GROUP S_{3} CORDIAL REMAINDER LABELING FOR PATH AND CYCLE RELATED GRAPHS

A. LOURDUSAMY, S. JENIFER WENCY* AND F. PATRICK

Abstract

Let $G=(V(G), E(G))$ be a graph and let $g: V(G) \rightarrow S_{3}$ be a function. For each edge $x y$ assign the label r where r is the remainder when $o(g(x))$ is divided by $o(g(y))$ or $o(g(y))$ is divided by $o(g(x))$ according as $o(g(x)) \geq o(g(y))$ or $o(g(y)) \geq o(g(x))$. The function g is called a group S_{3} cordial remainder labeling of G if $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ and $\left|e_{g}(1)-e_{g}(0)\right| \leq 1$, where $v_{g}(j)$ denotes the number of vertices labeled with j and $e_{g}(i)$ denotes the number of edges labeled with $i(i=0,1)$. A graph G which admits a group S_{3} cordial remainder labeling is called a group S_{3} cordial remainder graph. In this paper, we prove that square of the path, duplication of a vertex by a new edge in path and cycle graphs, duplication of an edge by a new vertex in path and cycle graphs and total graph of cycle and path graphs admit a group S_{3} cordial remainder labeling.

AMS Mathematics Subject Classification : 05C78.
Key words and phrases : Group S_{3} cordial remainder labeling, path, cycle graph.

1. Introduction

All graphs considered here are finite, simple and undirected. The vertex set and the edge set of a graph G are denoted by $V(G)$ and $E(G)$ so that the order and size of G are $|V(G)|$ and $|E(G)|$ respectively. Terms not defined here are taken from Harary [3]. Graph labeling was first introduced in 1960's. Most of the graph labeling trace their origins in the paper presented by Alex Rosa in 1967 [10]. A labeling of a graph is a map that carries the graph elements to the set of numbers, usually to the set of non-negative or positive integers. If the domain is the set of vertices then the labeling is called vertex labeling. If the domain is the set of edges then the labeling is called edge labeling. If the labels are assigned to both vertices and edges then the labeling is called total labeling. The complete survey of graph labeling is in [2]. Cordial labeling is

[^0]a weaker version of graceful labeling and harmonious labeling introduced by I. Cahit in [1]. Let f be a function from the vertices of G to $\{0,1\}$ and for each edge $x y$ assign the label $|f(x)-f(y)| . \quad f$ is called a cordial labeling of G if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Lourdusamy et al. [5] introduced the concept of group S_{3} cordial remainder labeling and they proved that path, cycle, star, bistar, complete bipartite, wheel, fan, comb and crown graphs are group S_{3} cordial remainder graphs. In $[6,7,8]$, Lourdusamy et al. discussed the behaviour of group S_{3} cordial remainder labeling of helm, flower, closed helm, gear, sunflower, triangular snake, quadrilateral snake, lotus inside a circle, double fan, ladder, slanting ladder, triangular ladder, subdivision of star, subdivision of bistar, subdivision of wheel, subdivision of comb, subdivision of crown, subdivision of fan and subdivision of ladder. In [4], Jenifer et al. proved that shadow graph of cycle and path, splitting graph of cycle, armed crown, umbrella graph and dumbbell graph admit a group S_{3} cordial remainder labeling. Also they proved that snake related graphs are a group S_{3} cordial remainder graphs.

Definition 1.1. Let A be a group. The order of $a \in A$ is the least positive integer n such that $a^{n}=e$. We denote the order of a by $o(a)$.

Definition 1.2. Consider the symmetric group S_{3}. Let the elements of S_{3} be e, a, b, c, d, f where

$$
\begin{aligned}
& e=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) \quad a=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \quad b=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) \\
& c=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \quad d=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \quad f=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
\end{aligned}
$$

We have $o(e)=1, o(a)=o(b)=o(c)=2, o(d)=o(f)=3$.
Definition 1.3. Let $G=(V(G), E(G))$ be a graph and let $g: V(G) \rightarrow S_{3}$ be a function. For each edge $x y$ assign the label r where r is the remainder when $o(g(x))$ is divided by $o(g(y))$ or $o(g(y))$ is divided by $o(g(x))$ according as $o(g(x)) \geq o(g(y))$ or $o(g(y)) \geq o(g(x))$. The function g is called a group S_{3} cordial remainder labeling of G if $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ and $\left|e_{g}(1)-e_{g}(0)\right| \leq 1$, where $v_{g}(j)$ denotes the number of vertices labeled with j and $e_{g}(i)$ denotes the number of edges labeled with $i(i=0,1)$. A graph G which admits a group S_{3} cordial remainder labeling is called a group S_{3} cordial remainder graph.

In this paper, we prove that square of the path, duplication of a vertex by a new edge in path and cycle graphs, duplication of an edge by a new vertex in path and cycle graphs and total graph of cycle and path graphs admit a group S_{3} cordial remainder labeling.

We use the following definitions in the subsequent sections.

Definition 1.4. For a simple connected graph G the square of graph G is denoted by G^{2} and defined as the graph with the same vertex set as of G and two vertices are adjacent in G^{2} if they are at a distance 1 or 2 apart in G.

Definition 1.5. [9] Duplication of a vertex u by a new edge $e=v w$ in a graph G produces a new graph G^{\prime} such that $N(v) \cap N(w)=u$.

Definition 1.6. [9] Duplication of an edge $e=u v$ by a new vertex w in a graph G produces a new graph G^{\prime} such that $N(w)=\{u, v\}$.
Definition 1.7. [9] The total graph $T(G)$ of a graph G is the graph whose vertex set is $V(G) \bigcup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in G.

2. Main results

Theorem 2.1. P_{n}^{2} is a group S_{3} cordial remainder graph for every n.
Proof. Let $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of the path P_{n}. Let $E\left(P_{n}^{2}\right)=\left\{v_{i} v_{i+1}\right.$: $1 \leq i \leq n-1\} \cup\left\{v_{i} v_{i+2}: 1 \leq i \leq n-2\right\}$. Then P_{n}^{2} is of order n and size $2 n-3$. Define $g: V\left(P_{n}^{2}\right) \rightarrow S_{3}$ as follows:
Case 1. n is odd.

$$
g\left(v_{i}\right)= \begin{cases}e & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\ b & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\ d & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\ c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\ a & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\ f & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases}
$$

It is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Therefore g is a group S_{3} cordial remainder labeling.
Case 2. n is even.

$$
g\left(v_{i}\right)= \begin{cases}e & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\ d & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\ b & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\ c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\ f & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\ a & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases}
$$

It is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Therefore g is a group S_{3} cordial remainder labeling.

Hence, P_{n}^{2} is a group S_{3} cordial remainder graph for every n.
Example 2.2. A group S_{3} cordial remainder labeling of P_{7}^{2} is given in FIGURE 1.

Figure 1

Theorem 2.3. The graph obtained by duplication of each vertex by an edge in path P_{n} is a group S_{3} cordial remainder graph.

Proof. Let $V(G)=\left\{u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E(G)=\left\{u_{i} v_{i}, u_{i} w_{i}, v_{i} w_{i}: 1 \leq\right.$ $i \leq n\} \bigcup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$. Therefore G is of order $3 n$ and size $4 n-1$. Define $g: V(G) \rightarrow S_{3}$ as follows:

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 4) \text { and } 1 \leq i \leq n \\
b & \text { if } i \equiv 2(\bmod 4) \text { and } 1 \leq i \leq n \\
d & \text { if } i \equiv 3(\bmod 4) \text { and } 1 \leq i \leq n \\
f & \text { if } i \equiv 0(\bmod 4) \text { and } 1 \leq i \leq n\end{cases} \\
& g\left(v_{i}\right)= \begin{cases}e & \text { if } i \equiv 1(\bmod 4) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 2(\bmod 4) \text { and } 1 \leq i \leq n \\
a & \text { if } i \equiv 3(\bmod 4) \text { and } 1 \leq i \leq n \\
b & \text { if } i \equiv 0(\bmod 4) \text { and } 1 \leq i \leq n\end{cases} \\
& g\left(w_{i}\right)= \begin{cases}d & \text { if } i \equiv 1(\bmod 4) \text { and } 1 \leq i \leq n \\
f & \text { if } i \equiv 2(\bmod 4) \text { and } 1 \leq i \leq n \\
e & \text { if } i \equiv 3(\bmod 4) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 0(\bmod 4) \text { and } 1 \leq i \leq n\end{cases}
\end{aligned}
$$

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$	$e_{g}(0)$	$e_{g}(1)$
$2 k-1(k \geq 1)$	k	$k-1$	$k-1$	k	k	$k-1$	$4 k-2$	$4 k-3$
$2 k(k \geq 1)$	k	k	k	k	k	k	$4 k$	$4 k-1$
TABLE 1								

From TABLE 1, it is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Therefore g is a group S_{3} cordial remainder labeling.

Theorem 2.4. The graph obtained by duplication of each vertex by an edge in cycle C_{n} is a group S_{3} cordial remainder graph.

Proof. Let $V(G)=\left\{u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E(G)=E\left(C_{n}\right) \bigcup\left\{u_{i} v_{i}, u_{i} w_{i}, v_{i} w_{i}\right.$: $1 \leq i \leq n\}$. Therefore, G is of order $3 n$ and size $4 n$. Define $g: V(G) \rightarrow S_{3}$ as follows:
Case 1. $n=3$.

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i=1 \\
b & \text { if } i=2 \\
d & \text { if } i=3 ;\end{cases} \\
& g\left(w_{i}\right)= \begin{cases}d & \text { if } i=1 \\
f & \text { if } i=2 \\
e & \text { if } i=3\end{cases}
\end{aligned}
$$

Here we have $v_{g}(b)=v_{g}(c)=v_{g}(f)=1, v_{g}(a)=v_{g}(d)=v_{g}(e)=2$ and $e_{g}(0)=$ $e_{g}(1)=6$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 2. $n \geq 4$.
Subcase 2.1. $n \equiv 0(\bmod 4)$.
Let $n=4 k$ and $k \geq 1$.

$$
\begin{gathered}
g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 4) \text { and } 1 \leq i \leq 4 k \\
b & \text { if } i \equiv 2(\bmod 4) \text { and } 1 \leq i \leq 4 k \\
d & \text { if } i \equiv 3(\bmod 4) \text { and } 1 \leq i \leq 4 k \\
f & \text { if } i \equiv 0(\bmod 4) \text { and } 1 \leq i \leq 4 k\end{cases} \\
g\left(v_{i}\right)= \begin{cases}e & \text { if } i \equiv 1(\bmod 4) \text { and } 1 \leq i \leq 4 k \\
c & \text { if } i \equiv 2(\bmod 4) \text { and } 1 \leq i \leq 4 k \\
a & \text { if } i \equiv 3(\bmod 4) \text { and } 1 \leq i \leq 4 k \\
b & \text { if } i \equiv 0(\bmod 4) \text { and } 1 \leq i \leq 4 k\end{cases} \\
g\left(w_{i}\right)= \begin{cases}d & \text { if } i \equiv 1(\bmod 4) \text { and } 1 \leq i \leq 4 k \\
f & \text { if } i \equiv 2(\bmod 4) \text { and } 1 \leq i \leq 4 k \\
e & \text { if } i \equiv 3(\bmod 4) \text { and } 1 \leq i \leq 4 k \\
c & \text { if } i \equiv 0(\bmod 4) \text { and } 1 \leq i \leq 4 k\end{cases}
\end{gathered}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=2 k$ and $e_{g}(0)=$ $e_{g}(1)=8 k$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Subcase 2.2. $n \equiv 3(\bmod 4)$.

Let $n=4 k+3$ and $k \geq 1$. We assign the labels to the vertices u_{i}, v_{i} and w_{i} for $1 \leq i \leq 4 k$ as in Subcase (2.1) and for the remaining vertices assign the following labels:

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i=4 k+1 \\
b & \text { if } i=4 k+2 \\
d & \text { if } i=4 k+3 ;\end{cases} \\
& g\left(w_{i}\right)= \begin{cases}d & \text { if } i=4 k+1 \\
f & \text { if } i=4 k+2 \\
e & \text { if } i=4 k+3\end{cases}
\end{aligned}
$$

Here we have $v_{g}(b)=v_{g}(c)=v_{g}(f)=2 k+1, v_{g}(a)=v_{g}(d)=v_{g}(e)=2 k+2$ and $e_{g}(0)=e_{g}(1)=8 k+6$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 2.3. $n \equiv 2(\bmod 4)$.

Let $n=4 k+2$ and $k \geq 1$. We assign the labels to the vertices u_{i}, v_{i} and w_{i} for $1 \leq i \leq 4 k$ as in Subcase (2.1) and for the remaining vertices assign the following labels:

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}b & \text { if } i=4 k+1 \\
d & \text { if } i=4 k+2 ;\end{cases} \\
& g\left(w_{i}\right)= \begin{cases}e & \text { if } i=4 k+1 \\
c & \text { if } i=4 k+2\end{cases}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=2 k+1$ and $e_{g}(0)=e_{g}(1)=8 k+4$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\mid e_{g}(0)-$ $e_{g}(1) \mid \leq 1$.

Subcase 2.4. $n \equiv 1(\bmod 4)$.

Let $n=4 k+1$ and $k \geq 1$. We assign the labels to the vertices u_{i}, v_{i} and w_{i} for $1 \leq i \leq 4 k$ as in Subcase (2.1), except for the vertices $u_{4 k+1}, v_{4 k+1}, w_{4 k+1}$ are labeled by f, b, c respectively. Here we have $v_{g}(b)=v_{g}(c)=v_{g}(f)=2 k+1, v_{g}(a)=$ $v_{g}(d)=v_{g}(e)=2 k$ and $e_{g}(0)=e_{g}(1)=8 k+2$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.

It is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Therefore g is a group S_{3} cordial remainder labeling.
Example 2.5. A group S_{3} cordial remainder labeling of the graph obtained by duplication of each vertex by an edge in cycle C_{7} is given in FIGURE 2.

Figure 2

Theorem 2.6. The graph obtained by duplication of each edge of cycle C_{n} by a vertex is a group S_{3} cordial remainder graph.

Proof. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the vertices of cycle C_{n} and G be the graph obtained by duplication of each edge $u_{i} u_{i+1}$ and $u_{n} u_{1}$ of cycle C_{n} by vertex $v_{i}(1 \leq i \leq n)$. Then $V(G)=\left\{u_{i}, v_{i}: 1,2, \cdots, n\right\}$ and $E(G)=\left\{u_{i} u_{i+1}, u_{i+1} v_{i}: 1 \leq i \leq n-\right.$ $1\} \bigcup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \bigcup\left\{u_{n} u_{1}, v_{n} u_{1}\right\}$. Clearly $|V(G)|=2 n$ and $|E(G)|=3 n$. Define $g: V(G) \rightarrow S_{3}$ as follows:
Case 1. $n=3$.

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
d & \text { if } i=2 \\
e & \text { if } i=3 ;
\end{array} \quad g\left(v_{i}\right)= \begin{cases}c & \text { if } i=1 \\
d & \text { if } i=2 \\
f & \text { if } i=3\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=1$ and $e_{g}(0)=$ $5, e_{g}(1)=4$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 2. $n=4$.

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
b & \text { if } i=2 \\
d & \text { if } i=3 \\
f & \text { if } i=4 ;
\end{array} \quad g\left(v_{i}\right)= \begin{cases}e & \text { if } i=1 \\
b & \text { if } i=2 \\
c & \text { if } i=3 \\
a & \text { if } i=4\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=2, v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=1$ and $e_{g}(0)=$ $6, e_{g}(1)=6$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 3. $n=5$.

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
d & \text { if } i=2 \\
b & \text { if } i=3 \\
c & \text { if } i=4 \\
e & \text { if } i=5 ;
\end{array} \quad g\left(v_{i}\right)= \begin{cases}a & \text { if } i=1 \\
c & \text { if } i=2 \\
d & \text { if } i=3 \\
b & \text { if } i=4 \\
f & \text { if } i=5\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=2, v_{g}(e)=v_{g}(f)=1$ and $e_{g}(0)=$ $8, e_{g}(1)=7$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 4. $n \geq 6$.
Subcase 4.1. $n \equiv 0(\bmod 6)$.
Let $n=6 k$ and $k \geq 1$.

$$
g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ d & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ b & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ e & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ f & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k ;\end{cases}
$$

$$
g\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ c & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ d & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ f & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ e & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ b & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=2 k$ and $e_{g}(0)=$ $e_{g}(1)=9 k$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.2. $n \equiv 5(\bmod 6)$.
Let $n=6 k+5$ and $k \geq 1$. We assign the labels to the vertices u_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase (4.1) and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2 \\
b & \text { if } i=6 k+3 \\
c & \text { if } i=6 k+4 \\
e & \text { if } i=6 k+5
\end{array} \quad g\left(v_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
c & \text { if } i=6 k+2 \\
d & \text { if } i=6 k+3 \\
b & \text { if } i=6 k+4 \\
f & \text { if } i=6 k+5\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=2 k+2, v_{g}(e)=v_{g}(f)=2 k+1$ and $e_{g}(0)=9 k+8, e_{g}(1)=9 k+7$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.3. $n \equiv 4(\bmod 6)$.
Let $n=6 k+4$ and $k \geq 1$. We assign the labels to the vertices u_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase (4.1) and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
d & \text { if } i=6 k+3 \\
f & \text { if } i=6 k+4
\end{array} \quad g\left(v_{i}\right)= \begin{cases}e & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
c & \text { if } i=6 k+3 \\
a & \text { if } i=6 k+4\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=2 k+2, v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=2 k+1$ and $e_{g}(0)=9 k+6, e_{g}(1)=9 k+6$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.4. $n \equiv 3(\bmod 6)$.
Let $n=6 k+3$ and $k \geq 1$. We assign the labels to the vertices u_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase (4.1) and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2 \\
e & \text { if } i=6 k+3
\end{array} \quad g\left(v_{i}\right)= \begin{cases}c & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=2 k+1$ and $e_{g}(0)=9 k+5, e_{g}(1)=9 k+4$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and
$\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.5. $n \equiv 2(\bmod 6)$.
Let $n=6 k+2$ and $k \geq 1$.

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases} \\
& g\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases}
\end{aligned}
$$

for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
f & \text { if } i=6 k+1 \\
a & \text { if } i=6 k+2
\end{array} \quad g\left(v_{i}\right)= \begin{cases}e & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2\end{cases}\right.
$$

Here we have $v_{g}(b)=v_{g}(c)=2 k, v_{g}(a)=v_{g}(d)=v_{g}(e)=v_{g}(f)=2 k+1$ and $e_{g}(0)=9 k+3, e_{g}(1)=9 k+3$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.6. $n \equiv 1(\bmod 6)$.
Let $n=6 k+1$ and $k \geq 1$. We assign the labels to the vertices u_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase (4.5), except for the two vertices $u_{6 k+1}, v_{6 k+1}$ are labeled by f, a respectively. Here we have $v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=$ $2 k, v_{g}(a)=v_{g}(f)=2 k+1$ and $e_{g}(0)=9 k+1, e_{g}(1)=9 k+2$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Hence g is a group S_{3} cordial remainder labeling.
Example 2.7. A group S_{3} cordial remainder labeling of the graph obtained by duplication of each edge of cycle C_{8} by a vertex is given in FIGURE 3.

Corollary 2.8. The graph obtained by duplication of each edge of path P_{n} by a vertex is a group S_{3} cordial remainder graph.

Theorem 2.9. The total graph of path $T\left(P_{n}\right)$ is a group S_{3} cordial remainder graph for every n.

Proof. Let $V\left(T\left(P_{n}\right)\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \bigcup\left\{u_{i}: 1 \leq i \leq n-1\right\}$ and $E\left(T\left(P_{n}\right)\right)=$ $\left\{u_{i} u_{i+1}: 1 \leq i \leq n-2\right\} \bigcup\left\{v_{i} u_{i-1}: 2 \leq i \leq n\right\} \bigcup\left\{v_{i} v_{i+1}, v_{i} u_{i}: 1 \leq i \leq n-1\right\}$. Then $T\left(P_{n}\right)$ is of order $2 n-1$ and size $4 n-5$. Define $g: V\left(T\left(P_{n}\right)\right) \rightarrow S_{3}$ is as follows:

Figure 3

$$
\begin{aligned}
& g\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\
b & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\
f & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\
e & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\
d & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases} \\
& g\left(u_{i}\right)= \begin{cases}d & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n-1 \\
e & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n-1 \\
a & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n-1 \\
f & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n-1 \\
b & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n-1 \\
c & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n-1 .\end{cases}
\end{aligned}
$$

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$
$6 k+1(k \geq 0)$	$2 k+1$	$2 k$				
$6 k+2(k \geq 0)$	$2 k+1$	$2 k+1$	$2 k$	$2 k+1$	$2 k$	$2 k$
$6 k+3(k \geq 0)$	$2 k+1$	$2 k+1$	$2 k$	$2 k+1$	$2 k+1$	$2 k+1$
$6 k+4(k \geq 0)$	$2 k+2$	$2 k+1$				
$6 k+5(k \geq 0)$	$2 k+2$	$2 k+1$	$2 k+1$	$2 k+1$	$2 k+2$	$2 k+2$
$6 k(k \geq 1)$	$2 k$					

[^1]| Nature of n | $e_{g}(0)$ | $e_{g}(1)$ |
| :---: | :---: | :---: |
| $6 k+1(k \geq 0)$ | $12 k$ | $12 k-1$ |
| $6 k+2(k \geq 0)$ | $12 k+1$ | $12 k+2$ |
| $6 k+3(k \geq 0)$ | $12 k+4$ | $12 k+3$ |
| $6 k+4(k \geq 0)$ | $12 k+6$ | $12 k+5$ |
| $6 k+5(k \geq 0)$ | $12 k+8$ | $12 k+7$ |
| $6 k(k \geq 1)$ | $12 k-2$ | $12 k-3$ |
| TABLE 3 | | |

From TABLE 2 and TABLE 3 , it is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Therefore g is a group S_{3} cordial remainder labeling. Hence $T\left(P_{n}\right)$ is a group S_{3} cordial remainder graph for every n.

Example 2.10. A group S_{3} cordial remainder labeling of $T\left(P_{6}\right)$ is given in FIGURE 4.

Figure 4

Theorem 2.11. The total graph of cycle $T\left(C_{n}\right)$ is a group S_{3} cordial remainder graph for $n \geq 3$.

Proof. Let $V\left(T\left(C_{n}\right)\right)=\left\{v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(T\left(C_{n}\right)\right)=\left\{v_{i} v_{i+1}, u_{i} u_{i+1}\right.$: $1 \leq i \leq n-1\} \bigcup\left\{v_{i} u_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i} u_{i-1}: 2 \leq i \leq n\right\} \bigcup\left\{v_{n} v_{1}, u_{n} u_{1}, v_{1} u_{n}\right\}$. Then $T\left(C_{n}\right)$ is of order $2 n$ and size $4 n$. Define $g: V\left(T\left(C_{n}\right)\right) \rightarrow S_{3}$ is as follows:
Case 1. $n=3$.

$$
g\left(v_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
b & \text { if } i=2 \\
f & \text { if } i=3 ;
\end{array} \quad g\left(u_{i}\right)= \begin{cases}d & \text { if } i=1 \\
e & \text { if } i=2 \\
c & \text { if } i=3\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=1$ and $e_{g}(0)=$ $e_{g}(1)=6$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 2. $n=4$.

$$
g\left(v_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
b & \text { if } i=2 \\
f & \text { if } i=3 \\
c & \text { if } i=4 ;
\end{array} \quad g\left(u_{i}\right)= \begin{cases}d & \text { if } i=1 \\
c & \text { if } i=2 \\
f & \text { if } i=3 \\
e & \text { if } i=4\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(d)=v_{g}(e)=1, v_{g}(c)=v_{g}(f)=2$ and $e_{g}(0)=$ $8, e_{g}(1)=8$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 3. $n=5$.

$$
g\left(v_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
f & \text { if } i=2 \\
b & \text { if } i=3 \\
d & \text { if } i=4 \\
e & \text { if } i=5 ;
\end{array} \quad g\left(u_{i}\right)= \begin{cases}d & \text { if } i=1 \\
a & \text { if } i=2 \\
b & \text { if } i=3 \\
c & \text { if } i=4 \\
f & \text { if } i=5\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(d)=v_{g}(f)=2, v_{g}(c)=v_{g}(e)=1$ and $e_{g}(0)=$ $10, e_{g}(1)=10$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 4. $n \geq 6$.
Subcase 4.1. $n \equiv 0(\bmod 6)$.
Let $n=6 k$ and $k \geq 1$.

$$
\begin{aligned}
& g\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases} \\
& g\left(u_{i}\right)= \begin{cases}d & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
a & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=2 k$ and $e_{g}(0)=$ $e_{g}(1)=12 k$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Subcase 4.2. $n \equiv 5(\bmod 6)$.

Let $n=6 k+5$ and $k \geq 1$. Assign the labels to the vertices v_{i}, u_{i} for $1 \leq i \leq 6 k$ as in Subcase (4.1) and for the remaining vertices assign the following labels:

$$
g\left(v_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
f & \text { if } i=6 k+2 \\
b & \text { if } i=6 k+3 \\
d & \text { if } i=6 k+4 \\
e & \text { if } i=6 k+5
\end{array} \quad g\left(u_{i}\right)= \begin{cases}d & \text { if } i=6 k+1 \\
a & \text { if } i=6 k+2 \\
b & \text { if } i=6 k+3 \\
c & \text { if } i=6 k+4 \\
f & \text { if } i=6 k+5\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(d)=v_{g}(f)=2 k+2, v_{g}(c)=v_{g}(e)=2 k+1$ and $e_{g}(0)=e_{g}(1)=12 k+10$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.3. $n \equiv 4(\bmod 6)$.

Let $n=6 k+4$ and $k \geq 1$. Assign the labels to the vertices v_{i}, u_{i} for $1 \leq i \leq 6 k$ as in Subcase (4.1). Then, we assign the labels to the last four vertices are as follows:

$$
g\left(v_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3 \\
c & \text { if } i=6 k+4 ;
\end{array} \quad g\left(u_{i}\right)= \begin{cases}d & \text { if } i=6 k+1 \\
c & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3 \\
e & \text { if } i=6 k+4\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(d)=v_{g}(e)=2 k+1, v_{g}(c)=v_{g}(f)=2 k+2$ and $e_{g}(0)=e_{g}(1)=12 k+8$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.4. $n \equiv 3(\bmod 6)$.
Let $n=6 k+3$ and $k \geq 1$. Assign the labels to the vertices v_{i}, u_{i} for $1 \leq i \leq 6 k$ as in Subcase (4.1). Then, we assign the labels to the last three vertices are as follows:

$$
g\left(v_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3
\end{array} \quad g\left(u_{i}\right)= \begin{cases}d & \text { if } i=6 k+1 \\
e & \text { if } i=6 k+2 \\
c & \text { if } i=6 k+3\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=2 k+1$ and $e_{g}(0)=e_{g}(1)=12 k+6$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\mid e_{g}(0)-$ $e_{g}(1) \mid \leq 1$.
Subcase 4.5. $n \equiv 2(\bmod 6)$.
Let $n=6 k+2$ and $k \geq 1$. Assign the labels to the vertices v_{i}, u_{i} for $1 \leq i \leq 6 k$ as in Subcase (4.1). Then, we assign the labels to the last two vertices are as follows:

$$
g\left(v_{i}\right)=\left\{\begin{array}{ll}
b & \text { if } i=6 k+1 \\
c & \text { if } i=6 k+2 ;
\end{array} \quad g\left(u_{i}\right)= \begin{cases}f & \text { if } i=6 k+1 \\
a & \text { if } i=6 k+2\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(f)=2 k+1, v_{g}(d)=v_{g}(e)=2 k$ and $e_{g}(0)=e_{g}(1)=12 k+4$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.6. $n \equiv 1(\bmod 6)$.
Let $n=6 k+1$ and $k \geq 1$. Assign the labels to the vertices v_{i}, u_{i} for $1 \leq i \leq 6 k$ as in Subcase (4.1), except that the vertices $v_{6 k+1}, u_{6 k+1}$ are labeled by c, f respectively. Here we have $v_{g}(a)=v_{g}(b)=v_{g}(d)=v_{g}(e)=2 k, v_{g}(c)=v_{g}(f)=$ $2 k+1$ and $e_{g}(0)=e_{g}(1)=12 k+2$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.

Thus g is a group S_{3} cordial remainder labeling. Hence $T\left(C_{n}\right)$ is a group S_{3} cordial remainder graph for $n \geq 3$.

Example 2.12. A group S_{3} cordial remainder labeling of $T\left(C_{8}\right)$ is given in FIGURE 5.

Figure 5

References

1. I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987), 201-207.
2. J. A. Gallian, A Dyamic Survey of Graph Labeling, The Electronic J. Combin. 22 (2019), \# DS6.
3. F. Harary, Graph Theory, Addison-wesley, Reading, Mass, 1972.
4. S. Jenifer Wency, A. Lourdusamy and F. Patrick, Several result on group S_{3} cordial remainder labeling, AIP Conference Proceedings 2261 (2020), 030035.
5. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S_{3} cordial remainder labeling, International Journal of Recent Technology and Engineering 8 (2019), 8276-8281.
6. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S_{3} cordial remainder labeling of subdivision of graphs, Journal of Applied Mathematics \& Informatics, 38 (2020), 221-238.
7. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S_{3} cordial remainder labeling for wheel and snake related graphs, Jordan Journal of Mathematics and Statistics (Accepted).
8. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Some result on group S_{3} cordial remainder graphs, (Submitted for Publication).
9. A. Lourdusamy and F. Patrick, Sum divisor cordial labeling for path and cycle related graphs, Journal of Prime Research in Mathematics 15 2019, 101-114.
10. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs(Internat Sympos., Rome, 1966) 349-355.
A. Lourdusamy received M.Sc. from St. Joseph's College, Trichy, Tamil Nadu, India and Ph.D. at Manonmaniam Sundaranar University, Tirunelveli in India. His Ph.D. was in Graph Theory. At present he is an Associate Professor and IQAC Coordinator of St. Xavier's College, Palayamkottai. Since 1986 he has served many colleges in India as Assistant Professor. He has published 86 publications in National/International Journals so far.
Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, Tamil Nadu, India.
e-mail: lourdusamy15@gmail.com
S. Jenifer Wency received M.Sc. from Bishop Heber College, Trichy, Tamil Nadu, India and M.Phil. at Bishop Heber College, Trichy in India. Her research interest is graph labeling. She has published 11 publications in National/International Journals so far.
Reg. No. 17211282092013, Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Abisekapatti-627012, Tirunelveli, Tamil Nadu, India.
e-mail: jeniferwency@gmail.com
F. Patrick received M.Sc. from St.Joseph's College, Trichy, Tamil Nadu, India and Ph.D. at Manonmaniam Sundaranar University, Tirunelveli in India. His research interests are graph labeling and graph pebbling. He has published 23 publications in National/International Journals so far.
Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, Tamil Nadu, India.
e-mail: patrick881990@gmail.com

[^0]: Received May 15, 2020. Revised September 3, 2020. Accepted October 27, 2020.

 * Corresponding author.
 © 2021 KSCAM.

[^1]: TABLE 2

