J. Appl. Math. & Informatics Vol. 41(2023), No. 2, pp. 321 - 330 https://doi.org/10.14317/jami.2023.321

GROUP S_3 MEAN CORDIAL LABELING FOR STAR RELATED GRAPHS

A. LOURDUSAMY, E. VERONISHA*

ABSTRACT. Let G = (V, E) be a graph. Consider the group S_3 . Let $g: V(G) \to S_3$ be a function. For each edge xy assign the label 1 if $\left\lceil \frac{o(g(x))+o(g(y))}{2} \right\rceil$ is odd or 0 otherwise. g is a group S_3 mean cordial labeling if $|v_g(i) - v_g(j)| \le 1$ and $|e_g(0) - e_g(1)| \le 1$, where $v_g(i)$ and $e_g(y)$ denote the number of vertices labeled with an element i and number of edges labeled with y (y = 0, 1). The graph G with group S_3 mean cordial labeling is called group S_3 mean cordial graph. In this paper, we discuss group S_3 mean cordial labeling for star related graphs.

AMS Mathematics Subject Classification : 05C78. Key words and phrases : S_3 mean cordial labeling, star, splitting graph.

1. Introduction

The concept of labeling was introduced by of Rosa [6] in 1967. We follow the basic notation and terminologies as they are found in the text book written by Douglas B. West [7]. In graph labeling we assign integers to the vertices or edges or both subject to some stipulated conditions. Cahit introduced cordial labeling in [1].

Ponraj et al. introduced mean cordial labeling in [5]. Lourdusamy et al. [2] has defined a new labeling called Group S_3 cordial remainder labeling. Motivated by these concepts, Lourdusamy et. al defined a new labeling called group S_3 mean cordial labeling in [3]. Also, they proved ladder and snake related graphs admits group S_3 mean cordial labeling in [4]. Here, we discuss group S_3 mean cordial labeling for star related graphs.

Received May 5, 2022. Revised October 18, 2022. Accepted November 17, 2022. *Corresponding author.

 $[\]bigodot$ 2023 KSCAM.

2. S₃ Mean Cordial Labeling

We denote the elements of symmetric group S_3 by the letters e, a, b, c, d, f where

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} = e, \qquad \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix} = a, \qquad \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = b,$$
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} = c, \qquad \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = d, \qquad \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix} = f,$$

Note that, o(e) = 1, o(a) = o(b) = o(c) = 2, o(d) = o(f) = 3.

Definition 2.1. Let G = (V, E) be a graph. Consider the group S_3 . Let $g : V(G) \to S_3$ be a function. For each edge xy assign the label 1 if $\left\lceil \frac{o(g(x))+o(g(y))}{2} \right\rceil$ is odd or 0 otherwise. g is a group S_3 mean cordial labeling if $|v_g(i) - v_g(j)| \le 1$ and $|e_g(0) - e_g(1)| \le 1$, where $v_g(i)$ and $e_g(y)$ denote the number of vertices labeled with an element i and number of edges labeled with y (y = 0, 1). The graph G with group S_3 mean cordial labeling is called group S_3 mean cordial graph.

3. Main Results

Theorem 3.1. Star graph $K_{1,n}$ is not group S_3 mean cordial graph.

Proof. Case 1.

Let (V_1, V_2) be the bipartition of $K_{1,n}$ with $V_1 = w$ and $V_2 = \{x_i : 1 \le i \le n\}$. Assume that g(w) = e. In order to get $|e_g(0) - e_g(1)| \le 1$, we must have e as the label for $\frac{n}{2}$ vertices. Obviously, it is a contradiction to $|v_g(i) - v_g(j)| \le 1$. Case 2.

Without loss of generality g(w) = a. To get $|e_g(0) - e_g(1)| \leq 1$, we must have 3 order elements as the label for $\frac{n}{2}$ vertices. This is a contradiction to $|v_g(i) - v_g(j)| \leq 1$.

Case 3.

Without loss of generality g(w) = d. To attain $|e_g(0) - e_g(1)| \le 1$, we must label $\frac{n}{2}$ vertices with e. This is also a contradiction to $|v_g(i) - v_g(j)| \le 1$. \Box

Theorem 3.2. The Bistar $B_{n,n}$ is group S_3 mean cordial graph for every n.

Proof. Let $V(B_{n,n}) = \{p,q\} \bigcup \{p_i,q_i\}$ and $E(B_{n,n}) = \{pq\} \bigcup \{pp_i,qq_i : 1 \le i \le n\}$. Let $g: V(B_{n,n}) \to S_3$ be a function. Assign the label a, e to the vertices p and q respectively.

Case 1. $n \equiv 0 \pmod{3}$ Let n = 3k and $k \geq 1$. Assign the label d, f, a to the vertices $p_{3k-2}, p_{3k-1}, p_{3k}$. For the vertices $q_{3k-2}, q_{3k-1}, q_{3k}$ we assign the label b, c, e.

Case 2. $n \equiv 1 \pmod{3}$ Let n = 3k + 1 and $k \ge 1$. For $(1 \le i \le n - 1)$,

$$g(p_i) = \begin{cases} d & \text{if } i \equiv 1 \pmod{3} \\ f & \text{if } i \equiv 2 \pmod{3} \\ a & \text{if } i \equiv 0 \pmod{3} \end{cases}$$
$$g(q_i) = \begin{cases} b & \text{if } i \equiv 1 \pmod{3} \\ c & \text{if } i \equiv 2 \pmod{3} \\ e & \text{if } i \equiv 0 \pmod{3}. \end{cases}$$

Then assign the label d and b to the vertices p_n and q_n respectively.

Case 3. $n \equiv 2 \pmod{3}$ Let n = 3k + 2. Assign the label to the vertices p_i, q_i $(1 \le i \le n - 1)$ as in Case 2. Finally assign the label f and c to the vertices p_n and q_n respectively.

Nature of n	$v_g(a)$	$v_g(b)$	$v_g(c)$	$v_g(d)$	$v_g(e)$	$v_g(f)$		
$3k-2$ and $k \ge 1$	k	k	k-1	k	k	k-1		
$3k-1$ and $k \ge 1$	k	k	k	k	k	k		
$3k \text{ and } k \geq 1$	k+1	k	k	k	k+1	k		
TABLE 1								

Clearly $e_g(0) = n + 1$ and $e_g(1) = n$. Therefore $B_{n,n}$ is group S_3 mean cordial graph \Box

Theorem 3.3. $S(K_{1,n})$ is group S_3 mean cordial graph.

Proof. Let vertex set of $S(K_{1,n})$ be $\{p\} \bigcup \{p_i, q_i : 1 \le i \le n\}$ and edge set of $S(K_{1,n})$ be $\{pp_i, p_iq_i : 1 \le i \le n\}$. Define $g: V(S(K_{1,n})) \to S_3$ by, g(p) = e;for $1 \le i \le n$,

$$g(p_i) = \begin{cases} a & \text{if } i \equiv 1 \pmod{3} \\ b & \text{if } i \equiv 2 \pmod{3} \\ e & \text{if } i \equiv 0 \pmod{3} \end{cases}$$

and

$$g(q_i) = \begin{cases} d & \text{if } i \equiv 1 \pmod{3} \\ f & \text{if } i \equiv 2 \pmod{3} \\ c & \text{if } i \equiv 0 \pmod{3} \end{cases}$$

Hence $e_q(0) = e_q(1) = n$.

From Table 2, it is easy to verify that $|v_g(i) - v_g(j)| \leq 1$ for all $i, j \in S_3$. Therefore $S(K_{1,n})$ is group S_3 mean cordial graph.

A. Lourdusamy, E. Veronisha

Nature of n	$v_g(a)$	$v_g(b)$	$v_g(c)$	$v_g(d)$	$v_g(e)$	$v_g(f)$		
$3k-2$ and $k \ge 1$	k	k-1	k-1	k	k	k-1		
$3k-1$ and $k \ge 1$	k	k	k-1	k	k	k		
$3k \text{ and } k \ge 1$	k	k	k	k	k+1	k		
TABLE 2								

Theorem 3.4. $S(B_{n,n})$ is group S_3 mean cordial graph.

$$g(p_i) = \begin{cases} e & \text{if } i = 3k - 2 \text{ and } k \ge 1 \\ d & \text{if } i = 3k - 1 \text{ and } k \ge 1 \\ a & \text{if } i = 3k \text{ and } k \ge 1 \end{cases}$$
$$g(p_i') = \begin{cases} c & \text{if } i = 3k - 2 \text{ and } k \ge 1 \\ b & \text{if } i = 3k - 1 \text{ and } k \ge 1 \\ b & \text{if } i = 3k \text{ and } k \ge 1 \end{cases}$$
$$g(q_i) = \begin{cases} a & \text{if } i = 3k - 2 \text{ and } k \ge 1 \\ e & \text{if } i = 3k - 1 \text{ and } k \ge 1 \\ d & \text{if } i = 3k \text{ and } k \ge 1 \end{cases}$$
$$g(q_i') = \begin{cases} f & \text{if } i = 3k - 2 \text{ and } k \ge 1 \\ d & \text{if } i = 3k \text{ and } k \ge 1 \end{cases}$$
$$g(q_i') = \begin{cases} f & \text{if } i = 3k - 2 \text{ and } k \ge 1 \\ c & \text{if } i = 3k - 1 \text{ and } k \ge 1 \\ f & \text{if } i = 3k - 1 \text{ and } k \ge 1 \end{cases}$$

We observe that $e_g(0) = e_g(1) = 2n + 1$. Table 3, given below establishes that the vertex labeling g is a group S_3 mean cordial graph.

Nature of n	$v_g(a)$	$v_g(b)$	$v_g(c)$	$v_g(d)$	$v_g(e)$	$v_g(f)$		
$3k-2$ and $k \ge 1$	k+1	k	k	k	k	k		
$3k-1$ and $k \ge 1$	k+1	k+1	k+1	k+1	k+1	k		
$3k$ and $k \ge 1$	k+2	k+2	k+1	k+2	k+1	k+1		
TABLE 3								

Theorem 3.5. $S'(K_{1,n})$ is group S_3 mean cordial graph.

Proof. Let $V(S'(K_{1,n})) = \{p,q\} \bigcup \{p_i,q_i : 1 \le i \le n\}$ and $E(S'(K_{1,n})) = \{pp_i, pq_i, qq_i : 1 \le i \le n\}$. Let $g : V(S'(K_{1,n})) \to S_3$ be a function as defined below, $g(p) = a, g(q) = f, g(p_1) = d, g(p_2) = e, g(q_1) = b, g(q_2) = c$. For $3 \le i \le n$,

$$g(p_i) = \begin{cases} d & \text{if } i = 6k + 3 \text{ and } k \ge 0\\ b & \text{if } i = 6k + 4 \text{ and } k \ge 0\\ e & \text{if } i = 6k + 5 \text{ and } k \ge 0\\ d & \text{if } i = 6k + 6 \text{ and } k \ge 0\\ f & \text{if } i = 6k + 7 \text{ and } k \ge 0\\ b & \text{if } i = 6k + 8 \text{ and } k \ge 0\\ \end{cases}$$
$$g(q_i) = \begin{cases} a & \text{if } i = 6k + 3 \text{ and } k \ge 0\\ c & \text{if } i = 6k + 4 \text{ and } k \ge 0\\ f & \text{if } i = 6k + 5 \text{ and } k \ge 0\\ e & \text{if } i = 6k + 6 \text{ and } k \ge 0\\ a & \text{if } i = 6k + 7 \text{ and } k \ge 0\\ c & \text{if } i = 6k + 8 \text{ and } k \ge 0\\ c & \text{if } i = 6k + 8 \text{ and } k \ge 0\\ \end{cases}$$

$$\begin{split} \text{Clearly } e_g(0) &= \begin{cases} n + \left\lfloor \frac{n}{2} \right\rfloor & n \text{ is odd} \\ \frac{3n}{2} & n \text{ is even} \end{cases}, \\ e_g(1) &= \begin{cases} n + \left\lceil \frac{n}{2} \right\rceil & n \text{ is odd} \\ \frac{3n}{2} & n \text{ is even} \end{cases}. \\ \text{We can see that } |e_g(0) - e_g(1)| \leq 1. \end{split}$$

Nature of n	$v_g(a)$	$v_g(b)$	$v_g(c)$	$v_g(d)$	$v_g(e)$	$v_g(f)$		
1	1	1	0	1	0	1		
2	2	2	2	2	2	2		
$6k-3$ and $k \ge 1$	k+1	k	k	k+1	k	k		
$6k-2$ and $k \ge 1$	k+1	k+1	k+1	k+1	k	k		
$6k-1$ and $k \ge 1$	k+1	k+1	k+1	k+1	k+1	k+1		
$6k \text{ and } k \ge 1$	k+1	k+1	k+1	k+2	k+2	k+1		
$6k+1$ and $k \ge 1$	k+2	k+1	k+1	k+2	k+2	k+2		
$6k+2 \text{ and } k \ge 1$	k+2	k+2	k+2	k+2	k+2	k+2		
TABLE 4								

Table 4, shows that $|v_g(i)| - v_g(j)| \le 1$ for $i, j \in S_3$. Hence $S'(K_{1,n})$ is group S_3 mean cordial graph.

Theorem 3.6. $S'(B_{n,n})$ is group S_3 mean cordial graph.

 $\begin{array}{l} Proof. \mbox{ Let } V(S^{'}(B_{n,n})) = \{p,q,p^{'},q^{'}\} \bigcup \{p_{i},q_{i},p_{i}^{'},q_{i}^{'}:1\leq i\leq n\}.\\ \mbox{Let } E(S^{'}(B_{n,n})) = \{pq,pq^{'},qp^{'}\} \bigcup \{pp_{i},pp_{i}^{'},p^{'}p_{i},qq_{i},qq_{i}^{'},q^{'}q_{i}:1\leq i\leq n\}.\\ \mbox{Then } S^{'}(B_{n,n}) \mbox{ is of order } 4n+4 \mbox{ and size } 6n+3. \mbox{ Define } g:V(S^{'}(B_{n,n})) \to S_{3}\\ \mbox{ by },\\ g(p) = e,g(q) = d,g(p^{'}) = a,g(q^{'}) = b,g(p_{1}) = f,g(p_{2}) = e,g(q_{1}) = b,g(q_{2}) = e,g(q_{1}) = c,g(p_{2}) = a,g(q_{1}^{'}) = d,g(q_{2}^{'}) = f.\\ \mbox{For } 3\leq i\leq n,\\ g(p_{i}) = \begin{cases} d & \mbox{ if } i=3k \mbox{ and } k\geq 1\\ e & \mbox{ if } i=3k+1 \mbox{ and } k\geq 1\\ e & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ c & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ c & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ \end{cases}\\ g(q_{i}) = \begin{cases} a & \mbox{ if } i=3k \mbox{ and } k\geq 1\\ c & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ d & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ d & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ \end{cases}\\ g(q_{i}^{'}) = \begin{cases} a & \mbox{ if } i=3k \mbox{ and } k\geq 1\\ d & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ d & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ d & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ d & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ \end{cases}\\ g(q_{i}^{'}) = \begin{cases} f & \mbox{ if } i=3k \mbox{ and } k\geq 1\\ a & \mbox{ if } i=3k+1 \mbox{ and } k\geq 1\\ d & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ d & \mbox{ if } i=3k+2 \mbox{ and } k\geq 1\\ \end{cases} \end{cases}$

Clearly $e_q(0) = 3n + 1$ and $e_q(1) = 3n + 2$.

Nature of n	$v_g(a)$	$v_g(b)$	$v_g(c)$	$v_g(d)$	$v_g(e)$	$v_g(f)$		
1	1	2	1	2	1	1		
2	2	2	2	2	2	2		
$3k \text{ and } k \ge 1$	2k + 1	2k + 1	2k	2k + 1	2k	2k + 1		
$3k+1$ and $k \ge 1$	2k + 2	2k + 2	2k + 1	2k + 1	2k + 1	2k + 1		
$3k+2 \text{ and } k \ge 1$	2k + 2							
TABLE 5								

It is easy to observe that $|e_g(0) - e_g(1)| \le 1$ and $|v_g(i)| - v_g(j)| \le 1$ for $i, j \in S_3$.

Hence $S'(B_{n,n})$ is group S_3 mean cordial graph.

Theorem 3.7. $D_2(K_{1,n})$ is group S_3 mean cordial graph.

Proof. Let $V(D_2(K_{1,n})) = \{p, q, p_i, q_i : 1 \le i \le n\}$ and $E(D_2(K_{1,n})) = \{pp_i, qp_i, pq_i, qq_i : 1 \le i \le n\}$ Let $g : V(D_2(K_{1,n})) \to S_3$ be a function defined as follows:

Assign the labels e and d respectively to the vertices p and q. We let $g(p_1) = a, g(p_2) = f, g(q_1) = b, g(q_2) = c;$ for $3 \le i \le n$,

$$g(p_i) = \begin{cases} a & \text{if } i = 3k \text{ and } k \ge 1\\ e & \text{if } i = 3k+1 \text{ and } k \ge 1\\ d & \text{if } i = 3k+2 \text{ and } k \ge 1 \end{cases}$$
$$g(q_i) = \begin{cases} b & \text{if } i = 3k \text{ and } k \ge 1\\ c & \text{if } i = 3k+1 \text{ and } k \ge 1\\ f & \text{if } i = 3k+2 \text{ and } k \ge 1 \end{cases}$$

The number of edges labeled with 0 and labeled with 1 are 2n each.

Nature of n	$v_g(a)$	$v_g(b)$	$v_g(c)$	$v_g(d)$	$v_g(e)$	$v_g(f)$		
1	1	1	0	1	1	0		
2	1	1	1	1	1	1		
$3k \text{ and } k \geq 1$	k+1	k+1	k	k	k	k		
$3k+1$ and $k \ge 1$	k+1	k+1	k+1	k	k+1	k		
$3k+2$ and $k \ge 1$	k+1	k+1	k+1	k+1	k+1	k+1		
TABLE 6								

Table 6, shows that $|v_g(i)| - v_g(j)| \le 1$ for $i, j \in S_3$. Hence $D_2(K_{1,n})$ is group S_3 mean cordial graph.

Theorem 3.8. $D_2(B_{n,n})$ is group S_3 mean cordial graph.

 $\begin{array}{l} Proof. \ \mathrm{Let} \ V(D_2(B_{n,n})) = \{p,q,p^{'},q^{'},p_i,q_i,p_i^{'},q_i^{'}:1\leq i\leq n\} \ .\\ \mathrm{Let} \ E(D_2(B_{n,n})) = \{pp^{'},qq^{'},pq^{'},pp_i,qq_i,p^{'}p_i^{'},q^{'}q_i^{'},p_iq,pq_i,p_i^{'}q^{'},p^{'}q_i^{'}:1\leq i\leq n\} \ .\\ \mathrm{Let} \ E(D_2(B_{n,n})) = \{pp^{'},qq^{'},pq^{'},pp_i,qq_i,p^{'}p_i^{'},q^{'}q_i^{'},p_iq,pq_i,p_i^{'}q^{'},p^{'}q_i^{'}:1\leq i\leq n\} \ .\\ \mathrm{Let} \ E(D_2(B_{n,n})) \to S_3 \ \mathrm{by} \ g(p) = e,g(q) = d,g(p^{'}) = e,g(q^{'}) = f,g(p_1) = a,g(p_2) = d,g(q_1) = b,g(q_2) = b,g(p_1^{'}) = c,g(p_2^{'}) = f,g(q_1^{'}) = a,g(q_2^{'}) = c. \end{array}$

$$g(p_i) = \begin{cases} a & \text{if } i = 3k \text{ and } k \ge 1 \\ d & \text{if } i = 3k+1 \text{ and } k \ge 1 \\ e & \text{if } i = 3k+2 \text{ and } k \ge 1 \end{cases}$$

$$g(q_i) = \begin{cases} b & \text{if } i = 3k \text{ and } k \ge 1\\ f & \text{if } i = 3k + 1 \text{ and } k \ge 1\\ c & \text{if } i = 3k + 2 \text{ and } k \ge 1 \end{cases}$$

$$g(p_i^{'}) = \begin{cases} e & \text{if } i = 3k \text{ and } k \ge 1\\ a & \text{if } i = 3k + 1 \text{ and } k \ge 1\\ d & \text{if } i = 3k + 2 \text{ and } k \ge 1; \end{cases}$$
$$g(q_i^{'}) = \begin{cases} c & \text{if } i = 3k \text{ and } k \ge 1\\ b & \text{if } i = 3k + 1 \text{ and } k \ge 1\\ f & \text{if } i = 3k + 2 \text{ and } k \ge 1. \end{cases}$$

Clearly $e_g(0) = 4n + 2 = e_g(1)$.

Nature of n	$v_g(a)$	$v_g(b)$	$v_g(c)$	$v_g(d)$	$v_g(e)$	$v_g(f)$		
1	2	1	1	1	2	1		
2	2	2	2	2	2	2		
$3k \text{ and } k \ge 1$	2k + 1	2k + 1	2k + 1	2k	2k + 1	2k		
$3k+1$ and $k \ge 1$	2k + 2	2k + 2	2k + 1	2k + 1	2k + 1	2k + 1		
$3k+2$ and $k \ge 1$	2k + 2							
TABLE 7								

Therefore $|v_g(i)) - v_g(j)| \le 1$ for $i, j \in S_3$ (Table 7). Hence $D_2(B_{n,n})$ is group S_3 mean cordial graph.

Theorem 3.9. $B_{n,n}^2$ is group S_3 mean cordial graph.

Proof. Let the vertex set be $V(B_{n,n}^2) = \{p, q, p_i, q_i : 1 \le i \le n\}$ and the edge set be $E(B_{n,n}^2) = \{pq, pp_i, qq_i, qp_i, pq_i : 1 \le i \le n\}$ Define a function $g: V(B_{n,n}^2) \to S_3$ as follows: $\tilde{g(p)} = e, g(q) = d, g(p_1) = a, g(p_2) = f, g(q_1) = b, g(q_2) = c;$ for $3 \le i \le n$, 1

$$g(p_i) = \begin{cases} a & \text{if } i = 3k \text{and } k \ge 1\\ e & \text{if } i = 3k + 1 \text{and } k \ge 1\\ d & \text{if } i = 3k + 2 \text{and } k \ge 1 \end{cases}$$

$$g(q_i) = \begin{cases} b & \text{if } i = 3k \text{ and } k \ge 1\\ c & \text{if } i = 3k + 1 \text{ and } k \ge 1\\ f & \text{if } i = 3k + 2 \text{ and } k \ge 1 \end{cases}$$

Note that $e_g(0) = 2n + 1$ and $e_g(1) = 2n$.

Table 8 illustrates that $|v_g(i)| - v_g(j)| \le 1$ for $i, j \in S_3$. Thus, $B_{n,n}^2$ is group S_3 mean cordial graph.

Theorem 3.10. $< K_{1,n}^{(1)} \Delta K_{1,n}^{(2)} > is group S_3$ mean cordial graph.

Group S_3 Mean Cordial Labeling for star related graphs

Nature of <i>n</i>	$v_{i}(a)$	$v_{1}(b)$	$v_{1}(c)$	$v_{i}(d)$	v(e)	$v_{i}(f)$		
1	$\frac{v_g(u)}{1}$	1	$v_g(c)$	$\frac{v_g(u)}{1}$	$\frac{vg(c)}{1}$	$c_g(f)$		
1	1	1	0	1	1	0		
2	1	1	1	1	1	1		
$3k \text{ and } k \ge 1$	k+1	k+1	k	k	k	k		
$3k+1$ and $k \ge 1$	k+1	k+1	k+1	k	k+1	k		
$3k+2$ and $k \ge 1$	k+1	k+1	k+1	k+1	k+1	k+1		
TABLE 8								

Proof. Let $V(< K_{1,n}^{(1)} \Delta K_{1,n}^{(2)} >) = \{p, q, r, p_i, q_i : 1 \le i \le n\}$. Then the edge set is $E(< K_{1,n}^{(1)} \Delta K_{1,n}^{(2)} >) = \{pq, pr, qr, pp_i, qq_i : 1 \le i \le n\}$ Define a function $g: V(< K_{1,n}^{(1)} \Delta K_{1,n}^{(2)} >) \to S_3$ as follows: g(r) = d, g(p) = a, g(q) = e; for $1 \le i \le n$,

$$g(p_i) = \begin{cases} f & \text{if } i = 3k + 1 \text{ and } k \ge 0\\ d & \text{if } i = 3k + 2 \text{ and } k \ge 0\\ a & \text{if } i = 3k \text{ and } k \ge 1 \end{cases}$$
$$g(q_i) = \begin{cases} b & \text{if } i = 3k + 1 \text{ and } k \ge 0\\ c & \text{if } i = 3k + 2 \text{ and } k \ge 0\\ e & \text{if } i = 3k \text{ and } k \ge 1 \end{cases}$$

Note that $e_g(0) = n + 2$ and $e_g(1) = n + 1$.

Nature of n	$v_g(a)$	$v_g(b)$	$v_g(c)$	$v_g(d)$	$v_g(e)$	$v_g(f)$		
$3k+1$ and $k \ge 0$	k+1	k+1	k	k+1	k+1	k		
$3k+2$ and $k \ge 0$	k+1	k+1	k+1	k+2	k+1	k+1		
$3k$ and $k \ge 1$	k+1	k	k	k+1	k+1	k		
TABLE 9								

Here $|v_g(i)| - v_g(j)| \le 1$ for $i, j \in S_3$ and $|e_g(0) - e_g(1)| \le 1$. Thus, g is a group S_3 mean cordial labeling.

Theorem 3.11. $K_{1,2} * K_{1,n}$ is group S_3 mean cordial graph.

 $\begin{array}{l} Proof. \ \text{Let} \ V(K_{1,2}*K_{1,n}) = \{p,q,r,p_i,q_i: 1 \leq i \leq n\}. \ \text{Then} \ E(K_{1,n}*K_{1,n}) = \{pr,qr,pp_i,qq_i: 1 \leq i \leq n\} \ \text{Define} \ g: V(K_{1,2}*K_{1,n}) \to S_3 \ \text{as follows:} \\ \text{as in Theorem 10, let us assign the label to the vertices } p,q,r,p_i,q_i \ \text{for} \ 1 \leq i \leq n. \\ \text{Here} \ |v_g(i)) - v_g(j)| \leq 1 \ \text{for} \ i,j \in S_3. \ \text{Clearly,} \ e_g(0) = n+1 = e_g(1). \ \text{Hence} \\ K_{1,2}*K_{1,n} \ \text{is group} \ S_3 \ \text{mean cordial graph.} \end{array}$

Conflicts of interest : The authors declare no conflict of interest.

Data availability : Not applicable

Acknowledgments : The author would like to thank the anonymous referee who provided useful and detailed comments on a previous version of the manuscript.

References

- I. Cahit, Cordial graphs-a weaker version of graceful and harmonious graphs, Ars combinatoria 23 (1987), 201-207.
- A. Lourdusamy, S. Jenifer Wency & F. Patrick, Group S₃ cordial remainder labeling, International Journal of Recent Technology and Engineering 8 (2019), 8276-8281.
- A. Lourdusamy, E. Veronisha, Some Results On Group S₃ Mean Cordial Labeling, Recent Trends in Modern Mathematics (Conference Proceeding), St. John's College(Autonomous), Palayamkottai ISBN: 978-93-5566-257-6, 1 (2021), 335-340.
- A. Lourdusamy, E. Veronisha, Group S₃ Mean Cordial Labeling for ladder and snake related graphs, Sciencia Acta Xaveriana 12 (2021), 57-65.
- R. Ponraj, M. Sivakumar & M. Sundaram, Mean cordial labeling of graphs', Open Journal of Discrete Mathematics, 12 (2012), 145-148.
- Rosa, Alexander, On certain valuations of the vertices of a graph, Theory of Graphs, Internat. Symposium, Rome, July 1966.
- West, Douglas Brent, Introduction to graph theory, Vol. 2, Upper Saddle River, Prentice hall, NJ, 1996.

A. Lourdusamy received M.Sc. from St. Joseph's College, Trichy, Tamil Nadu, India and Ph.D. at Manonmaniam Sundaranar University, Tirunelveli in India. His Ph.D. was in Graph Theory. At present he is an Head and Associate Professor of St. Xavier's College, Palayamkottai. Since 1986 he has served many colleges in India as Assistant Professor. He has published 92 publications in National/International Journals so far.

Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, Tamil Nadu, India.

e-mail: lourdusamy15@gmail.com

E. Veronisha received M.Sc. and M.Phil. from Loyola College, Chennai, Tamil Nadu, India. Her research interest is graph labeling. She has published 7 publications in National/International Journals so far.

Center: PG and Research Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, Manonmaniam Sundaranar University, Abisekapatti-627012, Tamil Nadu, India.

e-mail: nishaedwin1705@gmail.com