소자의 고속화 및 고집적화에 따라 배선 패턴이 미세화 되고 다층의 금속 배선 공정이 요구됨에 따라 단차를 줄이고 표면을 광역 평탄화 시킬 수 있는 STI-CMP 공정이 도입되었다. 그러나, STI-CMP 공정이 다소 복잡해짐에 따라 질화막 잔존물, 찢겨진 산화막 결함들과 같은 여러 가지 공정상의 문제점들이 심각하게 증가하고 있다. 본 논문에서는 이상과 같은 CMP 공정 결함들을 줄이고, STI-CMP 공정의 최적 조건을 확보하기 위해 트렌치 깊이와 STI-fill 산화막 두께가 리버스 모트 식각 공정 후, 트랜치 위의 예리한 산화막의 취약함과 STI-CMP공정 후의 질화막 잔존물 등과 같은 결함들에 미치는 영향에 대해 연구하였다. 실험결과, CMP 공정에서 STI-fill의 두께가 얇을수록, 트랜치 깊이가 깊을수록 찢겨진 산화막의 발생이 증가하였다. 트랜치 깊이가 낮고 CMP 두께가 높으면 질화막 잔존물이 늘어나는 반면, 트랜치 깊이가 깊어 과도한 연마가 진행되면 활성영역의 실리콘 손상을 받음을 알 수 있었다

  • PDF

STI-CMP공정에서 표면특성에 미치는 패턴구조 및 슬러리 종류의 효과 (Effect of pattern spacing and slurry types on the surface characteristics in 571-CMP process)

  • 이훈;임대순;이상익
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.272-278
    • /
    • 2002
  • Recently, STI(Shallow Trench Isolation) process has attracted attention for high density of semiconductor device as a essential isolation technology. In this paper, the effect of pattern density, trench width and selectivity of slurry on dishing in STI CMP process was investigated by using specially designed isolation pattern. As trench width increased, the dishing tends to increase. At $20{\mu}m$ pattern size, the dishing was decreased with increasing pattern density Low selectivity slurry shows less dishing at over $160{\mu}m$ trench width, whereas high selectivity slurry shows less dishing at below $160{\mu}m$ trench width.

  • PDF

기계화학적 연마를 이용한 트렌치 구조의 산화막 평탄화 (Oxide Planarization of Trench Structure using Chemical Mechanical Polishing(CMP))

  • 김철복;김상용;서용진
    • 한국전기전자재료학회논문지
    • /
    • 제15권10호
    • /
    • pp.838-843
    • /
    • 2002
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for deep sub-micron technology. The reverse moat etch process has been used for the shallow trench isolation(STI)-chemical mechanical polishing(CMP) process with conventional low selectivity slurries. Thus, the process became more complex, and the defects were seriously increased. In this paper, we studied the direct STI-CMP process without reverse moat etch step using high selectivity slurry(HSS). As our experimental results show, it was possible to achieve a global planarization without the complicated reverse moat process, the STI-CMP process could be dramatically simplified, and the defect level was reduced. Therefore the throughput, yield, and stability in the ULSI semiconductor device fabrication could be greatly improved.

슬러리 및 패드 변화에 따른 기계화학적인 연마 특성 (Chemical Mechanical Polishing Characteristics with Different Slurry and Pad)

  • 서용진;정소영;김상용
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권10호
    • /
    • pp.441-446
    • /
    • 2003
  • The chemical mechanical polishing (CMP) process is now widely employed in the ultra large scale integrated (ULSI) semiconductor fabrication. Especially, shallow trench isolation (STI) has become a key isolation scheme for sub-0.13/0.10${\mu}{\textrm}{m}$ CMOS technology. The most important issues of STI-CMP is to decrease the various defects such as nitride residue, dishing, and tom oxide. To solve these problems, in this paper, we studied the planarization characteristics using slurry additive with the high selectivity between $SiO_2$ and $Si_3$$N_4$ films for the purpose of process simplification and in-situ end point detection. As our experimental results, it was possible to achieve a global planarization and STI-CMP process could be dramatically simplified. Also, we estimated the reliability through the repeated tests with the optimized process conditions in order to identify the reproducibility of STI-CMP process.

STI CMP 공정의 신뢰성 및 재현성에 관한 연구 (A Study on the Reliability and Reproducibility of 571 CMP process)

  • 정소영;서용진;김상용;이우선;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.25-28
    • /
    • 2001
  • Recently, STI(Shallow Trench Isolation) process has attracted attention for high density of semiconductor device as a essential isolation technology. Without applying the conventional complex reverse moat process, CMP(Chemical Mechanical Polishing) has established the Process simplification. However, STI-CMP process have various defects such as nitride residue, torn oxide defect, damage of silicon active region, etc. To solve this problem, in this paper, we discussed to determine the control limit of process, which can entirely remove oxide on nitride from the moat area of high density as reducing the damage of moat area and minimizing dishing effect in the large field area. We, also, evaluated the reliability and reproducibility of STI-CMP process through the optimal process conditions.

  • PDF

Determination of End Point for Direct Chemical Mechanical Polishing of Shallow Trench Isolation Structure

  • Seo, Yong-Jin;Lee, Kyoung-Jin;Kim, Sang-Yong;Lee, Woo-Sun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권1호
    • /
    • pp.28-32
    • /
    • 2003
  • In this paper, we have studied the in-situ end point detection (EPD) for direct chemical mechanical polishing (CMP) of shallow trench isolation (STI) structures without the reverse moat etch process. In this case, we applied a high selectivity $1n (HSS) that improves the silicon oxide removal rate and maximizes oxide to nitride selectivity Quite reproducible EPD results were obtained, and the wafer-to-wafer thickness variation was significantly reduced compared with the conventional predetermined polishing time method without EPD. Therefore, it is possible to achieve a global planarization without the complicated reverse moat etch process. As a result, the STI-CMP process can be simplified and improved using the new EPD method.