• Title/Summary/Keyword: S.I.G

Search Result 5,060, Processing Time 0.033 seconds

A UNIFORM LAW OF LARGE MUNBERS FOR PRODUCT RANDOM MEASURES

  • Kil, Byung-Mun;Kwon, Joong-Sung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.221-231
    • /
    • 1995
  • Let $Z_1, Z_2, \ldots, Z_l$ be random set functions or intergrals. Then it is possible to discuss their products. In the case of random integrals, $Z_i$ is a random set function indexed y a family, $G_i$ say, of real valued functions g on $S_i$ for which the integrals $Z_i(g) = \smallint gdZ_i$ are well defined. If $g_i = \in g_i (i = 1, 2, \ldots, l) and g_1 \otimes \cdots \otimes g_l$ denotes the tensor product $g(s) = g_1(s_1)g_2(s_2) \cdots g_l(s_l) for s = (s_1, s_2, \ldots, s_l) and s_i \in S_i$, then we can defined $Z(g) = (Z_1 \times Z_2 \times \cdots \times Z_l)(g) = Z_1(g_1)Z_2(g_2) \cdots Z_l(g_l)$.

  • PDF

[r, s, t; f]-COLORING OF GRAPHS

  • Yu, Yong;Liu, Guizhen
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.105-115
    • /
    • 2011
  • Let f be a function which assigns a positive integer f(v) to each vertex v $\in$ V (G), let r, s and t be non-negative integers. An f-coloring of G is an edge-coloring of G such that each vertex v $\in$ V (G) has at most f(v) incident edges colored with the same color. The minimum number of colors needed to f-color G is called the f-chromatic index of G and denoted by ${\chi}'_f$(G). An [r, s, t; f]-coloring of a graph G is a mapping c from V(G) $\bigcup$ E(G) to the color set C = {0, 1, $\ldots$; k - 1} such that |c($v_i$) - c($v_j$ )| $\geq$ r for every two adjacent vertices $v_i$ and $v_j$, |c($e_i$ - c($e_j$)| $\geq$ s and ${\alpha}(v_i)$ $\leq$ f($v_i$) for all $v_i$ $\in$ V (G), ${\alpha}$ $\in$ C where ${\alpha}(v_i)$ denotes the number of ${\alpha}$-edges incident with the vertex $v_i$ and $e_i$, $e_j$ are edges which are incident with $v_i$ but colored with different colors, |c($e_i$)-c($v_j$)| $\geq$ t for all pairs of incident vertices and edges. The minimum k such that G has an [r, s, t; f]-coloring with k colors is defined as the [r, s, t; f]-chromatic number and denoted by ${\chi}_{r,s,t;f}$ (G). In this paper, we present some general bounds for [r, s, t; f]-coloring firstly. After that, we obtain some important properties under the restriction min{r, s, t} = 0 or min{r, s, t} = 1. Finally, we present some problems for further research.

$Z_2$-VECTOR BUNDLES OVER $S^1$

  • Kim, Sung-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.927-931
    • /
    • 1994
  • Let G be a cyclic group of order 2 and let $S^1$ denote the unit circle in $R^2$ with the standard metric. We consider smooth G-vector bundles over $S^1$ when G acts on $S^1$ by reflection. Then the fixed point set of G on $S^1$ is two points ${z_0, z_1}$. Let $E$\mid$_{z_0} and E$\mid$_{z_1}$ be the fiber G-representation spaces at $z_0$ and $z_1$ respectively. We associate an orthogonal G-representation $\rho_i : G \to O(n)$ to $E$\mid$_{z_i}, i = 0, 1$. Let det $p\rho_i(g), g \neq 1$, be denoted by det $E$\mid$_{z_i}$ since det $\rho_i(g)$ is independent of choice of $\rho_i$.

  • PDF

A COVERING CONDITION FOR THE PRIME SPECTRUMS

  • Hwang, Chul-Ju
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.61-64
    • /
    • 2005
  • Let R be a commutative ring with identity, and let $f,\;g_i(i=1,\;\ldots,\;n),\;g_{\alpha}(\alpha{\in}S)$ be elements of R. We show that the following statements are equivalent; (i) $X_f{\subseteq}{\cup}_{\alpha{\in}S}X_{g\alpha}$ only if $X_f{\subseteq}X_{g\alpha}$ for some $\alpha{\in}S$, (ii) $V(f){\subseteq}{\cup}_{\alpha{\in}S}V(g_{\alpha})$ only if $V(f){\subseteq}V(g_{\alpha})$ for some $\alpha{\in}S$, (iii) $V(f){\subseteq}{\cup}^n_{i=1}V(g_i)$ only if $V(f){\subseteq}V(g_i)$ for some i, (iv) Spec(R) is linearly ordered under inclusion.

  • PDF

GROUP S3 CORDIAL REMAINDER LABELING OF SUBDIVISION OF GRAPHS

  • LOURDUSAMY, A.;WENCY, S. JENIFER;PATRICK, F.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.3_4
    • /
    • pp.221-238
    • /
    • 2020
  • Let G = (V (G), E(G)) be a graph and let g : V (G) → S3 be a function. For each edge xy assign the label r where r is the remainder when o(g(x)) is divided by o(g(y)) or o(g(y)) is divided by o(g(x)) according as o(g(x)) ≥ o(g(y)) or o(g(y)) ≥ o(g(x)). The function g is called a group S3 cordial remainder labeling of G if |vg(i)-vg(j)| ≤ 1 and |eg(1)-eg(0)| ≤ 1, where vg(j) denotes the number of vertices labeled with j and eg(i) denotes the number of edges labeled with i (i = 0, 1). A graph G which admits a group S3 cordial remainder labeling is called a group S3 cordial remainder graph. In this paper, we prove that subdivision of graphs admit a group S3 cordial remainder labeling.

Phytosociological Studies on the Beech(Fagus multinervis Nakai) Forest and the Pine (Pinus parviflora S. et Z.) Forest of Ulreung Island, Korea (한국 울릉도의 너도밤나무(Fagus multinervis Nakai)림 및 섬잣나무(Pinus parviflora S. et Z.)림의 식물사회학적 연구)

  • 김성덕
    • Journal of Plant Biology
    • /
    • v.29 no.1
    • /
    • pp.53-65
    • /
    • 1986
  • The montane forests of Ulreung Island, Korea, were investigated by the ZM school method. By comparing the montane forests of this island with those of Korean Peninsula and of Japan, a new order, F a g e t a l i a m u l t i n e r v i s, a new alliance, F a l g i o n m u l t i n e r v i s, a new association, H e p a t i c o-F a g e t u m m u l t i n e r v i s and Rhododendron brachycarpum-Pinus parviflora community were recognized. The H e p a t i c o - F a g e t u m m u l t i n e r v i s was further subdivided into four subassociations; Subass. of Sasa kurilensis, Subass. of Rumohra standishii, Subass. of Rhododendron brachycarpum and Subass. of typicum. Each community was described in terms of floristic, structural and environmental features.

  • PDF

The β Subunit of Heterotrimeric G Protein Interacts Directly with Kinesin Heavy Chains, Kinesin-I (Kinesin-I의 kinesin heavy chains과 직접 결합하는 heterotrimeric G protein의 β subunit의 규명)

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1166-1172
    • /
    • 2010
  • Kinesin-I exists as a tetramer of two heavy chains (KHCs, also called KIF5s), which contain the amino (N)-terminal motor domain and carboxyl (C)-terminal domain, as well as two light chains (KLCs), which bind to the KIF5s (KIF5A, KIF5B and KIF5C) stalk region. To identify the interaction proteins for KIF5A, yeast two-hybrid screening was performed and a specific interaction with the ${\beta}$ subunit of heterotrimeric G proteins ($G{\beta}$) was found. $G{\beta}$ bound to the amino acid residues between 808 and 935 of KIF5A and to other KIF5 members in the yeast two-hybrid assay. The WD40 repeat motif of $G{\beta}$ was essential for interaction with KIF5A. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KIF5s specifically co-immunoprecipitated KIF5s associated with heterotrimeric G proteins from mouse brain extracts. These results suggest that kinesin-I motor protein transports heteroterimeric G protein attachment vesicles along microtubules in the cell.

GROUP S3 CORDIAL REMAINDER LABELING FOR PATH AND CYCLE RELATED GRAPHS

  • LOURDUSAMY, A.;WENCY, S. JENIFER;PATRICK, F.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.1_2
    • /
    • pp.223-237
    • /
    • 2021
  • Let G = (V (G), E(G)) be a graph and let g : V (G) → S3 be a function. For each edge xy assign the label r where r is the remainder when o(g(x)) is divided by o(g(y)) or o(g(y)) is divided by o(g(x)) according as o(g(x)) ≥ o(g(y)) or o(g(y)) ≥ o(g(x)). The function g is called a group S3 cordial remainder labeling of G if |vg(i)-vg(j)| ≤ 1 and |eg(1)-eg(0)| ≤ 1, where vg(j) denotes the number of vertices labeled with j and eg(i) denotes the number of edges labeled with i (i = 0, 1). A graph G which admits a group S3 cordial remainder labeling is called a group S3 cordial remainder graph. In this paper, we prove that square of the path, duplication of a vertex by a new edge in path and cycle graphs, duplication of an edge by a new vertex in path and cycle graphs and total graph of cycle and path graphs admit a group S3 cordial remainder labeling.

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.

GROUP S3 MEAN CORDIAL LABELING FOR STAR RELATED GRAPHS

  • A. LOURDUSAMY;E. VERONISHA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.321-330
    • /
    • 2023
  • Let G = (V, E) be a graph. Consider the group S3. Let g : V (G) → S3 be a function. For each edge xy assign the label 1 if ${\lceil}{\frac{o(g(x))+o(g(y))}{2}}{\rceil}$ is odd or 0 otherwise. g is a group S3 mean cordial labeling if |vg(i) - vg(j)| ≤ 1 and |eg(0) - eg(1)| ≤ 1, where vg(i) and eg(y)denote the number of vertices labeled with an element i and number of edges labeled with y (y = 0, 1). The graph G with group S3 mean cordial labeling is called group S3 mean cordial graph. In this paper, we discuss group S3 mean cordial labeling for star related graphs.