GROUP S_{3} CORDIAL REMAINDER LABELING OF SUBDIVISION OF GRAPHS

A. LOURDUSAMY*, S. JENIFER WENCY AND F. PATRICK

Abstract

Let $G=(V(G), E(G))$ be a graph and let $g: V(G) \rightarrow S_{3}$ be a function. For each edge $x y$ assign the label r where r is the remainder when $o(g(x))$ is divided by $o(g(y))$ or $o(g(y))$ is divided by $o(g(x))$ according as $o(g(x)) \geq o(g(y))$ or $o(g(y)) \geq o(g(x))$. The function g is called a group S_{3} cordial remainder labeling of G if $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ and $\left|e_{g}(1)-e_{g}(0)\right| \leq 1$, where $v_{g}(j)$ denotes the number of vertices labeled with j and $e_{g}(i)$ denotes the number of edges labeled with $i(i=0,1)$. A graph G which admits a group S_{3} cordial remainder labeling is called a group S_{3} cordial remainder graph. In this paper, we prove that subdivision of graphs admit a group S_{3} cordial remainder labeling.

AMS Mathematics Subject Classification : 05C78.

Key words and phrases : Group S_{3} cordial remainder labeling, star, fan graph.

1. Introduction

By a graph we mean fnite, simple and undirected one. The vertex set and the edge set of a graph G are denoted by $V(G)$ and $E(G)$ so that the order and size of G are $|V(G)|$ and $|E(G)|$ respectively. Terms not defined here are taken from Harary [3]. Graph labeling was first introduced in 1960's. Most of the graph labeling trace their origins in the paper presented by Alex Rosa in 1967 [8]. A labeling of a graph is a map that carries the graph elements to the set of numbers, usually to the set of non-negative or positive integers. If the domain is the set of vertices then the labeling is called vertex labeling. If the domain is the set of edges then the labeling is called edge labeling. If the labels are assigned to both vertices and edges then the labeling is called total labeling. The complete survey of graph labeling is in [2]. Cordial labeling is a weaker version of graceful labeling and harmonious labeling introduced by I. Cahit in [1]. Let

[^0]f be a function from the vertices of G to $\{0,1\}$ and for each edge $x y$ assign the label $|f(x)-f(y)| . f$ is called a cordial labeling of G if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Lourdusamy et al. [4] introduced the concept of group S_{3} cordial remainder labeling and they proved path, cycle, star, bistar, complete bipartite, wheel, fan, comb and crown graphs are group S_{3} cordial remainder graphs. In $[5,6,7]$, Lourdusamy et al. discussed that the behaviour of group S_{3} cordial remainder labeling of helm, flower, closed helm, gear, sunflower, triangular snake, quadrilateral snake, square of the path, duplication of a vertex by a new edge in path and cycle graphs, duplication of an edge by a new vertex in path and cycle graphs, total graph of cycle and path graphs, lotus inside a circle, double fan, ladder, slanting ladder and triangular ladder.

Definition 1.1. Let A be a group. The order of $a \in A$ is the least positive integer n such that $a^{n}=e$. We denote the order of a by $o(a)$.
Definition 1.2. Consider the symmetric group S_{3}. Let the elements of S_{3} be e, a, b, c, d, f where

$$
\begin{aligned}
& e=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) a=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \quad b=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) \\
& c=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) d=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \quad f=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

We have $o(e)=1, o(a)=o(b)=o(c)=2, o(d)=o(f)=3$.
Definition 1.3. Let $G=(V(G), E(G))$ be a graph and let $g: V(G) \rightarrow S_{3}$ be a function. For each edge $x y$ assign the label r where r is the remainder when $o(g(x))$ is divided by $o(g(y))$ or $o(g(y))$ is divided by $o(g(x))$ according as $o(g(x)) \geq o(g(y))$ or $o(g(y)) \geq o(g(x))$. The function g is called a group S_{3} cordial remainder labeling of G if $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ and $\left|e_{g}(1)-e_{g}(0)\right| \leq 1$, where $v_{g}(j)$ denotes the number of vertices labeled with j and $e_{g}(i)$ denotes the number of edges labeled with $i(i=0,1)$. A graph G which admits a group S_{3} cordial remainder labeling is called a group S_{3} cordial remainder graph.

In this paper, we prove that subdivision of star, subdivision of bistar, subdivision of wheel, subdivision of comb, subdivision of crown, subdivision of fan and subdivision of ladder admit a group S_{3} cordial remainder labeling.

We use the following definitions in the subsequent sections.

Definition 1.4. A bipartite graph is a graph whose vertex set $V(G)$ can be partitioned into two subsets V_{1} and V_{2} such that every edge of G joins a vertex of V_{1} with a vertex of V_{2}. If every vertex of V_{1} is adjacent with every vertex of V_{2}, then G is a complete bipartite graph. If $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$, then the complete bipartite graph is denoted by $K_{m, n}$.

Definition 1.5. $K_{1, n}$ is called a Star.
Definition 1.6. The Bistar $B_{m, n}$ is the graph obtained by joining the two central vertices of $K_{1, m}$ and $K_{1, n}$.

Definition 1.7. The Cartesian product $G_{1} \times G_{2}$ of two graphs is defined to be the graph with vertex set $V_{1} \times V_{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ if either $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} or $u_{2}=v_{2}$ and u_{1} is adjacent to v_{1}.

Definition 1.8. The graph $L_{n}=P_{n} \times P_{2}$ is called a Ladder.
Definition 1.9. The join of two graphs G_{1} and G_{2} is denoted by $G_{1}+G_{2}$ and whose vertex set is $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set is $E\left(G_{1}+G_{2}\right)=$ $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v: u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$.
Definition 1.10. The graph $W_{n}=C_{n}+K_{1}$ is called a wheel. In a Wheel, a vertex of degree 3 on the cycle is called a rim vertex. A vertex which is adjacent to all the rim vertices is called the central vertex. The edges with one end incident with a rim vertex and the other incident with the central vertex are called spokes.

Definition 1.11. The graph $F_{n}=K_{1}+P_{n}$ is called a fan.
Definition 1.12. The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} (with p_{1} vertices) and p_{1} copies of G_{2} and then joining the $i^{t h}$ vertex of G_{1} with an edge to every vertex in the $i^{t h}$ copy of G_{2}. The graph $P_{n} \odot K_{1}$ is called a Comb. The graph $C_{n} \odot K_{1}$ is called a Crown.
Definition 1.13. The subdivision graph $S(G)$ is obtained from G by subdividing each edge of G with a vertex.

2. Main results

Theorem 2.1. $S\left(K_{1, n}\right)$ is a group S_{3} cordial remainder graph for every n.
Proof. Let $G=S\left(K_{1, n}\right)$. Let $V(G)=\left\{u, v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and $E(G)=$ $\left\{u v_{i}, v_{i} u_{i}: 1 \leq i \leq n\right\}$. Therefore G is of order $2 n+1$ and size $2 n$. Define $g: V(G) \rightarrow S_{3}$ as follows:
Case 1. n is odd.

$$
\begin{aligned}
& g(u)=a, \\
& g\left(v_{i}\right)= \begin{cases}b & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\
e & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\
f & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\
d & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\
a & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases}
\end{aligned}
$$

$$
g\left(u_{i}\right)= \begin{cases}d & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\ a & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\ c & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\ b & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\ e & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\ f & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases}
$$

Case 2. n is even.

$$
\begin{aligned}
& g(u)=a, \\
& g\left(v_{i}\right)= \begin{cases}b & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\
e & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\
d & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\
f & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\
a & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases} \\
& g\left(u_{i}\right)= \begin{cases}d & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\
f & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\
a & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\
b & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\
e & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases}
\end{aligned}
$$

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$	$e_{g}(0)$	$e_{g}(1)$
$6 k(k \geq 1)$	$2 k+1$	$2 k$	$6 k$	$6 k$				
$6 k+1(k \geq 0)$	$2 k+1$	$2 k+1$	$2 k$	$2 k+1$	$2 k$	$2 k$	$6 k+1$	$6 k+1$
$6 k+2(k \geq 0)$	$2 k+1$	$2 k+1$	$2 k+1$	$2 k+1$	$2 k$	$2 k+1$	$6 k+2$	$6 k+2$
$6 k+3(k \geq 0)$	$2 k+2$	$2 k+1$	$6 k+3$	$6 k+3$				
$6 k+4(k \geq 0)$	$2 k+2$	$2 k+2$	$2 k+1$	$2 k+2$	$2 k+1$	$2 k+1$	$6 k+4$	$6 k+4$
$6 k+5(k \geq 0)$	$2 k+2$	$2 k+1$	$6 k+5$	$6 k+5$				

TABLE 1

From Table 1, it is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Therefore g is a group S_{3} cordial remainder labeling.

Example 2.2. A group S_{3} cordial remainder labeling of $S\left(K_{1,7}\right)$ is given in Figure 1.

Theorem 2.3. $S\left(W_{n}\right)$ is a group S_{3} cordial remainder graph for $n \geq 3$.
Proof. Let $V\left(S\left(W_{n}\right)\right)=\left\{u, u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(W_{n}\right)\right)=\left\{u w_{i}, w_{i} u_{i}\right.$, $\left.u_{i} v_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \bigcup\left\{v_{n} u_{1}\right\}$. Therefore $S\left(W_{n}\right)$ is of order $3 n+1$ and size $4 n$. Define $g: V\left(S\left(W_{n}\right)\right) \rightarrow S_{3}$ as follows:
Case 1. $n \equiv 0(\bmod 6)$.

Figure 1

Let $n=6 k$ and $k \geq 1$.

$$
\begin{aligned}
& g\left(u_{i}\right)=d, \\
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k,\end{cases} \\
& g\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k,\end{cases} \\
& g\left(w_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k .\end{cases}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(e)=v_{g}(f)=3 k, v_{g}(d)=3 k+1$ and $e_{g}(0)=e_{g}(1)=12 k$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 2. $n \equiv 5(\bmod 6)$.
Let $n=6 k+5$ and $k \geq 0$. Assign the labels to the vertices u, u_{i}, v_{i}, w_{i} for $1 \leq i \leq 6 k$ as in Case (1) and for the remaining vertices assign the following labels:

$$
\begin{aligned}
& g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2 \\
b & \text { if } i=6 k+3 \\
c & \text { if } i=6 k+4 \\
f & \text { if } i=6 k+5,
\end{array} g\left(w_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3 \\
e & \text { if } i=6 k+4 \\
c & \text { if } i=6 k+5\end{cases} \right. \\
& \begin{array}{ll}
a & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
c & \text { if } i=6 k+3 \\
d & \text { if } i=6 k+4 \\
e & \text { if } i=6 k+5
\end{array}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=3 k+3, v_{g}(e)=v_{g}(f)=3 k+2$ and $e_{g}(0)=e_{g}(1)=12 k+10$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 3. $n \equiv 4(\bmod 6)$.
Let $n=6 k+4$ and $k \geq 0$. Assign the labels to the vertices u, u_{i}, v_{i}, w_{i} for $1 \leq i \leq 6 k$ as in Case (1) and for the remaining vertices assign the following labels:

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
c & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3 \\
d & \text { if } i=6 k+4\end{cases} \\
& g\left(w_{i}\right)= \begin{cases}d & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
a & \text { if } i=6 k+3 \\
e & \text { if } i=6 k+4\end{cases}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(e)=v_{g}(f)=3 k+2, v_{g}(d)=3 k+3$ and $e_{g}(0)=e_{g}(1)=12 k+8$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 4. $n \equiv 3(\bmod 6)$.
Let $n=6 k+3$ and $k \geq 0$. Assign the labels to the vertices u, u_{i}, v_{i}, w_{i} for $1 \leq i \leq 6 k$ as in Case (1) and for the remaining vertices assign the following labels:

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2 \\
e & \text { if } i=6 k+3\end{cases} \\
& g\left(w_{i}\right)= \begin{cases}b & \text { if } i=6 k+1 \\
c & \text { if } i=6 k+2 \\
e & \text { if } i=6 k+3\end{cases}
\end{aligned}
$$

Here we have $v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=3 k+2, v_{g}(a)=v_{g}(f)=3 k+1$
and $e_{g}(0)=e_{g}(1)=12 k+6$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 5. $n \equiv 2(\bmod 6)$.
Let $n=6 k+2$ and $k \geq 1$. Assign the labels to the vertices u, u_{i}, v_{i}, w_{i} for $1 \leq i \leq 6 k$ as in Case (i) and for the remaining vertices assign the following labels:

$$
\begin{aligned}
& g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
f & \text { if } i=6 k+2
\end{array}, \quad g\left(v_{i}\right)= \begin{cases}b & \text { if } i=6 k+1 \\
c & \text { if } i=6 k+2,\end{cases} \right. \\
& g\left(w_{i}\right)= \begin{cases}e & \text { if } i=6 k+1 \\
a & \text { if } i=6 k+2\end{cases}
\end{aligned}
$$

Here we have $v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=3 k+1, v_{g}(a)=3 k+2$ and $e_{g}(0)=e_{g}(1)=12 k+4$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 6. $n \equiv 1(\bmod 6)$.
Let $n=6 k+1$ and $k \geq 1$. Assign the labels to the vertices u, u_{i}, v_{i}, w_{i} for $1 \leq i \leq 6 k$ as in Case (1), except for the vertices $u_{6 k+1}, v_{6 k+1}, w_{6 k+1}$ are labeled by b, f, e respectively. Here we have $v_{g}(a)=v_{g}(c)=3 k, v_{g}(b)=v_{g}(d)=v_{g}(e)=$ $v_{g}(f)=3 k+1$ and $e_{g}(0)=e_{g}(1)=12 k+2$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.

Thus g is a group S_{3} cordial remainder labeling. Hence $S\left(W_{n}\right)$ is a group S_{3} cordial remainder graph for $n \geq 3$.

Example 2.4. A group S_{3} cordial remainder labeling of $S\left(W_{8}\right)$ is given in Figure 2.

Figure 2

Theorem 2.5. $S\left(B_{n, n}\right)$ is a group S_{3} cordial remainder graph for every n.
Proof. Let $V\left(S\left(B_{n, n}\right)\right)=\left\{u_{i}, v_{i}, x_{i}, y_{i}: 1 \leq i \leq n\right\} \bigcup\{u, v, w\}$ and $E\left(S\left(B_{n, n}\right)\right)=$ $\{u w, w v\} \bigcup\left\{u x_{i}, x_{i} u_{i}, v y_{i}, y_{i} v_{i}: 1 \leq i \leq n\right\}$. Therefore G is of order $4 n+3$ and size $4 n+2$. Define $g: V\left(S\left(B_{n, n}\right)\right) \rightarrow S_{3}$ as follows:

$$
g(u)=a, g(w)=b, g(v)=d
$$

$$
\begin{aligned}
& g\left(x_{i}\right)= \begin{cases}f & \text { if } i \equiv 1(\bmod 3) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 2(\bmod 3) \text { and } 1 \leq i \leq n \\
d & \text { if } i \equiv 0(\bmod 3) \text { and } 1 \leq i \leq n\end{cases} \\
& g\left(u_{i}\right)= \begin{cases}b & \text { if } i \equiv 1(\bmod 3) \text { and } 1 \leq i \leq n \\
e & \text { if } i \equiv 2(\bmod 3) \text { and } 1 \leq i \leq n \\
f & \text { if } i \equiv 0(\bmod 3) \text { and } 1 \leq i \leq n\end{cases} \\
& g\left(y_{i}\right)= \begin{cases}e & \text { if } i \equiv 1(\bmod 3) \text { and } 1 \leq i \leq n \\
a & \text { if } i \equiv 2(\bmod 3) \text { and } 1 \leq i \leq n \\
b & \text { if } i \equiv 0(\bmod 3) \text { and } 1 \leq i \leq n\end{cases} \\
& g\left(v_{i}\right)= \begin{cases}c & \text { if } i \equiv 1(\bmod 3) \text { and } 1 \leq i \leq n \\
d & \text { if } i \equiv 2(\bmod 3) \text { and } 1 \leq i \leq n \\
a & \text { if } i \equiv 0(\bmod 3) \text { and } 1 \leq i \leq n\end{cases}
\end{aligned}
$$

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$	$e_{g}(0)$	$e_{g}(1)$
$3 k+1(k \geq 0)$	$2 k-1$	$2 k$	$2 k-1$	$2 k-1$	$2 k-1$	$2 k-1$	$6 k+3$	$6 k+3$
$3 k+2(k \geq 0)$	$2 k+2$	$2 k+1$	$6 k+5$	$6 k+5$				
$3 k(k \geq 1)$	$2 k+1$	$2 k+1$	$2 k$	$2 k+1$	$2 k$	$2 k$	$6 k+1$	$6 k+1$

TABLE 2

From Table 2, it is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Therefore g is a group S_{3} cordial remainder labeling.

Example 2.6. A group S_{3} cordial remainder labeling of $S\left(B_{3,3}\right)$ is given in Figure 3.

Figure 3

Theorem 2.7. $S\left(C_{n} \odot K_{1}\right)$ is a group S_{3} cordial remainder graph for $n \geq 3$.
Proof. Let $G=S\left(C_{n} \odot K_{1}\right)$. Let $V(G)=\left\{u_{i}, v_{i}, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E(G)=\left\{x_{n} u_{1}\right\} \bigcup\left\{u_{i} x_{i}, u_{i} y_{i}, y_{i} v_{i}: 1 \leq i \leq n\right\} \bigcup\left\{x_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$. Therefore G is of order $4 n$ and size $4 n$. Define $g: V(G) \rightarrow S_{3}$ as follows:
Case 1. $n \equiv 0(\bmod 3)$.

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 3) \text { and } 1 \leq i \leq n \\
b & \text { if } i \equiv 2(\bmod 3) \text { and } 1 \leq i \leq n \\
d & \text { if } i \equiv 0(\bmod 3) \text { and } 1 \leq i \leq n\end{cases} \\
& g\left(x_{i}\right)= \begin{cases}e & \text { if } i \equiv 1(\bmod 3) \text { and } 1 \leq i \leq n \\
b & \text { if } i \equiv 2(\bmod 3) \text { and } 1 \leq i \leq n \\
f & \text { if } i \equiv 0(\bmod 3) \text { and } 1 \leq i \leq n\end{cases} \\
& g\left(v_{i}\right)= \begin{cases}c & \text { if } i \equiv 1(\bmod 3) \text { and } 1 \leq i \leq n \\
d & \text { if } i \equiv 2(\bmod 3) \text { and } 1 \leq i \leq n \\
e & \text { if } i \equiv 0(\bmod 3) \text { and } 1 \leq i \leq n\end{cases} \\
& g\left(y_{i}\right)= \begin{cases}f & \text { if } i \equiv 1(\bmod 3) \text { and } 1 \leq i \leq n \\
a & \text { if } i \equiv 2(\bmod 3) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 0(\bmod 3) \text { and } 1 \leq i \leq n\end{cases}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=2 k$ and $e_{g}(0)=$ $e_{g}(1)=6 k$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 2. $n \equiv 1(\bmod 3)$.
Let $n=3 k+1$ and $k \geq 1$. Assign the labels to the vertices $u_{i}, x_{i}, v_{i}, y_{i}$ for $1 \leq i \leq 6 k$ as in Case (1) and for the remaining vertices assign the following labels: $g\left(u_{3 k+1}\right)=a ; g\left(x_{3 k+1}\right)=e ; g\left(v_{3 k+1}\right)=c ; g\left(y_{3 k+1}\right)=f$. Here we have $v_{g}(a)=v_{g}(c)=v_{g}(e)=v_{g}(f)=2 k+1, v_{g}(b)=v_{g}(d)=2 k$ and $e_{g}(0)=e_{g}(1)=$ $6 k+2$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 3. $n \equiv 2(\bmod 3)$.
Let $n=3 k+2$ and $k \geq 1$. Assign the labels to the vertices $u_{i}, x_{i}, v_{i}, y_{i}$ for $1 \leq i \leq 6 k$ as in Case (1) and for the remaining vertices assign the following labels: $g\left(u_{3 k+1}\right)=a ; g\left(u_{3 k+2}\right)=d ; g\left(x_{3 k+1}\right)=c ; g\left(x_{3 k+2}\right)=b ; g\left(v_{3 k+1}\right)=$ $f ; g\left(v_{3 k+2}\right)=e ; g\left(y_{3 k+1}\right)=b ; g\left(y_{3 k+2}\right)=a$. Here we have $v_{g}(c)=v_{g}(d)=$ $v_{g}(e)=v_{g}(f)=2 k+1, v_{g}(a)=v_{g}(b)=2 k+2$ and $e_{g}(0)=e_{g}(1)=6 k+4$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.

Therefore g is a group S_{3} cordial remainder labeling. Hence subdivision of crown $S\left(C_{n} \odot K_{1}\right)$ is a group S_{3} cordial remainder graph for $n \geq 3$.

Example 2.8. A group S_{3} cordial remainder labeling of $S\left(C_{5} \odot K_{1}\right)$ is given in Figure 4.

Corollary 2.9. $S\left(P_{n} \odot K_{1}\right)$ is a group S_{3} cordial remainder graph for every n.
Proof. Let $V\left(S\left(P_{n} \odot K_{1}\right)\right)=\left\{u_{i}, v_{i}, y_{i}: 1 \leq i \leq n\right\} \bigcup\left\{x_{i}: 1 \leq i \leq n-1\right\}$ and $E\left(S\left(P_{n} \odot K_{1}\right)\right)=\left\{u_{i} y_{i}, y_{i} v_{i}: 1 \leq i \leq n\right\} \bigcup\left\{u_{i} x_{i}, x_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$. We define $g: V\left(S\left(P_{n} \odot K_{1}\right)\right) \rightarrow S_{3}$ as follows.

Figure 4

For $n=1$, we assign the labels a, c, f to the vertices u_{1}, y_{1}, v_{1} respectively. Clearly $S\left(P_{1} \odot K_{1}\right)$ is a group S_{3} cordial remainder graph. For $n=2$, we assign the labels a, d, c, b, a, f, e to the vertices $u_{1}, u_{2}, x_{1}, y_{1}, y_{2}, v_{1}, v_{2}$ respectively. Clearly $S\left(P_{2} \odot K_{1}\right)$ is a group S_{3} cordial remainder graph.

For $n \geq 3$, the subdivision of comb graph $S\left(P_{n} \odot K_{1}\right)$ is obtained by removing the edges $u_{n} x_{n}$ and $x_{n} u_{1}$ in Theorem 2.7. Then we use the same labeling techniques as in Theorem 2.7. Clearly g is a group S_{3} cordial remainder labeling for $n \geq 3$.

Hence the subdivision of comb graph $S\left(P_{n} \odot K_{1}\right)$ is a group S_{3} cordial remainder graph for every n.

Theorem 2.10. $S\left(F_{n}\right)$ is a group S_{3} cordial remainder graph for $n \geq 2$.
Proof. Let $V\left(S\left(F_{n}\right)\right)=\left\{u, u_{i}, w_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i}: 1 \leq i \leq n-1\right\}$ and $E\left(S\left(F_{n}\right)\right)=\left\{u w_{i}, w_{i} u_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$. Therefore $S\left(F_{n}\right)$ is of order $3 n+1$ and size $4 n-2$. Define $g: V\left(S\left(F_{n}\right)\right) \rightarrow S_{3}$ as follows: Case 1. $n=2$.

$$
\begin{aligned}
& g(u)=d, g\left(v_{1}\right)=f, \\
& g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
b & \text { if } i=2,
\end{array} \quad g\left(w_{i}\right)= \begin{cases}c & \text { if } i=1 \\
e & \text { if } i=2 .\end{cases} \right.
\end{aligned}
$$

It is easy to verify that g is a group S_{3} cordial remainder graph.
Case 2. $n=3$.

$$
\begin{aligned}
& g(u)=d, \\
& g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
d & \text { if } i=2 \\
e & \text { if } i=3,
\end{array} \quad g\left(w_{i}\right)= \begin{cases}f & \text { if } i=1 \\
c & \text { if } i=2 \\
e & \text { if } i=3,\end{cases} \right. \\
& g\left(v_{i}\right)= \begin{cases}b & \text { if } i=1 \\
c & \text { if } i=2\end{cases}
\end{aligned}
$$

It is easy to verify that g is a group S_{3} cordial remainder graph.
Case 3. $n=4$.

$$
\begin{aligned}
& g(u)=d, \\
& g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
c & \text { if } i=2 \\
f & \text { if } i=3 \\
d & \text { if } i=4
\end{array}, \quad g\left(w_{i}\right)= \begin{cases}c & \text { if } i=1 \\
b & \text { if } i=2 \\
a & \text { if } i=3 \\
e & \text { if } i=4\end{cases} \right. \\
& g\left(v_{i}\right)= \begin{cases}f & \text { if } i=1 \\
b & \text { if } i=2 \\
e & \text { if } i=3\end{cases}
\end{aligned}
$$

It is easy to verify that g is a group S_{3} cordial remainder graph.
Case 4. $n=5$.

$$
\begin{aligned}
& g(u)=d ; \\
& g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
d & \text { if } i=2 \\
b & \text { if } i=3 \\
c & \text { if } i=4 \\
f & \text { if } i=5 ;
\end{array} \quad g\left(w_{i}\right)= \begin{cases}a & \text { if } i=1 \\
b & \text { if } i=2 \\
c & \text { if } i=3 \\
d & \text { if } i=4\end{cases} \right. \\
& g\left(v_{i}\right)= \begin{cases}a & \text { if } i=1 \\
b & \text { if } i=2 \\
f & \text { if } i=3 \\
e & \text { if } i=4\end{cases}
\end{aligned}
$$

It is easy to verify that g is a group S_{3} cordial remainder graph.
Case 5. $n \geq 6$.
Subcase 5.1. $n \equiv 0(\bmod 6)$.
Let $n=6 k$ and $k \geq 1$.

$$
\begin{aligned}
& g(u)=f, \\
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases}
\end{aligned}
$$

$$
\begin{gathered}
g\left(w_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases} \\
g\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases}
\end{gathered}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(e)=v_{g}(d)=v_{g}(f)=3 k$ and $e_{g}(0)=$ $e_{g}(1)=12 k-1$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Subcase 5.2. $n \equiv 5(\bmod 6)$.

Let $n=6 k+5$ and $k \geq 1$. Assign the labels to the vertices u, u_{i}, w_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase (5.1) and for the remaining vertices assign the following labels:

$$
\begin{aligned}
& g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2 \\
b & \text { if } i=6 k+3 \\
e & \text { if } i=6 k+4 \\
b & \text { if } i=6 k+5
\end{array}, \quad g\left(w_{i}\right)= \begin{cases}c & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3 \\
c & \text { if } i=6 k+4 \\
a & \text { if } i=6 k+5\end{cases} \right. \\
& g\left(v_{i}\right)= \begin{cases}e & \text { if } i=6 k+1 \\
a & \text { if } i=6 k+2 \\
d & \text { if } i=6 k+3 \\
f & \text { if } i=6 k+4\end{cases}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(f)=3 k+3, v_{g}(c)=v_{g}(d)=v_{g}(e)=3 k+2$ and $e_{g}(0)=e_{g}(1)=12 k+9$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 5.3. $n \equiv 4(\bmod 6)$.
Let $n=6 k+4$ and $k \geq 1$. Assign the labels to the vertices u, u_{i}, w_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase (5.1) and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2 \\
b & \text { if } i=6 k+3 \\
e & \text { if } i=6 k+4,
\end{array} \quad g\left(w_{i}\right)= \begin{cases}c & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3 \\
c & \text { if } i=6 k+4\end{cases}\right.
$$

$$
g\left(v_{i}\right)= \begin{cases}e & \text { if } i=6 k+1 \\ a & \text { if } i=6 k+2 \\ d & \text { if } i=6 k+3\end{cases}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=3 k+2$ and $e_{g}(0)=e_{g}(1)=12 k+7$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\mid e_{g}(0)-$ $e_{g}(1) \mid \leq 1$.
Subcase 5.4. $n \equiv 3(\bmod 6)$.
Let $n=6 k+3$ and $k \geq 1$. Assign the labels to the vertices u, u_{i}, w_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase (5.1) and for the remaining vertices assign the following labels:

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2 \\
b & \text { if } i=6 k+3\end{cases} \\
& g\left(v_{i}\right)= \begin{cases}e & \text { if } i=6 k+1 \\
a & \text { if } i=6 k+2\end{cases}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(f)=3 k+2, v_{g}(c)=v_{g}(d)=v_{g}(e)=3 k+1$ and $e_{g}(0)=e_{g}(1)=12 k+5$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 5.5. $n \equiv 2(\bmod 6)$.
Let $n=6 k+2$ and $k \geq 1$. Assign the labels to the vertices u, u_{i}, w_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase (5.1) and for the remaining vertices assign the following labels:

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2\end{cases} \\
& g\left(v_{i}\right)= \begin{cases}e & \text { if } i=6 k+1\end{cases}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=3 k+1$ and $e_{g}(0)=e_{g}(1)=12 k+3$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\mid e_{g}(0)-$ $e_{g}(1) \mid \leq 1$.
Subcase 5.6. $n \equiv 1(\bmod 6)$.
Let $n=6 k+1$ and $k \geq 1$. Assign the labels to the vertices u, u_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase (5.1), except for the vertices $u_{6 k+1}, w_{6 k+1}$ are labeled by b, a respectively. Here we have $v_{g}(a)=v_{g}(b)=v_{g}(f)=3 k+1, v_{g}(c)=$ $v_{g}(d)=v_{g}(e)=3 k$ and $e_{g}(0)=e_{g}(1)=12 k+1$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.

Thus g is a group S_{3} cordial remainder labeling. Hence, $S\left(F_{n}\right)$ is a group S_{3} cordial remainder graph for $n \geq 2$.

Example 2.11. A group S_{3} cordial remainder labeling of $S\left(F_{4}\right)$ is given in Figure 5.

Figure 5

Theorem 2.12. $S\left(L_{n}\right)$ is a group S_{3} cordial remainder graph for every n.

Proof. Let $u_{1}, u_{2}, \cdots, u_{n}, v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of the ladder L_{n}. Let $V\left(S\left(L_{n}\right)\right)=\left\{u_{i}, v_{i}, z_{i}: 1 \leq i \leq n\right\} \bigcup\left\{x_{i}, y_{i}: 1 \leq i \leq n-1\right\}$ and $E\left(S\left(L_{n}\right)\right)=$ $\left\{u_{i} x_{i}, v_{i} y_{i}, u_{i} z_{i}, z_{i} v_{i},: 1 \leq i \leq n\right\} \bigcup\left\{x_{i} u_{i+1}, y_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. Therefore $S\left(L_{n}\right)$ is of order $5 n-2$ and size $6 n-2$. Define $g: V\left(S\left(L_{n}\right)\right) \rightarrow S_{3}$ as follows:
Case 1. $n \equiv 0(\bmod 6)$.
Let $n=6 k$ and $k \geq 1$.

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}d & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
a & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k,\end{cases} \\
& g\left(v_{i}\right)= \begin{cases}b & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
a & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases} \\
& g\left(x_{i}\right)= \begin{cases}c & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
a & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases}
\end{aligned}
$$

$$
\begin{gathered}
g\left(y_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases} \\
g\left(z_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases}
\end{gathered}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(e)=5 k, v_{g}(d)=v_{g}(f)=5 k-1$ and $e_{g}(0)=e_{g}(1)=18 k-2$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 2. $n \equiv 1(\bmod 6)$.
Let $n=6 k+1$ and $k \geq 0$. Assign the labels to the vertices $u_{i}, v_{i}, x_{i}, y_{i}, z_{i}$ for $1 \leq i \leq 6 k$ as in Case (1), except for the vertices $u_{6 k+1}, z_{6 k+1}, v_{6 k+1}$, are labeled by d, a, b respectively. Here we have $v_{g}(a)=v_{g}(b)=v_{g}(d)=5 k+1, v_{g}(c)=$ $v_{g}(e)=v_{g}(f)=5 k$ and $e_{g}(0)=e_{g}(1)=18 k+1$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 3. $n \equiv 2(\bmod 6)$.
Let $n=6 k+2$ and $k \geq 0$. Assign the labels to the vertices $u_{i}, v_{i}, x_{i}, y_{i}, z_{i}$ for $1 \leq i \leq 6 k$ as in Case (1) and for the remaining vertices assign the following labels:

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}d & \text { if } i=6 k+1 \\
e & \text { if } i=6 k+2,\end{cases} \\
& g\left(z_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2,\end{cases} \\
& l
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=5 k+2, v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=5 k+1$ and $e_{g}(0)=e_{g}(1)=18 k+4$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 4. $n \equiv 3(\bmod 6)$.
Let $n=6 k+3$ and $k \geq 0$. Assign the labels to the vertices $u_{i}, v_{i}, x_{i}, y_{i}, z_{i}$ for $1 \leq i \leq 6 k$ as in Case (1) and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
d & \text { if } i=6 k+1 \\
e & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3,
\end{array} \quad g\left(v_{i}\right)= \begin{cases}b & \text { if } i=6 k+1 \\
f & \text { if } i=6 k+2 \\
d & \text { if } i=6 k+3\end{cases}\right.
$$

$$
\begin{aligned}
& g\left(z_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
c & \text { if } i=6 k+3\end{cases} \\
& g\left(y_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
e & \text { if } i=6 k+2\end{cases}
\end{aligned}
$$

Here we have $v_{g}(a)=5 k+3, v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=5 k+2$ and $e_{g}(0)=e_{g}(1)=18 k+7$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 5. $n \equiv 4(\bmod 6)$.
Let $n=6 k+4$ and $k \geq 0$. Assign the labels to the vertices $u_{i}, v_{i}, x_{i}, y_{i}, z_{i}$ for $1 \leq i \leq 6 k$ as in Case (1) and for the remaining vertices assign the following labels:

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}d & \text { if } i=6 k+1 \\
e & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3 \\
c & \text { if } i=6 k+4\end{cases} \\
& g\left(z_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
c & \text { if } i=6 k+3 \\
f & \text { if } i=6 k+4\end{cases} \\
& g\left(y_{i}\right)= \begin{cases}b & \text { if } i=6 k+1 \\
f & \text { if } i=6 k+2 \\
d & \text { if } i=6 k+3 \\
e & \text { if } i=6 k+4\end{cases} \\
& \begin{array}{ll}
a & \text { if } i=6 k+1 \\
e & \text { if } i=6 k+2 \\
b & \text { if } i=6 k+3
\end{array}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=5 k+3$ and $e_{g}(0)=e_{g}(1)=18 k+10$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 6. $n \equiv 5(\bmod 6)$.
Let $n=6 k+5$ and $k \geq 0$. Assign the labels to the vertices $u_{i}, v_{i}, x_{i}, y_{i}, z_{i}$ for $1 \leq i \leq 6 k$ as in Case (1) and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
d & \text { if } i=6 k+1 \\
e & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3 \\
c & \text { if } i=6 k+4 \\
a & \text { if } i=6 k+5,
\end{array} \quad g\left(v_{i}\right)= \begin{cases}b & \text { if } i=6 k+1 \\
f & \text { if } i=6 k+2 \\
d & \text { if } i=6 k+3 \\
e & \text { if } i=6 k+4 \\
c & \text { if } i=6 k+5\end{cases}\right.
$$

$$
\begin{aligned}
& g\left(z_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
c & \text { if } i=6 k+3 \\
f & \text { if } i=6 k+4 \\
e & \text { if } i=6 k+5\end{cases} \\
& g\left(y_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
e & \text { if } i=6 k+2 \\
b & \text { if } i=6 k+3 \\
d & \text { if } i=6 k+4\end{cases}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=5 k+4, v_{g}(b)=5 k+3$ and $e_{g}(0)=e_{g}(1)=18 k+13$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.

Thus g is a group S_{3} cordial remainder labeling. Hence, $S\left(L_{n}\right)$ is a group S_{3} cordial remainder graph every for n.

Example 2.13. A group S_{3} cordial remainder labeling of $S\left(L_{5}\right)$ is given in Figure 6.

Figure 6

References

1. I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987), 201-207.
2. J.A. Gallian, A Dyamic Survey of Graph Labeling, The Electronic J. Combin. 22 (2019), \# DS6.
3. F. Harary, Graph Theory, Addison-wesley, Reading, Mass, 1972.
4. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S_{3} cordial remainder labeling, International Journal of Recent Technology and Engineering 8 (2019), 8276-8281.
5. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S_{3} cordial remainder labeling for wheel and snake related graphs, (Submitted for Publication).
6. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S_{3} cordial remainder labeling for path and cycle related graphs, (Submitted for Publication).
7. A. Lourdusamy, S. Jenifer Wency and F. Patrick, Some Result on Group S_{3} cordial remainder graphs, (Submitted for Publication).
8. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs, (Internat Sympos., Rome, 1966) New York, Gordon and Breach 1967, 349-355.

A. Lourdusamy

Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, Tamil Nadu, India.
e-mail: lourdusamy15@gmail.com
S. Jenifer Wency

Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India.
e-mail: jeniferwency@gmail.com

F. Patrick

Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, Tamil Nadu, India.
e-mail: patrick881990@gmail.com

[^0]: Received December 2, 2019. Revised March 10, 2020. Accepted April 8, 2020. *Corresponding author.
 (c) 2020 KSCAM .

