GROUP S_{3} MEAN CORDIAL LABELING FOR STAR RELATED GRAPHS

A. LOURDUSAMY, E. VERONISHA*

Abstract

Let $G=(V, E)$ be a graph. Consider the group S_{3}. Let $g: V(G) \rightarrow S_{3}$ be a function. For each edge $x y$ assign the label 1 if $\left\lceil\frac{o(g(x))+o(g(y))}{2}\right\rceil$ is odd or 0 otherwise. g is a group S_{3} mean cordial labeling if $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$, where $v_{g}(i)$ and $e_{g}(y)$ denote the number of vertices labeled with an element i and number of edges labeled with $y(y=0,1)$. The graph G with group S_{3} mean cordial labeling is called group S_{3} mean cordial graph. In this paper, we discuss group S_{3} mean cordial labeling for star related graphs.

AMS Mathematics Subject Classification : 05C78. Key words and phrases : S_{3} mean cordial labeling, star, splitting graph.

1. Introduction

The concept of labeling was intrdouced by of Rosa [6] in 1967. We follow the basic notation and terminologies as they are found in the text book written by Douglas B. West [7]. In graph labeling we assign integers to the vertices or edges or both subject to some stipulated conditions. Cahit introduced cordial labeling in [1].

Ponraj et al. introduced mean cordial labeling in [5]. Lourdusamy et al. [2] has defined a new labeling called Group S_{3} cordial remainder labeling. Motivated by these concepts, Lourdusamy et. al defined a new labeling called group S_{3} mean cordial labeling in [3]. Also, they proved ladder and snake related graphs admits group S_{3} mean cordial labeling in [4]. Here, we discuss group S_{3} mean cordial labeling for star related graphs.

[^0]
2. S_{3} Mean Cordial Labeling

We denote the elements of symmetric group S_{3} by the letters e, a, b, c, d, f where

$$
\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right]=e,} & {\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right]=a,} & {\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right]=b,} \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right]=c,} & {\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right]=d,} & {\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]=f,}
\end{array}
$$

Note that, $o(e)=1, o(a)=o(b)=o(c)=2, o(d)=o(f)=3$.
Definition 2.1. Let $G=(V, E)$ be a graph. Consider the group S_{3}. Let g : $V(G) \rightarrow S_{3}$ be a function. For each edge $x y$ assign the label 1 if $\left\lceil\frac{o(g(x))+o(g(y))}{2}\right\rceil$ is odd or 0 otherwise. g is a group S_{3} mean cordial labeling if $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$, where $v_{g}(i)$ and $e_{g}(y)$ denote the number of vertices labeled with an element i and number of edges labeled with $y(y=0,1)$. The graph G with group S_{3} mean cordial labeling is called group S_{3} mean cordial graph.

3. Main Results

Theorem 3.1. Star graph $K_{1, n}$ is not group S_{3} mean cordial graph.
Proof. Case 1.
Let $\left(V_{1}, V_{2}\right)$ be the bipartition of $K_{1, n}$ with $V_{1}=w$ and $V_{2}=\left\{x_{i}: 1 \leq i \leq n\right\}$. Assume that $g(w)=e$. In order to get $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$, we must have e as the label for $\frac{n}{2}$ vertices. Obviously, it is a contradiction to $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$.

Case 2.
Without loss of generality $g(w)=a$. To get $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$, we must have 3 order elements as the label for $\frac{n}{2}$ vertices. This is a contradiction to $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$.

Case 3.
Without loss of generality $g(w)=d$. To attain $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$, we must label $\frac{n}{2}$ vertices with e. This is also a contradiction to $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$.

Theorem 3.2. The Bistar $B_{n, n}$ is group S_{3} mean cordial graph for every n.
Proof. Let $V\left(B_{n, n}\right)=\{p, q\} \bigcup\left\{p_{i}, q_{i}\right\}$ and $E\left(B_{n, n}\right)=\{p q\} \bigcup\left\{p p_{i}, q q_{i}: 1 \leq i \leq\right.$ $n\}$. Let $g: V\left(B_{n, n}\right) \rightarrow S_{3}$ be a function. Assign the label a, e to the vertices p and q respectively.

Case 1. $n \equiv 0(\bmod 3)$ Let $n=3 k$ and $k \geq 1$. Assign the label d, f, a to the vertices $p_{3 k-2}, p_{3 k-1}, p_{3 k}$.For the vertices $q_{3 k-2}, q_{3 k-1}, q_{3 k}$ we assign the label b, c, e.

Case 2. $n \equiv 1(\bmod 3)$ Let $n=3 k+1$ and $k \geq 1$.
For $(1 \leq i \leq n-1)$,

$$
\begin{aligned}
& g\left(p_{i}\right)= \begin{cases}d & \text { if } i \equiv 1(\bmod 3) \\
f & \text { if } i \equiv 2(\bmod 3) \\
a & \text { if } i \equiv 0(\bmod 3)\end{cases} \\
& g\left(q_{i}\right)= \begin{cases}b & \text { if } i \equiv 1(\bmod 3) \\
c & \text { if } i \equiv 2(\bmod 3) \\
e & \text { if } i \equiv 0(\bmod 3)\end{cases}
\end{aligned}
$$

Then assign the label d and b to the vertices p_{n} and q_{n} respectively.
Case 3. $n \equiv 2(\bmod 3)$ Let $n=3 k+2$. Assign the label to the vertices p_{i}, q_{i} $(1 \leq i \leq n-1)$ as in Case 2. Finally assign the label f and c to the vertices p_{n} and q_{n} respectively.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$
$3 k-2$ and $k \geq 1$	k	k	$k-1$	k	k	$k-1$
$3 k-1$ and $k \geq 1$	k	k	k	k	k	k
$3 k$ and $k \geq 1$	$k+1$	k	k	k	$k+1$	k
TABLE 1						

Clearly $e_{g}(0)=n+1$ and $e_{g}(1)=n$. Therefore $B_{n, n}$ is group S_{3} mean cordial graph

Theorem 3.3. $S\left(K_{1, n}\right)$ is group S_{3} mean cordial graph.
Proof. Let vertex set of $S\left(K_{1, n}\right)$ be $\{p\} \bigcup\left\{p_{i}, q_{i}: 1 \leq i \leq n\right\}$ and edge set of $S\left(K_{1, n}\right)$ be $\left\{p p_{i}, p_{i} q_{i}: 1 \leq i \leq n\right\}$.
Define $g: V\left(S\left(K_{1, n}\right)\right) \rightarrow S_{3}$ by,
$g(p)=e$;
for $1 \leq i \leq n$,

$$
g\left(p_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 3) \\ b & \text { if } i \equiv 2(\bmod 3) \\ e & \text { if } i \equiv 0(\bmod 3)\end{cases}
$$

and

$$
g\left(q_{i}\right)= \begin{cases}d & \text { if } i \equiv 1(\bmod 3) \\ f & \text { if } i \equiv 2(\bmod 3) \\ c & \text { if } i \equiv 0(\bmod 3)\end{cases}
$$

Hence $e_{g}(0)=e_{g}(1)=n$.
From Table 2, it is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for all $i, j \in S_{3}$. Therefore $S\left(K_{1, n}\right)$ is group S_{3} mean cordial graph.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$
$3 k-2$ and $k \geq 1$	k	$k-1$	$k-1$	k	k	$k-1$
$3 k-1$ and $k \geq 1$	k	k	$k-1$	k	k	k
$3 k$ and $k \geq 1$	k	k	k	k	$k+1$	k

TABLE 2

Theorem 3.4. $S\left(B_{n, n}\right)$ is group S_{3} mean cordial graph.
Proof. Let $V\left(S\left(B_{n, n}\right)\right)$ be $\{p, r, q\} \bigcup\left\{p_{i}, p_{i}^{\prime}, q_{i}, q_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E\left(S\left(B_{n, n}\right)\right)=$ $\{p r, r q\} \bigcup\left\{p p_{i}, p_{i} p_{i}^{\prime}, q q_{i}, q_{i} q_{i}^{\prime}: 1 \leq i \leq n\right\}$.
Define a mapping $g: V\left(S\left(B_{n, n}\right)\right) \rightarrow S_{3}$ as follows:
$g(p)=a, g(r)=b, g(q)=d$.
For $1 \leq i \leq n$,

$$
\begin{aligned}
& g\left(p_{i}\right)= \begin{cases}e & \text { if } i=3 k-2 \text { and } k \geq 1 \\
d & \text { if } i=3 k-1 \text { and } k \geq 1 \\
a & \text { if } i=3 k \text { and } k \geq 1\end{cases} \\
& g\left(p_{i}^{\prime}\right)= \begin{cases}c & \text { if } i=3 k-2 \text { and } k \geq 1 \\
b & \text { if } i=3 k-1 \text { and } k \geq 1 \\
b & \text { if } i=3 k \text { and } k \geq 1\end{cases} \\
& g\left(q_{i}\right)= \begin{cases}a & \text { if } i=3 k-2 \text { and } k \geq 1 \\
e & \text { if } i=3 k-1 \text { and } k \geq 1 \\
d & \text { if } i=3 k \text { and } k \geq 1\end{cases} \\
& g\left(q_{i}^{\prime}\right)= \begin{cases}f & \text { if } i=3 k-2 \text { and } k \geq 1 \\
c & \text { if } i=3 k-1 \text { and } k \geq 1 \\
f & \text { if } i=3 k \text { and } k \geq 1\end{cases}
\end{aligned}
$$

We observe that $e_{g}(0)=e_{g}(1)=2 n+1$. Table 3, given below establishes that the vertex labeling g is a group S_{3} mean cordial graph.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$
$3 k-2$ and $k \geq 1$	$k+1$	k	k	k	k	k
$3 k-1$ and $k \geq 1$	$k+1$	$k+1$	$k+1$	$k+1$	$k+1$	k
$3 k$ and $k \geq 1$	$k+2$	$k+2$	$k+1$	$k+2$	$k+1$	$k+1$

Table 3

Theorem 3.5. $S^{\prime}\left(K_{1, n}\right)$ is group S_{3} mean cordial graph.

Proof. Let $V\left(S^{\prime}\left(K_{1, n}\right)\right)=\{p, q\} \bigcup\left\{p_{i}, q_{i}: 1 \leq i \leq n\right\}$ and $E\left(S^{\prime}\left(K_{1, n}\right)\right)=$ $\left\{p p_{i}, p q_{i}, q q_{i}: 1 \leq i \leq n\right\}$.
Let $g: V\left(S^{\prime}\left(K_{1, n}\right)\right) \rightarrow S_{3}$ be a function as defined below, $g(p)=a, g(q)=$ $f, g\left(p_{1}\right)=d, g\left(p_{2}\right)=e, g\left(q_{1}\right)=b, g\left(q_{2}\right)=c$.
For $3 \leq i \leq n$,

$$
\begin{aligned}
& g\left(p_{i}\right)= \begin{cases}d & \text { if } i=6 k+3 \text { and } k \geq 0 \\
b & \text { if } i=6 k+4 \text { and } k \geq 0 \\
e & \text { if } i=6 k+5 \text { and } k \geq 0 \\
d & \text { if } i=6 k+6 \text { and } k \geq 0 \\
f & \text { if } i=6 k+7 \text { and } k \geq 0 \\
b & \text { if } i=6 k+8 \text { and } k \geq 0\end{cases} \\
& g\left(q_{i}\right)= \begin{cases}a & \text { if } i=6 k+3 \text { and } k \geq 0 \\
c & \text { if } i=6 k+4 \text { and } k \geq 0 \\
f & \text { if } i=6 k+5 \text { and } k \geq 0 \\
e & \text { if } i=6 k+6 \text { and } k \geq 0 \\
a & \text { if } i=6 k+7 \text { and } k \geq 0 \\
c & \text { if } i=6 k+8 \text { and } k \geq 0\end{cases}
\end{aligned}
$$

Clearly $e_{g}(0)=\left\{\begin{array}{ll}n+\left\lfloor\frac{n}{2}\right\rfloor & n \text { is odd } \\ \frac{3 n}{2} & n \text { is even }\end{array}\right.$,
$e_{g}(1)=\left\{\begin{array}{ll}n+\left\lceil\frac{n}{2}\right\rceil & n \text { is odd } \\ \frac{3 n}{2} & n \text { is even }\end{array}\right.$.
We can see that $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$
1	1	1	0	1	0	1
2	2	2	2	2	2	2
$6 k-3$ and $k \geq 1$	$k+1$	k	k	$k+1$	k	k
$6 k-2$ and $k \geq 1$	$k+1$	$k+1$	$k+1$	$k+1$	k	k
$6 k-1$ and $k \geq 1$	$k+1$	$k+1$	$k+1$	$k+1$	$k+1$	$k+1$
$6 k$ and $k \geq 1$	$k+1$	$k+1$	$k+1$	$k+2$	$k+2$	$k+1$
$6 k+1$ and $k \geq 1$	$k+2$	$k+1$	$k+1$	$k+2$	$k+2$	$k+2$
$6 k+2$ and $k \geq 1$	$k+2$	$k+2$	$k+2$	$k+2$	$k+2$	$k+2$

TABLE 4

Table 4, shows that $\left.\mid v_{g}(i)\right)-v_{g}(j) \mid \leq 1$ for $i, j \in S_{3}$. Hence $S^{\prime}\left(K_{1, n}\right)$ is group S_{3} mean cordial graph.
Theorem 3.6. $S^{\prime}\left(B_{n, n}\right)$ is group S_{3} mean cordial graph.

Proof. Let $V\left(S^{\prime}\left(B_{n, n}\right)\right)=\left\{p, q, p^{\prime}, q^{\prime}\right\} \bigcup\left\{p_{i}, q_{i}, p_{i}^{\prime}, q_{i}^{\prime}: 1 \leq i \leq n\right\}$.
Let $E\left(S^{\prime}\left(B_{n, n}\right)\right)=\left\{p q, p q^{\prime}, q p^{\prime}\right\} \bigcup\left\{p p_{i}, p p_{i}^{\prime}, p^{\prime} p_{i}, q q_{i}, q q_{i}^{\prime}, q^{\prime} q_{i}: 1 \leq i \leq n\right\}$.
Then $S^{\prime}\left(B_{n, n}\right)$ is of order $4 n+4$ and size $6 n+3$. Define $g: V\left(S^{\prime}\left(B_{n, n}\right)\right) \rightarrow S_{3}$ by ,
$g(p)=e, g(q)=d, g\left(p^{\prime}\right)=a, g\left(q^{\prime}\right)=b, g\left(p_{1}\right)=f, g\left(p_{2}\right)=e, g\left(q_{1}\right)=b, g\left(q_{2}\right)=$ $c, g\left(p_{1}^{\prime}\right)=c, g\left(p_{2}^{\prime}\right)=a, g\left(q_{1}^{\prime}\right)=d, g\left(q_{2}^{\prime}\right)=f$.
For $3 \leq i \leq n$,

$$
\begin{aligned}
& g\left(p_{i}\right)= \begin{cases}d & \text { if } i=3 k \text { and } k \geq 1 \\
e & \text { if } i=3 k+1 \text { and } k \geq 1 \\
e & \text { if } i=3 k+2 \text { and } k \geq 1\end{cases} \\
& g\left(q_{i}\right)= \begin{cases}b & \text { if } i=3 k \text { and } k \geq 1 \\
b & \text { if } i=3 k+1 \text { and } k \geq 1 \\
c & \text { if } i=3 k+2 \text { and } k \geq 1\end{cases} \\
& g\left(p_{i}^{\prime}\right)= \begin{cases}a & \text { if } i=3 k \text { and } k \geq 1 \\
c & \text { if } i=3 k+1 \text { and } k \geq 1 \\
d & \text { if } i=3 k+2 \text { and } k \geq 1\end{cases} \\
& g\left(q_{i}^{\prime}\right)= \begin{cases}f & \text { if } i=3 k \text { and } k \geq 1 \\
a & \text { if } i=3 k+1 \text { and } k \geq 1 \\
f & \text { if } i=3 k+2 \text { and } k \geq 1 .\end{cases}
\end{aligned}
$$

Clearly $e_{g}(0)=3 n+1$ and $e_{g}(1)=3 n+2$.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$
1	1	2	1	2	1	1
2	2	2	2	2	2	2
$3 k$ and $k \geq 1$	$2 k+1$	$2 k+1$	$2 k$	$2 k+1$	$2 k$	$2 k+1$
$3 k+1$ and $k \geq 1$	$2 k+2$	$2 k+2$	$2 k+1$	$2 k+1$	$2 k+1$	$2 k+1$
$3 k+2$ and $k \geq 1$	$2 k+2$					

Table 5

It is easy to observe that $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$ and $\left.\mid v_{g}(i)\right)-v_{g}(j) \mid \leq 1$ for $i, j \in S_{3}$.
Hence $S^{\prime}\left(B_{n, n}\right)$ is group S_{3} mean cordial graph.
Theorem 3.7. $D_{2}\left(K_{1, n}\right)$ is group S_{3} mean cordial graph.
Proof. Let $V\left(D_{2}\left(K_{1, n}\right)\right)=\left\{p, q, p_{i,}, q_{i}: 1 \leq i \leq n\right\}$ and $E\left(D_{2}\left(K_{1, n}\right)\right)=$ $\left\{p p_{i}, q p_{i}, p q_{i}, q q_{i}: 1 \leq i \leq n\right\}$ Let $g: V\left(D_{2}\left(K_{1, n}\right)\right) \rightarrow S_{3}$ be a function defined as follows:

Assign the labels e and d respectively to the vertices p and q. We let $g\left(p_{1}\right)=a, g\left(p_{2}\right)=f, g\left(q_{1}\right)=b, g\left(q_{2}\right)=c$; for $3 \leq i \leq n$,

$$
\begin{aligned}
& g\left(p_{i}\right)= \begin{cases}a & \text { if } i=3 k \text { and } k \geq 1 \\
e & \text { if } i=3 k+1 \text { and } k \geq 1 \\
d & \text { if } i=3 k+2 \text { and } k \geq 1\end{cases} \\
& g\left(q_{i}\right)= \begin{cases}b & \text { if } i=3 k \text { and } k \geq 1 \\
c & \text { if } i=3 k+1 \text { and } k \geq 1 \\
f & \text { if } i=3 k+2 \text { and } k \geq 1\end{cases}
\end{aligned}
$$

The numberof edges labeled with 0 and labeled with 1 are $2 n$ each.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$
1	1	1	0	1	1	0
2	1	1	1	1	1	1
$3 k$ and $k \geq 1$	$k+1$	$k+1$	k	k	k	k
$3 k+1$ and $k \geq 1$	$k+1$	$k+1$	$k+1$	k	$k+1$	k
$3 k+2$ and $k \geq 1$	$k+1$	$k+1$	$k+1$	$k+1$	$k+1$	$k+1$

Table 6

Table 6, shows that $\left.\mid v_{g}(i)\right)-v_{g}(j) \mid \leq 1$ for $i, j \in S_{3}$.
Hence $D_{2}\left(K_{1, n}\right)$ is group S_{3} mean cordial graph.
Theorem 3.8. $D_{2}\left(B_{n, n}\right)$ is group S_{3} mean cordial graph.
Proof. Let $V\left(D_{2}\left(B_{n, n}\right)\right)=\left\{p, q, p^{\prime}, q^{\prime}, p_{i}, q_{i}, p_{i}^{\prime}, q_{i}^{\prime}: 1 \leq i \leq n\right\}$.
Let $E\left(D_{2}\left(B_{n, n}\right)\right)=\left\{p p^{\prime}, q q^{\prime}, p q^{\prime}, q p^{\prime}, p p_{i}, q q_{i}, p^{\prime} p_{i}^{\prime}, q^{\prime} q_{i}^{\prime}, p_{i} q, p q_{i}, p_{i}^{\prime} q^{\prime}, p^{\prime} q_{i}^{\prime}: 1 \leq\right.$ $i \leq n\}$. Define $g: V\left(D_{2}\left(B_{n, n}\right)\right) \rightarrow S_{3}$ by
$g(p)=e, g(q)=d, g\left(p^{\prime}\right)=e, g\left(q^{\prime}\right)=f, g\left(p_{1}\right)=a, g\left(p_{2}\right)=d, g\left(q_{1}\right)=b, g\left(q_{2}\right)=$ $b, g\left(p_{1}^{\prime}\right)=c, g\left(p_{2}^{\prime}\right)=f, g\left(q_{1}^{\prime}\right)=a, g\left(q_{2}^{\prime}\right)=c$.
For $3 \leq i \leq n$,

$$
\begin{aligned}
& g\left(p_{i}\right)= \begin{cases}a & \text { if } i=3 k \text { and } k \geq 1 \\
d & \text { if } i=3 k+1 \text { and } k \geq 1 \\
e & \text { if } i=3 k+2 \text { and } k \geq 1\end{cases} \\
& g\left(q_{i}\right)= \begin{cases}b & \text { if } i=3 k \text { and } k \geq 1 \\
f & \text { if } i=3 k+1 \text { and } k \geq 1 \\
c & \text { if } i=3 k+2 \text { and } k \geq 1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& g\left(p_{i}^{\prime}\right)= \begin{cases}e & \text { if } i=3 k \text { and } k \geq 1 \\
a & \text { if } i=3 k+1 \text { and } k \geq 1 \\
d & \text { if } i=3 k+2 \text { and } k \geq 1\end{cases} \\
& g\left(q_{i}^{\prime}\right)= \begin{cases}c & \text { if } i=3 k \text { and } k \geq 1 \\
b & \text { if } i=3 k+1 \text { and } k \geq 1 \\
f & \text { if } i=3 k+2 \text { and } k \geq 1\end{cases}
\end{aligned}
$$

Clearly $e_{g}(0)=4 n+2=e_{g}(1)$.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$
1	2	1	1	1	2	1
2	2	2	2	2	2	2
$3 k$ and $k \geq 1$	$2 k+1$	$2 k+1$	$2 k+1$	$2 k$	$2 k+1$	$2 k$
$3 k+1$ and $k \geq 1$	$2 k+2$	$2 k+2$	$2 k+1$	$2 k+1$	$2 k+1$	$2 k+1$
$3 k+2$ and $k \geq 1$	$2 k+2$					

TABLE 7

Therefore $\left.\mid v_{g}(i)\right)-v_{g}(j) \mid \leq 1$ for $i, j \in S_{3}$ (Table 7). Hence $D_{2}\left(B_{n, n}\right)$ is group S_{3} mean cordial graph.

Theorem 3.9. $B_{n, n}^{2}$ is group S_{3} mean cordial graph.
Proof. Let the vertex set be $V\left(B_{n, n}^{2}\right)=\left\{p, q, p_{i}, q_{i}: 1 \leq i \leq n\right\}$ and the edge set be $E\left(B_{n, n}^{2}\right)=\left\{p q, p p_{i}, q q_{i}, q p_{i}, p q_{i}: 1 \leq i \leq n\right\}$ Define a function $g: V\left(B_{n, n}^{2}\right) \rightarrow$ S_{3} as follows:
$g(p)=e, g(q)=d, g\left(p_{1}\right)=a, g\left(p_{2}\right)=f, g\left(q_{1}\right)=b, g\left(q_{2}\right)=c ;$ for $3 \leq i \leq n$,

$$
\begin{aligned}
& g\left(p_{i}\right)= \begin{cases}a & \text { if } i=3 k \text { and } k \geq 1 \\
e & \text { if } i=3 k+1 \text { and } k \geq 1 \\
d & \text { if } i=3 k+2 \text { and } k \geq 1\end{cases} \\
& g\left(q_{i}\right)= \begin{cases}b & \text { if } i=3 k \text { and } k \geq 1 \\
c & \text { if } i=3 k+1 \text { and } k \geq 1 \\
f & \text { if } i=3 k+2 \text { and } k \geq 1\end{cases}
\end{aligned}
$$

Note that $e_{g}(0)=2 n+1$ and $e_{g}(1)=2 n$.
Table 8 illustrates that $\left.\mid v_{g}(i)\right)-v_{g}(j) \mid \leq 1$ for $i, j \in S_{3}$. Thus, $B_{n, n}^{2}$ is group S_{3} mean cordial graph.
Theorem 3.10. $<K_{1, n}^{(1)} \Delta K_{1, n}^{(2)}>$ is group S_{3} mean cordial graph.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$
1	1	1	0	1	1	0
2	1	1	1	1	1	1
$3 k$ and $k \geq 1$	$k+1$	$k+1$	k	k	k	k
$3 k+1$ and $k \geq 1$	$k+1$	$k+1$	$k+1$	k	$k+1$	k
$3 k+2$ and $k \geq 1$	$k+1$	$k+1$	$k+1$	$k+1$	$k+1$	$k+1$

Table 8

Proof. Let $V\left(<K_{1, n}^{(1)} \Delta K_{1, n}^{(2)}>\right)=\left\{p, q, r, p_{i}, q_{i}: 1 \leq i \leq n\right\}$. Then the edge set is $E\left(<K_{1, n}^{(1)} \Delta K_{1, n}^{(2)}>\right)=\left\{p q, p r, q r, p p_{i}, q q_{i}: 1 \leq i \leq n\right\}$ Define a function $g: V\left(<K_{1, n}^{(1)} \Delta K_{1, n}^{(2)}>\right) \rightarrow S_{3}$ as follows:
$g(r)=d, g(p)=a, g(q)=e$;
for $1 \leq i \leq n$,

$$
\begin{aligned}
& g\left(p_{i}\right)= \begin{cases}f & \text { if } i=3 k+1 \text { and } k \geq 0 \\
d & \text { if } i=3 k+2 \text { and } k \geq 0 \\
a & \text { if } i=3 k \text { and } k \geq 1\end{cases} \\
& g\left(q_{i}\right)= \begin{cases}b & \text { if } i=3 k+1 \text { and } k \geq 0 \\
c & \text { if } i=3 k+2 \text { and } k \geq 0 \\
e & \text { if } i=3 k \text { and } k \geq 1\end{cases}
\end{aligned}
$$

Note that $e_{g}(0)=n+2$ and $e_{g}(1)=n+1$.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$
$3 k+1$ and $k \geq 0$	$k+1$	$k+1$	k	$k+1$	$k+1$	k
$3 k+2$ and $k \geq 0$	$k+1$	$k+1$	$k+1$	$k+2$	$k+1$	$k+1$
$3 k$ and $k \geq 1$	$k+1$	k	k	$k+1$	$k+1$	k

TABLE 9

Here $\left.\mid v_{g}(i)\right)-v_{g}(j) \mid \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Thus, g is a group S_{3} mean cordial labeling.

Theorem 3.11. $K_{1,2} * K_{1, n}$ is group S_{3} mean cordial graph.
Proof. Let $V\left(K_{1,2} * K_{1, n}\right)=\left\{p, q, r, p_{i}, q_{i}: 1 \leq i \leq n\right\}$. Then $E\left(K_{1, n} * K_{1, n}\right)=$ $\left\{p r, q r, p p_{i}, q q_{i}: 1 \leq i \leq n\right\}$ Define $g: V\left(K_{1,2} * K_{1, n}\right) \rightarrow S_{3}$ as follows: as in Theorem 10, let us assign the label to the vertices p, q, r, p_{i}, q_{i} for $1 \leq i \leq n$. Here $\left.\mid v_{g}(i)\right)-v_{g}(j) \mid \leq 1$ for $i, j \in S_{3}$. Clearly, $e_{g}(0)=n+1=e_{g}(1)$. Hence $K_{1,2} * K_{1, n}$ is group S_{3} mean cordial graph.

Conflicts of interest : The authors declare no conflict of interest.
Data availability : Not applicable
Acknowledgments : The author would like to thank the anonymous referee who provided useful and detailed comments on a previous version of the manuscript.

References

1. I. Cahit, Cordial graphs-a weaker version of graceful and harmonious graphs, Ars combinatoria 23 (1987), 201-207.
2. A. Lourdusamy, S. Jenifer Wency \& F. Patrick, Group S_{3} cordial remainder labeling, International Journal of Recent Technology and Engineering 8 (2019), 8276-8281.
3. A. Lourdusamy, E. Veronisha, Some Results On Group S_{3} Mean Cordial Labeling, Recent Trends in Modern Mathematics (Conference Proceeding), St. John's College(Autonomous), Palayamkottai ISBN: 978-93-5566-257-6, 1 (2021), 335-340.
4. A. Lourdusamy, E. Veronisha, Group S_{3} Mean Cordial Labeling for ladder and snake related graphs, Sciencia Acta Xaveriana 12 (2021), 57-65.
5. R. Ponraj, M. Sivakumar \& M. Sundaram, Mean cordial labeling of graphs', Open Journal of Discrete Mathematics, 12 (2012), 145-148.
6. Rosa, Alexander, On certain valuations of the vertices of a graph, Theory of Graphs, Internat. Symposium, Rome, July 1966.
7. West, Douglas Brent, Introduction to graph theory, Vol. 2, Upper Saddle River, Prentice hall, NJ, 1996.
A. Lourdusamy received M.Sc. from St. Joseph's College, Trichy, Tamil Nadu, India and Ph.D. at Manonmaniam Sundaranar University, Tirunelveli in India. His Ph.D. was in Graph Theory. At present he is an Head and Associate Professor of St. Xavier's College, Palayamkottai. Since 1986 he has served many colleges in India as Assistant Professor. He has published 92 publications in National/International Journals so far.
Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, Tamil Nadu, India.
e-mail: lourdusamy15@gmail.com
E. Veronisha received M.Sc. and M.Phil. from Loyola College, Chennai, Tamil Nadu, India. Her research interest is graph labeling. She has published 7 publications in National/International Journals so far.
Center: PG and Research Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, Manonmaniam Sundaranar University, Abisekapatti-627012, Tamil Nadu, India.
e-mail: nishaedwin1705@gmail.com

[^0]: Received May 5, 2022. Revised October 18, 2022. Accepted November 17, 2022. * Corresponding author.
 (C) 2023 KSCAM.

