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GROUP S3 CORDIAL REMAINDER LABELING OF

SUBDIVISION OF GRAPHS

A. LOURDUSAMY∗, S. JENIFER WENCY AND F. PATRICK

Abstract. Let G = (V (G), E(G)) be a graph and let g : V (G)→ S3 be a

function. For each edge xy assign the label r where r is the remainder when

o(g(x)) is divided by o(g(y)) or o(g(y)) is divided by o(g(x)) according as
o(g(x)) ≥ o(g(y)) or o(g(y)) ≥ o(g(x)). The function g is called a group S3

cordial remainder labeling of G if |vg(i)−vg(j)| ≤ 1 and |eg(1)−eg(0)| ≤ 1,

where vg(j) denotes the number of vertices labeled with j and eg(i) denotes
the number of edges labeled with i (i = 0, 1). A graph G which admits a

group S3 cordial remainder labeling is called a group S3 cordial remainder

graph. In this paper, we prove that subdivision of graphs admit a group
S3 cordial remainder labeling.
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1. Introduction

By a graph we mean fnite, simple and undirected one. The vertex set and
the edge set of a graph G are denoted by V (G) and E(G) so that the order and
size of G are |V (G)| and |E(G)| respectively. Terms not defined here are taken
from Harary [3]. Graph labeling was first introduced in 1960’s. Most of the
graph labeling trace their origins in the paper presented by Alex Rosa in 1967
[8]. A labeling of a graph is a map that carries the graph elements to the set of
numbers, usually to the set of non-negative or positive integers. If the domain
is the set of vertices then the labeling is called vertex labeling. If the domain
is the set of edges then the labeling is called edge labeling. If the labels are as-
signed to both vertices and edges then the labeling is called total labeling. The
complete survey of graph labeling is in [2]. Cordial labeling is a weaker version
of graceful labeling and harmonious labeling introduced by I. Cahit in [1]. Let
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f be a function from the vertices of G to {0, 1} and for each edge xy assign the
label |f(x)− f(y)|. f is called a cordial labeling of G if |vf (0)− vf (1)| ≤ 1 and
|ef (0) − ef (1)| ≤ 1. Lourdusamy et al. [4] introduced the concept of group S3

cordial remainder labeling and they proved path, cycle, star, bistar, complete
bipartite, wheel, fan, comb and crown graphs are group S3 cordial remainder
graphs. In [5, 6, 7], Lourdusamy et al. discussed that the behaviour of group
S3 cordial remainder labeling of helm, flower, closed helm, gear, sunflower, tri-
angular snake, quadrilateral snake, square of the path, duplication of a vertex
by a new edge in path and cycle graphs, duplication of an edge by a new vertex
in path and cycle graphs, total graph of cycle and path graphs, lotus inside a
circle, double fan, ladder, slanting ladder and triangular ladder.

Definition 1.1. Let A be a group. The order of a ∈ A is the least positive
integer n such that an = e. We denote the order of a by o(a).

Definition 1.2. Consider the symmetric group S3. Let the elements of S3 be
e, a, b, c, d, f where

e =

(
1 2 3
1 2 3

)
a =

(
1 2 3
1 3 2

)
b =

(
1 2 3
3 2 1

)
c =

(
1 2 3
2 1 3

)
d =

(
1 2 3
2 3 1

)
f =

(
1 2 3
3 1 2

)
.

We have o(e) = 1, o(a) = o(b) = o(c) = 2, o(d) = o(f) = 3.

Definition 1.3. Let G = (V (G), E(G)) be a graph and let g : V (G) → S3

be a function. For each edge xy assign the label r where r is the remainder
when o(g(x)) is divided by o(g(y)) or o(g(y)) is divided by o(g(x)) according
as o(g(x)) ≥ o(g(y)) or o(g(y)) ≥ o(g(x)). The function g is called a group S3

cordial remainder labeling of G if |vg(i) − vg(j)| ≤ 1 and |eg(1) − eg(0)| ≤ 1,
where vg(j) denotes the number of vertices labeled with j and eg(i) denotes the
number of edges labeled with i (i = 0, 1). A graph G which admits a group S3

cordial remainder labeling is called a group S3 cordial remainder graph.

In this paper, we prove that subdivision of star, subdivision of bistar, sub-
division of wheel, subdivision of comb, subdivision of crown, subdivision of fan
and subdivision of ladder admit a group S3 cordial remainder labeling.

We use the following definitions in the subsequent sections.

Definition 1.4. A bipartite graph is a graph whose vertex set V (G) can be
partitioned into two subsets V1 and V2 such that every edge of G joins a vertex
of V1 with a vertex of V2. If every vertex of V1 is adjacent with every vertex of
V2, then G is a complete bipartite graph. If |V1| = m and |V2| = n, then the
complete bipartite graph is denoted by Km,n.
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Definition 1.5. K1,n is called a Star.

Definition 1.6. The Bistar Bm,n is the graph obtained by joining the two
central vertices of K1,m and K1,n.

Definition 1.7. The Cartesian product G1 ×G2 of two graphs is defined to be
the graph with vertex set V1 × V2 and two vertices u = (u1, u2) and v = (v1, v2)
are adjacent in G1 × G2 if either u1 = v1 and u2 is adjacent to v2 or u2 = v2
and u1 is adjacent to v1.

Definition 1.8. The graph Ln = Pn × P2 is called a Ladder.

Definition 1.9. The join of two graphs G1 and G2 is denoted by G1 + G2 and
whose vertex set is V (G1 +G2) = V (G1)∪V (G2) and edge set is E(G1 +G2) =
E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

Definition 1.10. The graph Wn = Cn + K1 is called a wheel. In a Wheel, a
vertex of degree 3 on the cycle is called a rim vertex. A vertex which is adjacent
to all the rim vertices is called the central vertex. The edges with one end
incident with a rim vertex and the other incident with the central vertex are
called spokes.

Definition 1.11. The graph Fn = K1 + Pn is called a fan.

Definition 1.12. The corona G1 � G2 of two graphs G1 and G2 is defined as
the graph obtained by taking one copy of G1 (with p1 vertices) and p1 copies of
G2 and then joining the ith vertex of G1 with an edge to every vertex in the ith

copy of G2. The graph Pn �K1 is called a Comb. The graph Cn �K1 is called
a Crown.

Definition 1.13. The subdivision graph S(G) is obtained from G by subdivid-
ing each edge of G with a vertex.

2. Main results

Theorem 2.1. S(K1,n) is a group S3 cordial remainder graph for every n.

Proof. Let G = S(K1,n). Let V (G) = {u, vi, ui : 1 ≤ i ≤ n} and E(G) =
{uvi, viui : 1 ≤ i ≤ n}. Therefore G is of order 2n + 1 and size 2n. Define
g : V (G)→ S3 as follows:
Case 1. n is odd.

g(u) = a,

g(vi) =



b if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

f if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

d if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

a if i ≡ 0 (mod 6) and 1 ≤ i ≤ n ,
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g(ui) =



d if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

a if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

b if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

f if i ≡ 0 (mod 6) and 1 ≤ i ≤ n.
Case 2. n is even.

g(u) = a,

g(vi) =



b if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

d if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

f if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

a if i ≡ 0 (mod 6) and 1 ≤ i ≤ n ,

g(ui) =



d if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

f if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

a if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

b if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 0 (mod 6) and 1 ≤ i ≤ n.

Nature of n vg(a) vg(b) vg(c) vg(d) vg(e) vg(f) eg(0) eg(1)

6k (k ≥ 1) 2k + 1 2k 2k 2k 2k 2k 6k 6k

6k + 1 (k ≥ 0) 2k + 1 2k + 1 2k 2k + 1 2k 2k 6k + 1 6k + 1

6k + 2 (k ≥ 0) 2k + 1 2k + 1 2k + 1 2k + 1 2k 2k + 1 6k + 2 6k + 2

6k + 3 (k ≥ 0) 2k + 2 2k + 1 2k + 1 2k + 1 2k + 1 2k + 1 6k + 3 6k + 3

6k + 4 (k ≥ 0) 2k + 2 2k + 2 2k + 1 2k + 2 2k + 1 2k + 1 6k + 4 6k + 4

6k + 5 (k ≥ 0) 2k + 2 2k + 2 2k + 2 2k + 2 2k + 2 2k + 1 6k + 5 6k + 5

Table 1

From Table 1, it is easy to verify that |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1. Therefore g is a group S3 cordial remainder labeling. �

Example 2.2. A group S3 cordial remainder labeling of S(K1,7) is given in
Figure 1.

Theorem 2.3. S(Wn) is a group S3 cordial remainder graph for n ≥ 3.

Proof. Let V (S(Wn)) = {u, ui, vi, wi : 1 ≤ i ≤ n} and E(S(Wn)) = {uwi, wiui,
uivi : 1 ≤ i ≤ n}

⋃
{viui+1 : 1 ≤ i ≤ n − 1}

⋃
{vnu1}. Therefore S(Wn) is of

order 3n + 1 and size 4n. Define g : V (S(Wn))→ S3 as follows:
Case 1. n ≡ 0 (mod 6).
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Let n = 6k and k ≥ 1.
g(ui) = d,

g(ui) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k

d if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k

b if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k

c if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k

f if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k

e if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k ,

g(vi) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k

b if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k

d if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k

e if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k

c if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k

f if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k ,

g(wi) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k

c if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k

f if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k

d if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k

e if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k

b if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k .

Here we have vg(a) = vg(b) = vg(c) = vg(e) = vg(f) = 3k, vg(d) = 3k + 1
and eg(0) = eg(1) = 12k. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 2. n ≡ 5 (mod 6).

Let n = 6k + 5 and k ≥ 0. Assign the labels to the vertices u, ui, vi, wi for
1 ≤ i ≤ 6k as in Case (1) and for the remaining vertices assign the following
labels:



226 A. Lourdusamy, S. Jenifer Wency and F. Patrick

g(ui) =



a if i = 6k + 1

d if i = 6k + 2

b if i = 6k + 3

c if i = 6k + 4

f if i = 6k + 5 ,

g(vi) =



a if i = 6k + 1

b if i = 6k + 2

f if i = 6k + 3

e if i = 6k + 4

c if i = 6k + 5 ,

g(wi) =



a if i = 6k + 1

b if i = 6k + 2

c if i = 6k + 3

d if i = 6k + 4

e if i = 6k + 5 .

Here we have vg(a) = vg(b) = vg(c) = vg(d) = 3k + 3, vg(e) = vg(f) = 3k + 2
and eg(0) = eg(1) = 12k + 10. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 3. n ≡ 4 (mod 6).

Let n = 6k + 4 and k ≥ 0. Assign the labels to the vertices u, ui, vi, wi for
1 ≤ i ≤ 6k as in Case (1) and for the remaining vertices assign the following
labels:

g(ui) =


a if i = 6k + 1

c if i = 6k + 2

f if i = 6k + 3

d if i = 6k + 4 ,

g(vi) =


f if i = 6k + 1

b if i = 6k + 2

e if i = 6k + 3

c if i = 6k + 4 ,

g(wi) =


d if i = 6k + 1

b if i = 6k + 2

a if i = 6k + 3

e if i = 6k + 4 .

Here we have vg(a) = vg(b) = vg(c) = vg(e) = vg(f) = 3k + 2, vg(d) = 3k + 3
and eg(0) = eg(1) = 12k + 8. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 4. n ≡ 3 (mod 6).

Let n = 6k + 3 and k ≥ 0. Assign the labels to the vertices u, ui, vi, wi for
1 ≤ i ≤ 6k as in Case (1) and for the remaining vertices assign the following
labels:

g(ui) =


a if i = 6k + 1

d if i = 6k + 2

e if i = 6k + 3 ,

g(vi) =


b if i = 6k + 1

c if i = 6k + 2

f if i = 6k + 3 ,

g(wi) =


b if i = 6k + 1

c if i = 6k + 2

e if i = 6k + 3 .

Here we have vg(b) = vg(c) = vg(d) = vg(e) = 3k + 2, vg(a) = vg(f) = 3k + 1
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and eg(0) = eg(1) = 12k + 6. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 5. n ≡ 2 (mod 6).

Let n = 6k + 2 and k ≥ 1. Assign the labels to the vertices u, ui, vi, wi for
1 ≤ i ≤ 6k as in Case (i) and for the remaining vertices assign the following
labels:

g(ui) =

{
a if i = 6k + 1

f if i = 6k + 2 ,
g(vi) =

{
b if i = 6k + 1

c if i = 6k + 2 ,

g(wi) =

{
e if i = 6k + 1

a if i = 6k + 2 .

Here we have vg(b) = vg(c) = vg(d) = vg(e) = vg(f) = 3k + 1, vg(a) = 3k + 2
and eg(0) = eg(1) = 12k + 4. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 6. n ≡ 1 (mod 6).

Let n = 6k + 1 and k ≥ 1. Assign the labels to the vertices u, ui, vi, wi for
1 ≤ i ≤ 6k as in Case (1), except for the vertices u6k+1, v6k+1, w6k+1 are labeled
by b, f, e respectively. Here we have vg(a) = vg(c) = 3k, vg(b) = vg(d) = vg(e) =
vg(f) = 3k + 1 and eg(0) = eg(1) = 12k + 2. Therefore |vg(i) − vg(j)| ≤ 1 for
i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.

Thus g is a group S3 cordial remainder labeling. Hence S(Wn) is a group S3

cordial remainder graph for n ≥ 3. �

Example 2.4. A group S3 cordial remainder labeling of S(W8) is given in Figure
2.
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Theorem 2.5. S(Bn,n) is a group S3 cordial remainder graph for every n.

Proof. Let V (S(Bn,n)) = {ui, vi, xi, yi : 1 ≤ i ≤ n}
⋃
{u, v, w} and E(S(Bn,n)) =

{uw,wv}
⋃
{uxi, xiui, vyi, yivi : 1 ≤ i ≤ n}. Therefore G is of order 4n + 3 and

size 4n + 2. Define g : V (S(Bn,n))→ S3 as follows:
g(u) = a, g(w) = b, g(v) = d,
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g(xi) =


f if i ≡ 1 (mod 3) and 1 ≤ i ≤ n

c if i ≡ 2 (mod 3) and 1 ≤ i ≤ n

d if i ≡ 0 (mod 3) and 1 ≤ i ≤ n ,

g(ui) =


b if i ≡ 1 (mod 3) and 1 ≤ i ≤ n

e if i ≡ 2 (mod 3) and 1 ≤ i ≤ n

f if i ≡ 0 (mod 3) and 1 ≤ i ≤ n ,

g(yi) =


e if i ≡ 1 (mod 3) and 1 ≤ i ≤ n

a if i ≡ 2 (mod 3) and 1 ≤ i ≤ n

b if i ≡ 0 (mod 3) and 1 ≤ i ≤ n ,

g(vi) =


c if i ≡ 1 (mod 3) and 1 ≤ i ≤ n

d if i ≡ 2 (mod 3) and 1 ≤ i ≤ n

a if i ≡ 0 (mod 3) and 1 ≤ i ≤ n .

Nature of n vg(a) vg(b) vg(c) vg(d) vg(e) vg(f) eg(0) eg(1)

3k + 1 (k ≥ 0) 2k − 1 2k 2k − 1 2k − 1 2k − 1 2k − 1 6k + 3 6k + 3

3k + 2 (k ≥ 0) 2k + 2 2k + 2 2k + 2 2k + 2 2k + 2 2k + 1 6k + 5 6k + 5

3k (k ≥ 1) 2k + 1 2k + 1 2k 2k + 1 2k 2k 6k + 1 6k + 1

Table 2

From Table 2, it is easy to verify that |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1. Therefore g is a group S3 cordial remainder labeling.

�

Example 2.6. A group S3 cordial remainder labeling of S(B3,3) is given in
Figure 3.
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Theorem 2.7. S(Cn �K1) is a group S3 cordial remainder graph for n ≥ 3.

Proof. Let G = S(Cn � K1). Let V (G) = {ui, vi, xi, yi : 1 ≤ i ≤ n} and
E(G) = {xnu1}

⋃
{uixi, uiyi, yivi : 1 ≤ i ≤ n}

⋃
{xiui+1 : 1 ≤ i ≤ n − 1}.

Therefore G is of order 4n and size 4n. Define g : V (G)→ S3 as follows:
Case 1. n ≡ 0 (mod 3).
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g(ui) =


a if i ≡ 1 (mod 3) and 1 ≤ i ≤ n

b if i ≡ 2 (mod 3) and 1 ≤ i ≤ n

d if i ≡ 0 (mod 3) and 1 ≤ i ≤ n ,

g(xi) =


e if i ≡ 1 (mod 3) and 1 ≤ i ≤ n

b if i ≡ 2 (mod 3) and 1 ≤ i ≤ n

f if i ≡ 0 (mod 3) and 1 ≤ i ≤ n ,

g(vi) =


c if i ≡ 1 (mod 3) and 1 ≤ i ≤ n

d if i ≡ 2 (mod 3) and 1 ≤ i ≤ n

e if i ≡ 0 (mod 3) and 1 ≤ i ≤ n ,

g(yi) =


f if i ≡ 1 (mod 3) and 1 ≤ i ≤ n

a if i ≡ 2 (mod 3) and 1 ≤ i ≤ n

c if i ≡ 0 (mod 3) and 1 ≤ i ≤ n .

Here we have vg(a) = vg(b) = vg(c) = vg(d) = vg(e) = vg(f) = 2k and eg(0) =
eg(1) = 6k. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.
Case 2. n ≡ 1 (mod 3).

Let n = 3k + 1 and k ≥ 1. Assign the labels to the vertices ui, xi, vi, yi for
1 ≤ i ≤ 6k as in Case (1) and for the remaining vertices assign the following
labels: g(u3k+1) = a; g(x3k+1) = e; g(v3k+1) = c; g(y3k+1) = f . Here we have
vg(a) = vg(c) = vg(e) = vg(f) = 2k + 1, vg(b) = vg(d) = 2k and eg(0) = eg(1) =
6k + 2. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.
Case 3. n ≡ 2 (mod 3).

Let n = 3k + 2 and k ≥ 1. Assign the labels to the vertices ui, xi, vi, yi for
1 ≤ i ≤ 6k as in Case (1) and for the remaining vertices assign the following
labels: g(u3k+1) = a; g(u3k+2) = d; g(x3k+1) = c; g(x3k+2) = b; g(v3k+1) =
f ; g(v3k+2) = e; g(y3k+1) = b; g(y3k+2) = a. Here we have vg(c) = vg(d) =
vg(e) = vg(f) = 2k + 1, vg(a) = vg(b) = 2k + 2 and eg(0) = eg(1) = 6k + 4.
Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.

Therefore g is a group S3 cordial remainder labeling. Hence subdivision of
crown S(Cn �K1) is a group S3 cordial remainder graph for n ≥ 3.

�

Example 2.8. A group S3 cordial remainder labeling of S(C5�K1) is given in
Figure 4.

Corollary 2.9. S(Pn �K1) is a group S3 cordial remainder graph for every n.

Proof. Let V (S(Pn �K1)) = {ui, vi, yi : 1 ≤ i ≤ n}
⋃
{xi : 1 ≤ i ≤ n − 1} and

E(S(Pn �K1)) = {uiyi, yivi : 1 ≤ i ≤ n}
⋃
{uixi, xiui+1 : 1 ≤ i ≤ n − 1}. We

define g : V (S(Pn �K1))→ S3 as follows.
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For n = 1, we assign the labels a, c, f to the vertices u1, y1, v1 respectively.
Clearly S(P1 � K1) is a group S3 cordial remainder graph. For n = 2, we as-
sign the labels a, d, c, b, a, f, e to the vertices u1, u2, x1, y1, y2, v1, v2 respectively.
Clearly S(P2 �K1) is a group S3 cordial remainder graph.

For n ≥ 3, the subdivision of comb graph S(Pn�K1) is obtained by removing
the edges unxn and xnu1 in Theorem 2.7. Then we use the same labeling
techniques as in Theorem 2.7. Clearly g is a group S3 cordial remainder labeling
for n ≥ 3.

Hence the subdivision of comb graph S(Pn � K1) is a group S3 cordial re-
mainder graph for every n.

�

Theorem 2.10. S(Fn) is a group S3 cordial remainder graph for n ≥ 2.

Proof. Let V (S(Fn)) = {u, ui, wi : 1 ≤ i ≤ n}
⋃
{vi : 1 ≤ i ≤ n − 1} and

E(S(Fn)) = {uwi, wiui, uivi : 1 ≤ i ≤ n}
⋃
{viui+1 : 1 ≤ i ≤ n − 1}. Therefore

S(Fn) is of order 3n + 1 and size 4n− 2. Define g : V (S(Fn))→ S3 as follows:
Case 1. n = 2.

g(u) = d, g(v1) = f,

g(ui) =

{
a if i = 1

b if i = 2 ,
g(wi) =

{
c if i = 1

e if i = 2 .

It is easy to verify that g is a group S3 cordial remainder graph.
Case 2. n = 3.

g(u) = d,

g(ui) =


a if i = 1

d if i = 2

e if i = 3 ,

g(wi) =


f if i = 1

c if i = 2

e if i = 3 ,

g(vi) =

{
b if i = 1

c if i = 2 .
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It is easy to verify that g is a group S3 cordial remainder graph.
Case 3. n = 4.

g(u) = d,

g(ui) =


a if i = 1

c if i = 2

f if i = 3

d if i = 4 ,

g(wi) =


c if i = 1

b if i = 2

a if i = 3

e if i = 4 ,

g(vi) =


f if i = 1

b if i = 2

e if i = 3 .
It is easy to verify that g is a group S3 cordial remainder graph.
Case 4. n = 5.

g(u) = d;

g(ui) =



a if i = 1

d if i = 2

b if i = 3

c if i = 4

f if i = 5 ;

g(wi) =



a if i = 1

b if i = 2

c if i = 3

d if i = 4

e if i = 5 ;

g(vi) =


a if i = 1

b if i = 2

f if i = 3

e if i = 4 .
It is easy to verify that g is a group S3 cordial remainder graph.
Case 5. n ≥ 6.
Subcase 5.1. n ≡ 0 (mod 6).

Let n = 6k and k ≥ 1.
g(u) = f,

g(ui) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k

d if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k

b if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k

c if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k

f if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k

e if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k ,
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g(wi) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k

c if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k

f if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k

d if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k

e if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k

b if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k ,

g(vi) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k

b if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k

d if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k

e if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k

c if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k

f if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k .

Here we have vg(a) = vg(b) = vg(c) = vg(e) = vg(d) = vg(f) = 3k and eg(0) =
eg(1) = 12k−1. Therefore |vg(i)−vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)−eg(1)| ≤ 1.
Subcase 5.2. n ≡ 5 (mod 6).

Let n = 6k + 5 and k ≥ 1. Assign the labels to the vertices u, ui, wi, vi for
1 ≤ i ≤ 6k as in Subcase (5.1) and for the remaining vertices assign the following
labels:

g(ui) =



a if i = 6k + 1

d if i = 6k + 2

b if i = 6k + 3

e if i = 6k + 4

b if i = 6k + 5 ,

g(wi) =



c if i = 6k + 1

b if i = 6k + 2

f if i = 6k + 3

c if i = 6k + 4

a if i = 6k + 5 ,

g(vi) =


e if i = 6k + 1

a if i = 6k + 2

d if i = 6k + 3

f if i = 6k + 4 .

Here we have vg(a) = vg(b) = vg(f) = 3k + 3, vg(c) = vg(d) = vg(e) = 3k + 2
and eg(0) = eg(1) = 12k + 9. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Subcase 5.3. n ≡ 4 (mod 6).

Let n = 6k + 4 and k ≥ 1. Assign the labels to the vertices u, ui, wi, vi for
1 ≤ i ≤ 6k as in Subcase (5.1) and for the remaining vertices assign the following
labels:

g(ui) =


a if i = 6k + 1

d if i = 6k + 2

b if i = 6k + 3

e if i = 6k + 4 ,

g(wi) =


c if i = 6k + 1

b if i = 6k + 2

f if i = 6k + 3

c if i = 6k + 4 ,
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g(vi) =


e if i = 6k + 1

a if i = 6k + 2

d if i = 6k + 3 .

Here we have vg(a) = vg(b) = vg(c) = vg(d) = vg(e) = vg(f) = 3k + 2 and
eg(0) = eg(1) = 12k + 7. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)−
eg(1)| ≤ 1.
Subcase 5.4. n ≡ 3 (mod 6).

Let n = 6k + 3 and k ≥ 1. Assign the labels to the vertices u, ui, wi, vi for
1 ≤ i ≤ 6k as in Subcase (5.1) and for the remaining vertices assign the following
labels:

g(ui) =


a if i = 6k + 1

d if i = 6k + 2

b if i = 6k + 3 ,

g(wi) =


c if i = 6k + 1

b if i = 6k + 2

f if i = 6k + 3 ,

g(vi) =

{
e if i = 6k + 1

a if i = 6k + 2 .

Here we have vg(a) = vg(b) = vg(f) = 3k + 2, vg(c) = vg(d) = vg(e) = 3k + 1
and eg(0) = eg(1) = 12k + 5. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Subcase 5.5. n ≡ 2 (mod 6).

Let n = 6k + 2 and k ≥ 1. Assign the labels to the vertices u, ui, wi, vi for
1 ≤ i ≤ 6k as in Subcase (5.1) and for the remaining vertices assign the following
labels:

g(ui) =

{
a if i = 6k + 1

d if i = 6k + 2 ,
g(wi) =

{
c if i = 6k + 1

b if i = 6k + 2 ,

g(vi) =
{
e if i = 6k + 1 .

Here we have vg(a) = vg(b) = vg(c) = vg(d) = vg(e) = vg(f) = 3k + 1 and
eg(0) = eg(1) = 12k + 3. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)−
eg(1)| ≤ 1.
Subcase 5.6. n ≡ 1 (mod 6).

Let n = 6k + 1 and k ≥ 1. Assign the labels to the vertices u, ui, vi for
1 ≤ i ≤ 6k as in Subcase (5.1), except for the vertices u6k+1, w6k+1 are labeled
by b, a respectively. Here we have vg(a) = vg(b) = vg(f) = 3k + 1, vg(c) =
vg(d) = vg(e) = 3k and eg(0) = eg(1) = 12k + 1. Therefore |vg(i) − vg(j)| ≤ 1
for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.

Thus g is a group S3 cordial remainder labeling. Hence, S(Fn) is a group S3

cordial remainder graph for n ≥ 2. �

Example 2.11. A group S3 cordial remainder labeling of S(F4) is given in
Figure 5.
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Theorem 2.12. S(Ln) is a group S3 cordial remainder graph for every n.

Proof. Let u1, u2, · · · , un, v1, v2, · · · , vn be the vertices of the ladder Ln. Let
V (S(Ln)) = {ui, vi, zi : 1 ≤ i ≤ n}

⋃
{xi, yi : 1 ≤ i ≤ n − 1} and E(S(Ln)) =

{uixi, viyi, uizi, zivi, : 1 ≤ i ≤ n}
⋃
{xiui+1, yivi+1 : 1 ≤ i ≤ n − 1}. Therefore

S(Ln) is of order 5n− 2 and size 6n− 2. Define g : V (S(Ln))→ S3 as follows:
Case 1. n ≡ 0 (mod 6).

Let n = 6k and k ≥ 1.

g(ui) =



d if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k

e if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k

a if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k

f if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k

b if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k

c if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k ,

g(vi) =



b if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k

f if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k

c if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k

a if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k

d if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k

e if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k ,

g(xi) =



c if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k

e if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k

b if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k

a if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k

d if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k

f if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k ,
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g(yi) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k

b if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k

f if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k

c if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k

e if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k

d if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k ,

g(zi) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k

b if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k

d if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k

c if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k

f if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k

e if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k .

Here we have vg(a) = vg(b) = vg(c) = vg(e) = 5k, vg(d) = vg(f) = 5k − 1
and eg(0) = eg(1) = 18k − 2. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 2. n ≡ 1 (mod 6).

Let n = 6k + 1 and k ≥ 0. Assign the labels to the vertices ui, vi, xi, yi, zi for
1 ≤ i ≤ 6k as in Case (1), except for the vertices u6k+1, z6k+1, v6k+1, are labeled
by d, a, b respectively. Here we have vg(a) = vg(b) = vg(d) = 5k + 1, vg(c) =
vg(e) = vg(f) = 5k and eg(0) = eg(1) = 18k + 1. Therefore |vg(i) − vg(j)| ≤ 1
for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.
Case 3. n ≡ 2 (mod 6).

Let n = 6k + 2 and k ≥ 0. Assign the labels to the vertices ui, vi, xi, yi, zi
for 1 ≤ i ≤ 6k as in Case (1) and for the remaining vertices assign the following
labels:

g(ui) =

{
d if i = 6k + 1

e if i = 6k + 2 ,
g(vi) =

{
b if i = 6k + 1

f if i = 6k + 2 ,

g(zi) =

{
a if i = 6k + 1

b if i = 6k + 2 ,
g(x6k+1) = c; g(y6k+1) = a.

Here we have vg(a) = vg(b) = 5k + 2, vg(c) = vg(d) = vg(e) = vg(f) = 5k + 1
and eg(0) = eg(1) = 18k + 4. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 4. n ≡ 3 (mod 6).

Let n = 6k + 3 and k ≥ 0. Assign the labels to the vertices ui, vi, xi, yi, zi
for 1 ≤ i ≤ 6k as in Case (1) and for the remaining vertices assign the following
labels:

g(ui) =


d if i = 6k + 1

e if i = 6k + 2

f if i = 6k + 3 ,

g(vi) =


b if i = 6k + 1

f if i = 6k + 2

d if i = 6k + 3 ,
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g(zi) =


a if i = 6k + 1

b if i = 6k + 2

c if i = 6k + 3 ,

g(xi) =

{
c if i = 6k + 1

a if i = 6k + 2 ,

g(yi) =

{
a if i = 6k + 1

e if i = 6k + 2 .

Here we have vg(a) = 5k + 3, vg(b) = vg(c) = vg(d) = vg(e) = vg(f) = 5k + 2
and eg(0) = eg(1) = 18k + 7. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 5. n ≡ 4 (mod 6).

Let n = 6k + 4 and k ≥ 0. Assign the labels to the vertices ui, vi, xi, yi, zi
for 1 ≤ i ≤ 6k as in Case (1) and for the remaining vertices assign the following
labels:

g(ui) =


d if i = 6k + 1

e if i = 6k + 2

f if i = 6k + 3

c if i = 6k + 4 ,

g(vi) =


b if i = 6k + 1

f if i = 6k + 2

d if i = 6k + 3

e if i = 6k + 4 ,

g(zi) =


a if i = 6k + 1

b if i = 6k + 2

c if i = 6k + 3

f if i = 6k + 4 ,

g(xi) =


c if i = 6k + 1

a if i = 6k + 2

d if i = 6k + 3 ,

g(yi) =


a if i = 6k + 1

e if i = 6k + 2

b if i = 6k + 3 .

Here we have vg(a) = vg(b) = vg(c) = vg(d) = vg(e) = vg(f) = 5k + 3 and
eg(0) = eg(1) = 18k + 10. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 6. n ≡ 5 (mod 6).

Let n = 6k + 5 and k ≥ 0. Assign the labels to the vertices ui, vi, xi, yi, zi
for 1 ≤ i ≤ 6k as in Case (1) and for the remaining vertices assign the following
labels:

g(ui) =



d if i = 6k + 1

e if i = 6k + 2

f if i = 6k + 3

c if i = 6k + 4

a if i = 6k + 5 ,

g(vi) =



b if i = 6k + 1

f if i = 6k + 2

d if i = 6k + 3

e if i = 6k + 4

c if i = 6k + 5 ,
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g(zi) =



a if i = 6k + 1

b if i = 6k + 2

c if i = 6k + 3

f if i = 6k + 4

e if i = 6k + 5 ,

g(xi) =


c if i = 6k + 1

a if i = 6k + 2

d if i = 6k + 3

f if i = 6k + 4 ,

g(yi) =


a if i = 6k + 1

e if i = 6k + 2

b if i = 6k + 3

d if i = 6k + 4 .

Here we have vg(a) = vg(c) = vg(d) = vg(e) = vg(f) = 5k + 4, vg(b) = 5k + 3
and eg(0) = eg(1) = 18k + 13. Therefore |vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.

Thus g is a group S3 cordial remainder labeling. Hence, S(Ln) is a group S3

cordial remainder graph every for n. �

Example 2.13. A group S3 cordial remainder labeling of S(L5) is given in
Figure 6.
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Figure 6

References

1. I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin.
23 (1987), 201-207.

2. J.A. Gallian, A Dyamic Survey of Graph Labeling, The Electronic J. Combin. 22 (2019),

# DS6.
3. F. Harary, Graph Theory, Addison-wesley, Reading, Mass, 1972.

4. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S3 cordial remainder labeling,
International Journal of Recent Technology and Engineering 8 (2019), 8276-8281.

5. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S3 cordial remainder labeling for
wheel and snake related graphs, (Submitted for Publication).

6. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S3 cordial remainder labeling for

path and cycle related graphs, (Submitted for Publication).

7. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Some Result on Group S3 cordial re-
mainder graphs, (Submitted for Publication).



238 A. Lourdusamy, S. Jenifer Wency and F. Patrick

8. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs, (Internat

Sympos., Rome, 1966) New York, Gordon and Breach 1967, 349-355.

A. Lourdusamy

Department of Mathematics, St. Xavier’s College (Autonomous), Palayamkottai-627002,
Tamil Nadu, India.

e-mail: lourdusamy15@gmail.com

S. Jenifer Wency

Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University,

Tirunelveli, Tamil Nadu, India.
e-mail: jeniferwency@gmail.com

F. Patrick

Department of Mathematics, St. Xavier’s College (Autonomous), Palayamkottai-627002,

Tamil Nadu, India.
e-mail: patrick881990@gmail.com


