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A UNIFORM LAW OF LARGE NUMBERS
FOR PRODUCT RANDOM MEASURES

BYUNG MUN KIL AND JOONG SuNGg KwON

1. Introduction

Let Z,, Z3,--+ , Z; be random set functions or integrals. Then it is
possible to discuss their products. In the case of random integrals, Z; is
a random set function indexed by a family, G, say, of real valued func-
tions ¢ on S; for which the integrals Zi(g) = f gdZ; are well defined. If
gi€Gi(:=12...1) and g = g; @ --- ® g; denotes the tensor product
9(8) = g1(s1)92(s2) - - gu(sy) for s = (81,82,--,81) and s; € S;, then
we can define Z(g) = (Z1 x Zz2 x --- X Z1)(9) = Z1(91)Z2(g2) - - Zi(q1).
Write G1 G290 ®G1={01®92® - ®gi:9i € Gi,i = 1,21} for
the set of tensor products. The questions we are interested in are the
followings: Characterize those index families G on the product space
§ =51 x8 x---x 8 that contain §; ® G2 @ --- ® Gy, for which a
regular extension of Z = Z; x Z, x - x Z; exists. Here regular can
mean many things, for examples, boundedness or some continuity of
sample paths, or LLN or weak convergence for some sequences of those
products. In this paper we will restrict ourselves to the case when
S; = I% d;—dimensional unit cube and gi = B(Id‘), Borel o—field on
I%. In this case Z; and Z are called randoin measure and product
random measure respectively. Under the setups in this paper we will
state and prove uniform law of large numbers for some product random
measures under some conditions on index families. The products con-
sidered here are those of empirical, Poisson and partial sum processes.
And the condition used to restrict index families is the smooth boundary
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condition, which was invented and used to prove the same question for
set indexed partial sum processes in Bass and Pyke(1984).

Let A be a sub-family of B(I?) with d = Y;_, d;. Given A C 1%, let
A(8) = {z : p(z,0A) < 8} be the é-annulus of 0A, where p(-,-) is the
Euclidean distance and @ denotes the Euclidean boundary of A. A is
said to satisfy Assumption SBC(Smooth Boundary Condition) if

r(8) := sup |4(8)] > 0as 6 — 0.
Ac€A

I, for example, A were the collection of convex subsets of I¢, it is known
to satisfy SBC.
We prove the following;:

THEOREM. Let Zy,7Z5,--- ,Z; be random measures on B(Id‘) with
i =1,2,---,l. Let A be a subfamily of B(I?) satisfying SBC with
d = jzll d;j. Let F be a (deterministic) set function defined on A.
And finally let {f,} denote a sequence of some real valned (measurable)
functions defined on R'. Then, with probability 1

|fn(Z1 % Zy x -+ x Z1) = Flla — 0

as n — oQ.

2. Product Empirical Measures

Let {X;j:t€ 7\7}] ! be families of random variables with row-wise

common distributions G, on I% respectively. Note that we are not
assuming any relations among sequences. Then the product empirical
measure corresponding to {X;;}, indexed by subsets of I? with d =

Ej:l 5, is defined by
Fo(A) i=n" " {(ky kay - k) s (X Xkgo o X))
eA by <n,y=1,---,1}
= > T X X (4)

k; <n,jg=1,2,--- 1
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LLN for product random measures

where 8(;, z,.... z,) Is the degenerate probability measure that gives mea-
sure 1 to the point (21,22, ,2;). We view here and hereafter F, is
defined on B(I?) even if it is well defined on any subset A of I

To prove the main theorems in this section we need the follow-
ing straightforward consequence of known results. We denote F' the
Lebesgue measure on B(I).

LEMMA 2.1. Let A be rectilinear form of subsets of I¢ (nF,(A) is
a B(n?, F(A)) Bernoulli r.v. with p = F(A)). Then, with probability
1
F,(4) — F(A)

as n — oQ.

Proof. Let x = (21,x2,--+ ,xq) be fixed and write x = (x1.X2,--,
x;) where x; = (21,22, - ,24,), X2 = (11 Xp,-- ,&q,) and X3 =
(a:,,$2, «-+,2q4,). Then (0,x] = {(y1,y2, -+ . ya)|0 < yi < x;, 1 =
1,2,---,d} and [(0,x]| = [(0, x1]]](0, x2]| - - |((),x1]l . And by classical
Glnenko Cantelli theorem we have F,(0,x] — F(0,x]. Since any rec-
tilinear form can be approximated by a finite number of unions and
finite differences of rectangles of the form (0,x], we have by linearity,

F.(A) — F(A).

Before proving the theorem we introduce some notation following
Bass and Pyke (1984), which will be used throughout the paper. Let
m be a fixed positive integer and partition 1? into regular cubes of
side length 1/m. Let Cj m( - 1,j], where j = (j1,J2,--" ,jd4) and
1=(1,1,---,1) with 1 S jr < m. Then for any A € A, define

R;(A) = UCchC'j, and R;,t( ) = UC_;ﬂA:V)C:j-
That is, R;,(A) and R},(A) are the inner and the outer rectilinear fits
of 4 by cubes of side length 1/m. Then since the furthest any point

of R} (A)\ R;,(A) can be from the boundary of A is the diameter of a
cube of size 1/m,by the smooth boundary condition, we have

(21) Sup |Rm \Rm | < , llu/?n)
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Now define
771 = {RIR(A !A € A}

and
= {R}(A)\ R,(A)|4A € A}.

Then, since m is finite, §(R,,) and ﬂ(Rﬁ) are finite respectively.
Now we are ready to state and prove the strong law of large numbers
for product empirical measures.

THEOREM 2.2. (Uniform Case) If G;-are uniform on I% with i =
1,2,---,1. And A satisfies SBC. Then with probability 1,

sup |F,(4) — F(A4)] — 0,
AEA

as n — 0o
Proof.
sup |Fa(4) — F(A)]
AcA
=[1Fy - Flla < lIFn Ro(:) = F(Ro())lla
+ [ F0 () = Fu(R( )”A+||F )= F R;z())”.A
SIFn = Fllrs, + 1 Fallrs + 11Ellzs -

As n — 00, Since §R;, < oo and fRS < oo the last two bounds
converges a.s. to 2[|F|lza by lemma 2.1 and the classical Glivenko-
Cantelli theorem. Again by lemma 2.1 ||F;, — F||z- — 0. Finally
since sup 4¢ 4 [R5 (A) \ Ry (4)] < »( (Vd/m) — 0 as m — oo, we have
|Fllga — 0 as m — oo.

We call A to satisfy totally bounded with inclusion if for all 6 > 0
there exists a finite é—net As C A4 such that for each 4 € A there exist
As and A}' in As such that As C A C .4; and d(A;, As) <.

THEOREM 2.3. (General case) If G; are distributions (not necessar-
ily uniform) on I% withi=1,2,--- ,1 and A satisfies totally bounded
with inclusion with respect to the metric dp(dp(A,B) = F(AAB)).
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And Assume that every member of é~net Aj is of the rectilinear form.
Then with probability 1

sup |F,(A4) — F(A4)| — 0.
A€cA

as n — o0o.

Proof. From the rectilinear assumption, above lemma 2.1 will also
be true in this case. Hence

[En = Flla < sup [Fi(As) — F(As)|
AcA

+ sup [Fu(Af \ As)| + sup [F (A7 \ As)|
AEA AcA

Since all sup are in fact on finite number of terms for each § > 0 and
F(A:\A,s) = dp(A}, As), by above statement, we have |Fo—=Flla—0

a.s. as n — o00.

3. Product Poisson Measures

Let Y; be Poisson measures with integer parameters ; on B(I%) with
t=1,2,---,l. Note that for notational convenience the parameters are
not included in the Y’s. Let d = Ejzi dj and let {U;; : 7 € N,j =
1,2,---,1} (indicate the location of random points) denote sequences of
independent uniformly distributed random variables on 1% respectively.
The product Poisson measure of Y; is defined as, for B € B(Id),

Ny N, N,;
YVix¥Yyx o xYi(B) =D > fw v, o v ( B,
1 =119=1 =1

where N; = Y;(I%) (indicates the number of random points) denote
Poisson random variables with parameters ;.

Now we state and prove the strong law of large numbers for a se-
quence of products of Poisson measures under condition SBC on index
family.
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THEOREM 3.1. Let Y; be Poisson measures with integer parameters
Ai on B(I%) with i = 1,2,---,1. Assume that A satisfy Assumption
SBC. Then

Y1 x Yo x--- x Yi(+)
I 1l — o0, as. Ay Az, -y Ap — 00,
® ST PRIy A 0 ms A e
Yi x Yo x - x Yi(4)
H -] — 0, a.s. A1, A2, A — 00,
e | I A
where N; = Y;(I¥") and | - | denotes the Lebesgue measure.

LEMMA 3.2. Let A be rectilinear as defined above, then

(1) X%'—’—) — |Aiz| as. as A\ — oo.

(i) B |4l as as A —— oo,
(iii) W — | 4] a.s.  as A, Az, , Al — 00,

(iv) DA 4] as as A de,r M — 0,
where A, = {y € 14 . (x,y) € A} is the d;- dimensional section
of A, And if Ny = 0 or Ny = 0, ---, or N = 0 then we define

(Y1 xY2 x - x¥3)/NiN;y--- Ny =1 by convention.

Proof. The proof is straightforward. For (i), since the set structure
is irrelevant, it suffices to show that X(n)/n — 1 a.s. as n — oo over
the integers, where X(n) is a Poisson random variable with parameter
n. And this is a consequence of the Hsu-Robbins SLLN (Hsu and Rob-
bins(1947)) since each X (n) can be expressed as a sum of n independent
Poisson random variables with parameter 1, which have a finite second
moment.

For (ii),

Yi(Air) _ Yi(Ai) A
N TN N;’

Since A;/N; — 1 a.s., as A; — oo (ii) follows from (i).
For (iii) and (iv), it suffices to prove it when A is a rectangle and
this is done in (i) and (ii).

Proof of theoremn §.1. It suffices to consider when | = 2. First let
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m > 0 be fixed. Since

lim sup Y x3a(4) IAI‘
A1,A2—00,A€A A1
: Y1 x¥H(4) Yhx Yz(R;l(A))’
<  limsu —
- /\1,/\121—voo,§€./l AL Az A1
Y1 x Yo(R,(4))

+  limsup
At Az —o00,A€A A1 Az

+  limsup |4\ R;,(4)]
/\1 ,Az——'OO,AG.A

=T + Ty + T3, (3.1)

- IR

it remains to show that each of Ty, T and T3 — 0 as m — oo.
Consider T} and T,

7 o -+ -
Tl S lim sup )1 X }2(Rm(‘4) \ RTY)(‘4)) \

A Az —00, ACA A1Az
i ¥y x 3'5(,R$(4‘1)\R;,(A))’
= 1Im sup
AL, A2 —oc, BERS Atz
= max |B|
BeRn
< r(dV?/m) a.s.,

the second to last line following from lemma 3.2 (iii). Also by (iii) of
lemma 3.2,

Y] x Yy(B
T; < limsup max _1_5_2(_) — |B[] -0 s
AL, A2—o0 BER, A1 Ao

Finally notice that, by (2.1), (T3) < 7'(d’/2/m). Thus by (3.1),

Yy x Ya(A ,
lim sup N h(d) 14| < 27(d"%/m) a.s.,
A1Ag

A1, Az—o00,4€4

which goes to zero as m — oo by Assumption SBC.
For the proof of (II), use (iv) of lemma 3.2 and follow the proof of

(I).
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COROLLARY 3.3. If inf.icq|A| >0, then

. . 11 x Y2 x - x Yi(A4) ‘
1 lim su L _1l=0 a.s
( )Al,xz,-~-,A,—»€o,AEA ArAz - Ar| A
" . Y1 x Yo x-- xYi(A)
1 -1 =0 a.s.
(ll)xx,xz--?l}ilg.ﬁiead NiNz - Ni|Al **

Proof. This follows from theorem 3.1 by observing

Y1 x ¥ x -+ x YI(A) 1‘

lim sup

A Az, Al—00, AEA YSPYRREDVIRY
. . YixYox--xYi(A4
<limsup |4]™* lim sup . 2 (4 |A|‘ =0 as.
AGA ’\lqAZ,"',AI—’OO,,‘lEA A]/\Z"'AI

REMARK 3.4. In the above we have restricted the parameters to
be discrete valued. However the result will also hold for continuous
parameters if we impose some further structure. In particular let Yig
be Poisson measures with parameter 1 defined on [O,oo)d", d; > 1 and
t=1,2,---,1. Now suppose that the measures Y;’s in theorem 3.1 are

defined, for 4; € B(I%) by
Yi(4,) = Vir(\ % 44),
then Y;’s are Poisson measures with the right parameters and in this
case theorem 3.1 also can be shown to hold.
4. Product Partial Sum Processes

. i =l e :
Let {Xj; :i; € N¥ }ﬁ-:] be families of sequence of random variables.
Note that we are not assuming anything among sequences. Then the

. . . : =]
product partial sum process corresponding to {Xj, : i; € N };zl,

indexed by subsets of I¢ with d = ij; d;, is defined by, for A C I
Sn(‘A) = Sn(‘Y]A)
=Y Xi, X, X506, fnsin /iy (A),

li;1<n,3=1,2,
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where, |i;| denotes the maximum of the components of i; and
8(iy fniz/n, ir/n)(A) = 1 or 0 depending on (iy/n,iz/n, -~ ,iy/n) € A
or not. For partial sum processes, law of large number results have
been shown to hold; see Bass and Pyke and Giné and Zinn.

In this section we prove a law of large numbers for a sequence of prod-
uct partial sum processes {S,(X;, 4) : A € A}under SBC condition on
the index family A.

THEOREM 4.1. Let {X;; : i; € N4 };z; be families of sequences of
random variables with EX; = u;, E|X;| < co. Assume that for each
3L, {X; i € N% } satisfies strong law of large numbers. Then, under
Assumption SBC on A, we have

“n_dSn — figpg /”NA — 0 a.s., as n — oo.

For the proof of theorem 4.1 we prove the following preliminary
lemma. Recall the definition of Ry, R}, R, and R5 from section
2.

LEMMA 4.2. Let A be a rectilinear subset of I*. Then, with proba-
bility one, as n — o0,

nT48,(A) — g - Al

Proof. Under the same development as in lemma 2.1 we have

(0, x]| = |(0, x4]}}(0, x2][ - - - (0, x4]]

Now
Sa((0,x]) _ BN N n(0,x]) _ Sa((0,x])
n? n¢ H(NY N n(0,x])
Since ' _
S5.((0,x]) = S,((0,x1] x (0,%2] x - -(0,%x])
= Sln((o- xl])S'Zn((Ov XQ]) st Sln((oaxl])
and since

BN NR(0,x]) = H(NT Nn(0,x,]}- 4N Nn(0,x,]) - - - (N Nn(0, x7)),
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we have, by the classical strong law of large numbers,

Sa((0x)) _#(N" N n(0,x))
nd nd
S12(n(0,%1])S2,(n(0,x2]) - - - Stn(n(0, x4])
H(N? N n(0, 2 DIIN® N n(0,x2]) - - - (N? N n(0,x])

— (0, x]p1p2 - pu a.s.,

as n — 0o.

But, since any rectilinear set can be obtained by a finite number of
unions and differences of rectangles of the form (0, z], by linearity we
have

n"98,(A) — juypug - | Al a.s.,

as 711 — OQ.

Proof of theorem 4.1. The proof is quite similar to the case of product
Poisson measures. Write g = g pp - - - piy.

lim sup |n—dSn(A') - /l|r‘1| = limsup n™¢ lSn(A) ~ Sa(Ri(A4))|

n—oo,AEA n-—o00,A€A
+ limsup In~d5,,(R,,,( ) — p| Ry (4|
n—o00,A€A
+ lLimsup plA\ R,,(A4)
n—oc, ACA
=T + T2 + Ts.

Clearly T3 < ur(d'/?/m) since §R}, < oo. Also

T; < limsup ,n_dS,,B) ~ u|B||
n—oc,BER,

<limsup max In ‘S(B B) - p|B|| =0 as.
n—oo BER,,

Finally, let a; = F|X;| and o = Hjiia’]. For C C I, set

T.(C) := > 155, X5, 1 X5 8 o m i/ (C)-

i |<n,j=1,2,-- 1
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By lemma 4.2 applied to the process T,

T, < limsup n” T, (R} (4)\ Ry (A4)) < liasup max |n=Tu(B))

n—oo,AcA n—oc BERMm
<a max |B| < ar(d'?/m) a.s.
BERM

Summing up and letting m — oo, we have the conclusion.

|
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