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[r, s, t; f ]-COLORING OF GRAPHS

Yong Yu and Guizhen Liu

Abstract. Let f be a function which assigns a positive integer f(v)

to each vertex v ∈ V (G), let r, s and t be non-negative integers. An f-
coloring of G is an edge-coloring of G such that each vertex v ∈ V (G) has
at most f(v) incident edges colored with the same color. The minimum

number of colors needed to f -color G is called the f-chromatic index
of G and denoted by χ′

f (G). An [r, s, t; f ]-coloring of a graph G is

a mapping c from V (G)
∪

E(G) to the color set C = {0, 1, . . . , k − 1}
such that |c(vi) − c(vj)| ≥ r for every two adjacent vertices vi and vj ,
|c(ei) − c(ej)| ≥ s and α(vi) ≤ f(vi) for all vi ∈ V (G), α ∈ C where

α(vi) denotes the number of α-edges incident with the vertex vi and ei,
ej are edges which are incident with vi but colored with different colors,
|c(ei)−c(vj)| ≥ t for all pairs of incident vertices and edges. The minimum
k such that G has an [r, s, t; f ]-coloring with k colors is defined as the [r,

s, t; f ]-chromatic number and denoted by χr,s,t;f (G). In this paper, we
present some general bounds for [r, s, t; f ]-coloring firstly. After that, we
obtain some important properties under the restriction min{r, s, t} = 0 or
min{r, s, t} = 1. Finally, we present some problems for further research.

1. Introduction

In this paper, the term graph is used to denote a simple connected graph
G with a finite vertex set V (G) and a finite edge set E(G). If multiple
edges are allowed, G is called a multigraph. The degree of a vertex v in
G is the number of edges incident with v and denoted by d(v). We write
δ(G) = min{d(v) : v ∈ V (G)} and ∆(G) = max{d(v) : v ∈ V (G)} to de-
note the minimum degree and maximum degree of G, respectively. Let f be
a function which assigns a positive integer f(v) to each vertex v ∈ V (G).
We define ∆f (G) = maxv∈V (G){⌈d(v)/f(v)⌉}. Let C denote the set of colors
{0, 1, . . . , k−1}. A vertex (res. edge) coloring of a graph G is a mapping c from
V (G) (res. E(G)) to the color set C. A proper vertex (res. edge) coloring of
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a graph G is a vertex (res. edge) coloring such that any two adjacent vertices
(res. edges) get different colors. The minimum k such that G has a proper
vertex (res. edge) coloring with color set C = {0, 1, . . . , k − 1} is called the
chromatic number (res. edge chromatic number) of graph G, and denoted by
χ(G) (res. χ′(G)). We use c(v) to denote the color assigned to the vertex v and
c(e) for the edge e of graph G. An edge colored with color α ∈ C is called an
α-edge. The number of α-edges of G incident with the vertex v is denoted by
α(v). Our terminology and notation will be standard except where indicated.
Readers are referred to [1] for undefined terms.

Hakimi and Kariv [4] generalized the proper edge-coloring to f-coloring and
obtained many interesting results. Let G be a multigraph and f be a function
defined as above. An f -coloring of G is an edge-coloring of G such that each
vertex v ∈ V (G) has at most f(v) edges colored with the same color. The
minimum number of colors needed to f -color G is called the f -chromatic index
of G and denoted by χ′

f (G). Zhang and Liu [7, 8, 9] studied the f -coloring of
graphs and got many interesting results.

Kemnitz and Marangio [6] studied the [r, s, t]-coloring of a graph G. Given
non-negative integers r, s and t, an [r, s, t]-coloring of a graph G is a mapping
c from V (G)

∪
E(G) to the color set C = {0, 1, . . . , k − 1} such that |c(vi) −

c(vj)| ≥ r for every two adjacent vertices vi and vj , |c(ei)− c(ej)| ≥ s for every
two adjacent edges ei, ej , and |c(ei)−c(vj)| ≥ t for all pairs of incident vertices
and edges, respectively. The [r, s, t]-chromatic number χr,s,t(G) of G is the
minimum k such that G has an [r, s, t]-coloring. Dekar, et al. [3] gave exact
values of χr,s,t(G) of stars except one case.

Here we present a new coloring which is defined as [r, s, t; f ]-coloring. Let
f be a function which assigns a positive integer f(v) to each vertex v ∈ V (G),
let r, s and t be non-negative integers. An [r, s, t; f ]-coloring of a graph G is
a mapping c from V (G)

∪
E(G) to the color set C = {0, 1, . . . , k−1} such that

|c(vi)− c(vj)| ≥ r for every two adjacent vertices vi and vj , |c(ei)− c(ej)| ≥ s
and α(vi) ≤ f(vi) for all vi ∈ V (G), α ∈ C where α(vi) denotes the number of
α-edges incident with the vertex vi and ei, ej are edges which are incident with
vi but colored with different colors, |c(ei) − c(vj)| ≥ t for all pairs of incident
vertices and edges. The minimum k such that G has an [r, s, t; f ]-coloring is
defined as the [r, s, t; f ]-chromatic number and denoted by χr,s,t;f (G). Clearly,
if s = 1, r = t = 0, then c is an f -coloring; if f(v) = 1 for all v ∈ V (G) (we
will write f ≡ 1 for short in the following), then c is an [r, s, t]-coloring ; if
f ≡ 1 and r = 1, s = t = 0, then c is a proper vertex coloring ; if f ≡ 1 and
s = 1, r = t = 0, then c is a proper edge coloring ; if f ≡ 1 and r = s = t = 1,
then c is a total coloring. Similarly, let r = s = t = 1, we get another new
coloring which we define as f -total coloring.

In this paper, we at first discuss some interesting results for this new coloring.
Then we focus on the case r = s = 1 which are not considered in the [r, s,
t]-coloring.
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2. Basic results

At first, we give two obvious lemmas.

Lemma 2.1. If H ⊆ G, then χr,s,t;f (H) ≤ χr,s,t;f (G).

Proof. It is obvious that the restriction of an [r, s, t; f ]-coloring of G to the
element of H ⊆ G is still an [r, s, t; f ]-coloring of H. □

Lemma 2.2. Let f and f ′ be two functions defined as in the definition of [r,
s, t; f ]-coloring. If f ′(v) ≥ f(v) for all v ∈ V (G), and r′ ≤ r, s′ ≤ s, t′ ≤ t,
then χr′,s′,t′;f ′(G) ≤ χr,s,t;f (G).

Proof. The proof is trivial. We leave it to the readers. □

These two lemmas are obvious but useful to determine bounds and exact
values of the [r, s, t; f ]-chromatic number of graphs.

Theorem 2.3. If a ≥ 0 is an integer, then χar,as,at;f (G) = a(χr,s,t;f (G)−1)+
1.

Proof. If a = 0 or 1, then the assertion is obvious. Suppose a ≥ 2 and c is an
[r, s, t; f ]-coloring of G with χr,s,t;f (G) colors. Then |c(vi) − c(vj)| ≥ r for
every two adjacent vertices vi and vj , |c(ei) − c(ej)| ≥ s, α(vi) ≤ f(vi) for all
vi ∈ V (G), α ∈ C where α(vi) denotes the number of α-edges incident with
the vertex vi and ei, ej are edges which are incident with vi but colored with
different colors, |c(ei) − c(vj)| ≥ t for all pairs of incident vertices and edges.
Let c′(x) = a · c(x) for all x ∈ V (G)

∪
E(G), and we use α′, C ′ denote the new

color and the new color set, respectively. Then we have

|c′(vi)− c′(vj)| = a · |c(vi)− c(vj)| ≥ ar,

|c′(ei)− c′(ej)| = a · |c(ei)− c(ej)| ≥ as,

|c′(ei)− c′(vj)| = a · |c(ei)− c(vj)| ≥ at.

For α′ ∈ C ′, if α′(vi) ̸= 0, then there is color α ∈ C such that α′ = aα
and α′(vi) = α(vi) ≤ f(vi); if α

′(vi) = 0, obviously we have α′(vi) ≤ f(vi).
Anyway,

α′(vi) ≤ f(vi) for all vi ∈ V (G), α′ ∈ C ′.

Therefore, c′ is an [ar, as, at; f ]-coloring of G with colors {0, 1, . . . , a(χr,s,t;f (G)
−1)}.

On the other hand, assume that G has an [ar, as, at; f ]-coloring c with color
set {0, 1, . . . , a(χr,s,t;f (G)− 1)− 1}, a ≥ 2. Then we have |c(vi)− c(vj)| ≥ ar
for every two adjacent vertices vi and vj , |c(ei)− c(ej)| ≥ as, α(vi) ≤ f(vi) for
all vi ∈ V (G), α ∈ C where α(vi) denotes the number of α-edges incident with
the vertex vi and ei, ej are edges which are incident with vi but colored with
different colors, |c(ei)− c(vj)| ≥ at for all pairs of incident vertices and edges.
We define a coloring c′ by c′(x) = ⌊c(x)/a⌋ for all x ∈ V (G)

∪
E(G), in which
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⌊c(x)/a⌋ is the largest integer not larger than c(x)/a. Let α′ = ⌊α/a⌋ ∈ C ′, C ′

denote the color set of c′. Clearly, |⌊x⌋| ≥ ⌊|x|⌋ for any real number x. So we
have

|c′(vi)− c′(vj)| ≥ ⌊|c(vi)− c(vj)

a
|⌋ ≥ r,

|c′(ei)− c′(ej)| ≥ ⌊|c(ei)− c(ej)

a
|⌋ ≥ s,

|c′(ei)− c′(vj)| ≥ ⌊|c(ei)− c(vj)

a
|⌋ ≥ t.

Let ei, ej are two edges incident with vi, if they are both α-edges, then c′(ei) =
c′(ej) = α′; if c(ei) = α and c(ej) ̸= α, then |c(ei)− c(ej)| ≥ as for c is an [ar,

as, at; f ]-coloring of G. This implies |c′(ei)− c′(ej)| ≥ ⌊| c(ei)−c(ej)
a |⌋ ≥ s ≥ 1.

Therefore, α′(vi) = α(vi) ≤ f(vi). So

α′(vi) ≤ f(vi) for all vi ∈ V (G), α′ ∈ C ′.

That is, c′ is an [r, s, t; f ]-coloring of G with colors

{0, 1, . . . , ⌊a(χr,s,t;f (G)− 1)− 1

a
⌋},

where ⌊a(χr,s,t;f (G)−1)−1
a ⌋ ≤ χr,s,t;f (G)−2. We get an [r,s,t]-coloring of G with

no more than χr,s,t;f (G)− 1 colors, a contradiction. □

Corollary 2.4. If r = s = t and f(v) ≡ 1, then

χr,s,t;f (G) = r(χ
′′
(G)− 1) + 1,

where χ
′′
(G) is the total chromatic number of graph G.

Corollary 2.5. Let G be a graph and let r, s, t, f be defined as in the definition
of [r, s, t; f ]-coloring. Then

χr,0,0;f (G) = r(χ(G)− 1) + 1,

χ0,s,0;f (G) = s(χ
′

f (G)− 1) + 1,

χ0,0,t;f (G) = t+ 1.

Lemma 2.6 ([4]). Let G be a graph. Then

∆f (G) ≤ χ
′

f (G) ≤ max
v∈V (G)

{⌈(1 + d(v))/f(v)⌉} ≤ ∆f (G) + 1.

Theorem 2.7. Let G be a graph and let r, s, t, f be defined as in the definition
of [r, s, t; f ]-coloring. Then

max{r(χ(G)− 1) + 1, s(χ
′

f (G)− 1) + 1, t+ 1}

≤ χr,s,t;f (G) ≤ r(χ(G)− 1) + s(χ
′

f (G)− 1) + t+ 1.
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Proof. (a) If f(v) = d(v) for all v ∈ V (G), then

∆f (G) = max
v∈V (G)

{⌈d(v)/f(v)⌉} = 1,

and we can use one color to f -color G. Therefore, χ
′

f (G) = ∆f (G) = 1. Let

c be an [r, 0, 0; f ]-coloring of G with r(χ(G) − 1) + 1 colors. Then we assign
color r(χ(G)− 1) + t to all the edges of G, we get an [r, s, t; f ]-coloring with
r(χ(G) − 1) + t + 1 colors. This is the upper bound, and the lower bound is
obvious by Lemma 2.2 and Corollary 2.5.

(b) If there is a vertex u ∈ V (G) such that f(u) < d(u), then χ
′

f (G) ≥ 2.

In this case, consider c mentioned in part (a). We use colors r(χ(G) − 1) +

t, r(χ(G) − 1) + t + s, . . . , r(χ(G) − 1) + t + s(χ
′

f (G) − 1) to color the edges.

Then we get an [r, s, t; f ]-coloring with r(χ(G) − 1) + s(χ
′

f (G) − 1) + t + 1
colors. The lower bound can be got by Lemma 2.2 and Corollary 2.5. □

Lemma 2.8. Let G be a graph and let r, s, t, f be defined as in the definition
of [r, s, t; f ]-coloring. If t > r(χ(G)− 1) + s(χ

′

f (G)− 1), then

χr,s,t;f (G) ≥ r(χ(G)− 1) + s(δf (G)− 1) + t+ 1,

where δf (G) = minv∈V (G){⌈d(v)/f(v)⌉}.

Proof. Let c be an [r, s, t; f ]-coloring of G with χr,s,t;f (G) colors. By Theorem

2.7 and the assumption on t we obtain 2t+ 1 > r(χ(G)− 1) + s(χ
′

f (G)− 1) +

t + 1 ≥ χr,s,t;f (G). So χr,s,t;f (G) ≤ 2t. If there is a vertex v and incident
edges e1, e2 such that c(e1) < c(v) < c(e2) or an edge e = v1v2 such that
c(v1) < c(e) < c(v2), then at least 2t + 1 colors are needed which contradicts
with the conclusion χr,s,t;f (G) ≤ 2t. Therefore, if x is an arbitrary element of
G, then c(x) < c(y) for all elements y that are incident to x or c(x) > c(y) for
all y. By induction, we obtain either c(v) < c(e) for all vertices v and all edges
e incident to v or always c(v) > c(e). Without loss of generality, we assume
c(v) < c(e).

Consider the vertex u which obtains the greatest color c(u). In order to
proper coloring the vertex set of graph G, at least χr,0,0;f (G) colors are needed.
By Corollary 2.5 we have χr,0,0;f (G) = r(χ(G) − 1) + 1. Therefore, c(u) ≥
r(χ(G) − 1). In the f -coloring, denote by r(u) the color numbers appeared
on the edges which are incident with u. Obviously, we have r(u)f(u) ≥ d(u),
which implies r(u) ≥ ⌈d(u)/f(u)⌉ ≥ minv∈V (G){⌈d(v)/f(v)⌉} = δf (G). That
is to say, there are at least δf (G) different colors which are greater than c(u) by
our assumption appeared on u. Then we get χr,s,t;f (G) ≥ c(u)+ t+ s(δf (G)−
1) + 1 ≥ r(χ(G)− 1) + s(δf (G)− 1) + t+ 1. □

By Lemma 2.6, all graphs are partitioned into two classes. One is graphs
with χ

′

f (G) = ∆f (G), called Cf 1, or f -class 1, and the other with χ
′

f (G) =

∆f (G) + 1, called Cf 2, or f -class 2.
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Just as the case we discussed in Theorem 2.7, χ
′

f (G) = ∆f (G) = 1 when

f(v) = d(v) for all v ∈ V (G). This also implies that δf (G) = 1. So by Theorem
2.7 and Lemma 2.8 we have the following result.

Corollary 2.9. Suppose that t > r(χ(G)− 1) + s(χ
′

f (G)− 1).

(1) If f(v) = d(v) for all v ∈ V (G), then

χr,s,t;f (G) = r(χ(G)− 1) + t+ 1;

(2) If (1) is not satisfied, but G is a Cf 1 graph with ∆f (G) = δf (G), then

χr,s,t;f (G) = r(χ(G)− 1) + s(χ
′

f (G)− 1) + t+ 1.

Corollary 2.9 provides a subclass of graphs that can reach the upper bound
of Theorem 2.7.

In Section 3 and Section 4, we will give some restriction to the parameters
r, s, t, f in order to obtain some new results.

3. min{r, s, t} = 0

We consider the case only one of r, s, t equals 0. The case where two of r,
s, t equal 0 is discussed in Corollary 2.5.

Theorem 3.1. Let G be a graph. Then

χr,s,0;f (G) = max{r(χ(G)− 1) + 1, s(χ
′

f (G)− 1) + 1}.

Proof. This equation can be obtained by Theorem 2.7 and the fact that vertices
and edges can be colored independently. □

Lemma 3.2 ([6]). Let G be a graph. Then

(1) If χ(G) = 2, then

χr,0,t(G) =


r + 1 if r ≥ 2t;

2t+ 1 if t ≤ r < 2t;

r + t+ 1 if r < t.

(2) If χ(G) ≥ 3 and r ≥ t, then

χr,0,t(G) = r(χ(G)− 1) + 1;

(3) If χ(G) ≥ 3 and r < t, then

max{r(χ(G)− 1) + 1, t+ 1} ≤ χr,0,t(G) ≤ r(χ(G)− 3) + t+ 1 +min{t, 2r}.

Theorem 3.3. Let G be a graph. If f(v) = d(v) for all v ∈ V (G), then
χr,0,t;f (G) = χr,0,t(G), where χr,0,t(G) is the same as that in Lemma 3.2.

Proof. If f(v) = d(v) for all v ∈ V (G), then χ
′

f (G) = ∆f (G) = 1. That is, we

can color all the edges of G with one color and the condition α(vi) ≤ f(vi) for
all vi ∈ V (G), α ∈ C in the definition of [r, s, t; f ]-coloring has no influence.
Therefore, we have χr,0,t;f (G) = χr,0,t(G). □
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Note that if there is a vertex u ∈ V (G) such that f(u) < d(u), then at least
2 colors are needed for the edges of G. Therefore, s = 0 is impossible in this
case.

Lemma 3.4 ([6]). Let G be a graph. Then

(1) If ∆(G) ≥ 2 and G is of class 1, then

χ0,s,t(G) =

 s(∆(G)− 1) + 1 if s ≥ 2t;
s(∆(G)− 1) + 2t− s+ 1 if t ≤ s < 2t;
s(∆(G)− 1) + t+ 1 if s < t.

(2) If ∆(G) ≥ 2, G is of class 2 and s ≥ t, then

χ0,s,t(G) = s(χ′(G)− 1) + 1;

(3) If ∆(G) ≥ 2, G is of class 2 and s < t, then

s(∆(G)− 1) + t+ 1 ≤ χ0,s,t(G) ≤ min{s∆(G) + t+ 1, t∆(G) + 1}.

Theorem 3.5. Let G be a graph. Then

(a) if f(v) = d(v) for all v ∈ V (G), then χ0,s,t;f (G) = t+ 1;
(b) otherwise,

(1) If ∆f (G) ≥ 2 and G is of Cf 1, then

χ0,s,t;f (G) =

 s(∆f (G)− 1) + 1 if s ≥ 2t;
s(∆f (G)− 1) + 2t− s+ 1 if t ≤ s < 2t;
s(∆f (G)− 1) + t+ 1 if s < t.

(2) If ∆f (G) ≥ 2, G is of Cf 2 and s ≥ t, then

χ0,s,t;f (G) = s(χ′
f (G)− 1) + 1;

(3) If ∆f (G) ≥ 2, G is of Cf 2 and s < t, then

s(∆f (G)− 1) + t+ 1 ≤ χ0,s,t;f (G) ≤ min{s∆f (G) + t+ 1, t∆f (G) + 1}.

Proof. (a) If f(v) = d(v) for all v ∈ V (G), then we can color all the vertices
with color 0 and all the edges with color t. Then we obtain an [0, s, t; f ]-
coloring of G with t + 1 colors. On the other hand, by Theorem 2.7 we get
χ0,s,t;f (G) ≥ t+ 1. Therefore, χ0,s,t;f (G) = t+ 1.

(b) If there is a vertex u ∈ V (G) such that f(u) < d(u), then the proof is
similar to the proof in [4] (see A. Kemnitz, M. Marangio [4] Lemmas 7, 8, 9)
just using ∆f (G) instead of ∆(G). We don’t mention it here. □

4. min{r, s, t} = 1

In this section we will consider the three parameters χr,1,1;f (G), χ1,s,1;f (G),
χ1,1,t;f (G), especially the last one.

Theorem 4.1. If r ≥ χ′
f (G)

χ(G)−1 + 1, then χr,1,1;f (G) = r(χ(G)− 1) + 1.
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Proof. Let c be an [r, 0, 0]-coloring of G with colors 0, r, . . . , r(χ(G)− 1). The
assumption implies χ′

f (G) ≤ (r− 1)(χ(G)− 1). So we can use the colors which

are not used by c to f -color the edges of G. Then we get an [r, 1, 1; f ]-coloring
of G. The lower bound can be got by Theorem 2.7. Therefore, χr,1,1;f (G) =
r(χ(G)− 1) + 1. □

Theorem 4.2. If f(v) = d(v) for all v ∈ V (G), then χ1,s,1;f (G) = χ(G) + 1.

If there is a vertex u ∈ V (G) such that f(u) < d(u) but s ≥ χ(G)
χ′
f (G)−1 + 1, then

χ1,s,1;f (G) = s(χ
′

f (G)− 1) + 1.

Proof. (1) If f(v) = d(v) for all v ∈ V (G), then just one color can f -coloring the
edges of G. Suppose c is a proper vertex coloring of G with χ(G) colors. Then
we assign color χ(G) to all the edges of G and obtain an [1, s, 1; f ]-coloring of
G. χ1,s,1;f ≥ χ(G) + 1 is obvious by Theorem 2.7.

(2) If there is a vertex u ∈ V (G) such that f(u) < d(u), then χ
′

f (G) ≥ 2.

By s ≥ χ(G)
χ′
f (G)−1 + 1 we have χ(G) ≤ (s − 1)(χ′

f (G) − 1). Therefore, we can

use the (s− 1)(χ′
f (G)− 1) colors which are not used in the f -coloring of G to

obtain a proper vertex coloring of G. Then we get an [1, s, 1; f ]-coloring of G

with s(χ
′

f (G)−1)+1 colors. The lower bound can be got by Theorem 2.7. □

Lemma 4.3. Let G be a graph and let t and f be defined as in the definition
of [r, s, t; f ]-coloring. Then we have

∆f (G) + t ≤ χ1,1,t;f (G) ≤ χ(G) + χ
′

f (G) + t− 1.

Proof. The upper bound can be obtained by Theorem 2.7. On the other hand,
by Lemma 2.2 we get χ1,1,t;f (G) ≥ χ0,1,t;f (G). Then by Theorem 3.5 we obtain
the lower bound. □

When we investigate the [r, s, t; f ]-chromatic number under the special case
r = s = 1, we can improve the result in Lemma 4.3 as Theorem 4.6.

Lemma 4.4 ([7]). Let G be a complete graph Kn. If k and n are odd integers,
f(v) = k and k|d(v) for all v ∈ V (G), then G is of Cf 2. Otherwise, G is of
Cf 1.

Lemma 4.5 ([2], Brook’s Theorem). χ(G) ≤ ∆(G) + 1 holds for every graph
G. Moreover, χ(G) = ∆(G) + 1 if and only if either ∆(G) ̸= 2 and G has a
complete graph K∆(G)+1 as a connected component, or ∆(G) = 2 and G has
an odd cycle as a connected component.

Theorem 4.6. Let G be a graph and let t, f be defined as in the definition of
[r, s, t; f ]-coloring. Then we have

χ1,1,t;f (G) ≤ ∆(G) + ∆f (G) + t.
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Proof. We now consider three cases depending on G.

Case 1. If G is neither a complete graph nor an odd cycle, then χ(G) ≤ ∆(G)

by Lemma 4.5 and χ
′

f (G) ≤ ∆f (G) + 1 by Lemma 2.6. Hence, the inequality
is true.

Case 2. G is the complete graph Kn on n vertices. By Lemma 4.4 we know
that Kn is of Cf 1 except one case. Then we have χ

′

f (G) = ∆f (G). By Lemma

4.3, we have χ1,1,t;f (G) ≤ (∆(G) + 1) + ∆f (G) + t − 1 = ∆(G) + ∆f (G) + t.
Now we assume that k and n are odd integers, f(v) = k and k|d(v) for all
v ∈ V (G). Then Lemma 4.4 implies that G is of Cf 2.

Case 2.1. If f(v) = d(v), then we have χ
′

f (G) = ∆f (G) = 1. We can assign
all the edges with one color n + t − 1 and assign the vertices differently with
colors 0, 1, . . . , n − 1. Therefore, we obtain an [1, 1, t; f ]-coloring of Kn with
n+ t = ∆(Kn) + ∆f (Kn) + t colors.

Case 2.2. If f(v) ≡ 1, then it becomes an [1, 1, t]-coloring of Kn. Let c
be a proper edge coloring of Kn with n colors and Mi (1 ≤ i ≤ n) be the
matchings corresponding to the color classes. Further more, each Mi contains
all vertices but one vi (We know that it is true for Kn when n is odd, because
χ′(Kn) = n = ∆ + 1, |Mi| ≤ n−1

2 , 1 ≤ i ≤ n, and if there is an integer j

such that |Mj | < n−1
2 , then χ′(Kn)

n−1
2 > ε(Kn) = n(n−1)

2 , a contradiction).
For 1 ≤ i ≤ n, color the vertex vi with color n − i and the edges in Mi with
n+t−3+i. Since v1 is not incident to M1, then we obtain an [1, 1, t; 1]-coloring
of Kn with 2n+ t− 3 = ∆(Kn) + ∆1(Kn) + t colors.

Case 2.3. If 1 < f(v) < d(v), then f(v) = k ≥ 3 and

∆f (G) = max
v∈V (G)

{⌈d(v)/f(v)⌉} =
n− 1

k

def
= 2α.

Let Mi be defined as in Case 2.2 and let M ′
1 = M1, M

′
i =

∪k+1
j=2 M(i−2)k+j , 2 ≤

i ≤ 2α + 1. Color the vertex vi with color n − i and the edges in M ′
i with

color n+ t− 3+ i, 2 ≤ i ≤ 2α+1. We obtain an [1, 1, t; f ]-coloring of Kn with
n+ t− 3 + (2α+ 1) + 1 = ∆(Kn) + ∆f (Kn) + t colors.

Case 3. G is an odd cycle. Then ∆ = 2,∆f (G) = maxv∈V (G){⌈ d(v)
f(v)⌉} ≤ 2.

Case 3.1. If f(v) = d(v) for all v ∈ V (G), then χ
′

f (G) = ∆f (G) = 1.
We assign colors 0 and 1 to the vertices along the odd cycle alternately and
assign color 2 to the final vertex. Then we color all the edges of G with color
∆(G) + ∆f (G) + t − 1 = t + 2. We obtain an [1, 1, t; f ]-coloring of G with
∆(G) + ∆f (G) + t colors.

Case 3.2. If there is a vertex u ∈ V (G) such that f(u) < d(u) = 2, which
implies f(u) = 1, ∆f (G) = 2. We color u with color 2 and the other vertices
with 0 and 1 alternately. Denoted by e1, e2 the edges incident with u. Next,
we color edge e1 with color t + 2, color the edge adjacent with e1 but not e2
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with color t + 1. In this order, we color the edges along the cycle with colors
t+ 2, t+ 1 alternately except for coloring e2 with color t+ 3. Then we obtain
an [1, 1, t; f ]-coloring of G with t+ 4 = ∆(G) + ∆f (G) + t colors.

In any case, we all prove that χ1,1,t;f (G) ≤ ∆(G) + ∆f (G) + t. □
Lemma 4.7. Let t ≥ 2 be an integer. Then

(1) If δf (G) = ∆f (G), then χ1,1,t;f (G) ≥ ∆f (G) + t+ 1;
(2) If t ≥ ∆f (G), then χ1,1,t;f (G) ≥ ∆f (G) + t+ 1.

Proof. Assume that we have an [1, 1, t; f ]-coloring of G with colors {0, 1, . . .,
∆f (G)+ t− 1}. We at first prove that the vertex u with ⌈d(u)/f(u)⌉ = ∆f (G)
must be assigned color 0 or ∆f (G) + t− 1. Consider u and all the edges which
are incident to it. We denote the subgraph by H. Then at least ∆f (G) colors
are needed for [1, 1, t; f ]-coloring the edges of H. Without loss of generality,
we denote the colors by C1 < C2 < · · · < C∆f

. If there is an integer i, such
that Ci < c(u) < Ci+1, then C∆f

≥ 2t + ∆f (G) − 2 > ∆f (G) + t − 1, a
contradiction. If c(u) < C1, then C1 ≥ t which implies that c(u) = 0 and
C1 = t+ 1, C2 = t + 2, . . . , C∆f

= ∆f (G) + t− 1; If c(u) > C∆f
, then we can

get c(u) = ∆f (G) + t− 1 and C1 = t+ 1, C2 = t+ 2, . . . , C∆f
= ∆f (G) + t− 1

by the same way. Without loss of generality, we assume that c(u) = 0.

(1) If δf (G) = ∆f (G), then every vertex must be assigned color 0 or ∆f (G)+
t− 1. Let uv be an edge colored with color ∆f (G) + t− 1. We see that v can
be labeled by neither 0 nor ∆f (G) + t− 1, a contradiction.

(2) If t ≥ ∆f (G), let uv be an edge colored with color t, then c(v) ≥ 2t ≥
∆f (G) + t by the assumption t ≥ ∆f (G), a contradiction. □
Lemma 4.8 ([7]). Let G(V,E) be a bipartite graph and

∆f (G) = max
v∈V (G)

{⌈d(v)/f(v)⌉}.

Then χ
′

f (G) = ∆f (G).

Theorem 4.9. Let G(V,E) be a bipartite graph. Then

(1) ∆f (G) + t ≤ χ1,1,t;f (G) ≤ ∆f (G) + t+ 1;
(2) If t ≥ ∆f (G) or δf (G) = ∆f (G), then χ1,1,t;f (G) = ∆f (G) + t+ 1.

Proof. If G is a bipartite graph, then χ(G) = 2 and χ
′

f (G) = ∆f (G) by Lemma

4.8. Together with Lemma 4.3 we obtain (1).

(2) can be obtained by Lemma 4.7 and (1) of Theorem 4.9. □

Note that for a bipartite graph G, χ(G) = 2 and χ
′

f (G) = ∆f (G) . If

t ≥ ∆f (G), by (2) of Theorem 4.9 we get χ1,1,t;f (G) = ∆f (G) + t+1; If t = 0,
by Theorem 3.1 we get χ1,1,0;f (G) = max{2,∆f (G)}; If 1 ≤ t < ∆f (G), by (1)
of Theorem 4.9 we have χ1,1,t;f (G) = ∆f (G) + t + 1 or ∆f (G) + t. We may
ask what conditions are needed for a bipartite graph G with 1 ≤ t < ∆f (G) to
satisfy χ1,1,t;f (G) = ∆f (G) + t+ 1?
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5. Problems for further research

In this paper, we present a new coloring of a graph G for the first time. We
named it an [r, s, t; f ]-coloring of G and investigate some interesting properties
on the [r, s, t; f ]-chromatic number. Some are the generalization of the results
about the [r, s, t]-coloring and the other are new. However, all the results in
our paper are correct for [r, s, t]-coloring just let f(v) = 1 for all v ∈ V (G).

Finally, we present the following problems for further research.

Problem 1. Find the properties of the f -total coloring as we defined in Section
1. Is there a conjecture like the TCC for it?

Problem 2. Find the other results on the chromatic number χ1,1,t;f (G).

Problem 3. Find the exact values of χr,s,t;f (G) for some special graphs.
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