$[r, s, t ; f]$-COLORING OF GRAPHS

Yong Yu and Guizhen Liu

Abstract

Let f be a function which assigns a positive integer $f(v)$ to each vertex $v \in V(G)$, let r, s and t be non-negative integers. An f coloring of G is an edge-coloring of G such that each vertex $v \in V(G)$ has at most $f(v)$ incident edges colored with the same color. The minimum number of colors needed to f-color G is called the f-chromatic index of G and denoted by $\chi_{f}^{\prime}(G)$. An $[r, s, t ; f]$-coloring of a graph G is a mapping c from $V(G) \bigcup E(G)$ to the color set $C=\{0,1, \ldots, k-1\}$ such that $\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right| \geq r$ for every two adjacent vertices v_{i} and v_{j}, $\left|c\left(e_{i}\right)-c\left(e_{j}\right)\right| \geq s$ and $\alpha\left(v_{i}\right) \leq f\left(v_{i}\right)$ for all $v_{i} \in V(G), \alpha \in C$ where $\alpha\left(v_{i}\right)$ denotes the number of α-edges incident with the vertex v_{i} and e_{i}, e_{j} are edges which are incident with v_{i} but colored with different colors, $\left|c\left(e_{i}\right)-c\left(v_{j}\right)\right| \geq t$ for all pairs of incident vertices and edges. The minimum k such that G has an $[r, s, t ; f]$-coloring with k colors is defined as the $[r$, $s, t ; f]$-chromatic number and denoted by $\chi_{r, s, t ; f}(G)$. In this paper, we present some general bounds for $[r, s, t ; f]$-coloring firstly. After that, we obtain some important properties under the restriction $\min \{r, s, t\}=0$ or $\min \{r, s, t\}=1$. Finally, we present some problems for further research.

1. Introduction

In this paper, the term graph is used to denote a simple connected graph G with a finite vertex set $V(G)$ and a finite edge set $E(G)$. If multiple edges are allowed, G is called a multigraph. The degree of a vertex v in G is the number of edges incident with v and denoted by $d(v)$. We write $\delta(G)=\min \{d(v): v \in V(G)\}$ and $\Delta(G)=\max \{d(v): v \in V(G)\}$ to denote the minimum degree and maximum degree of G, respectively. Let f be a function which assigns a positive integer $f(v)$ to each vertex $v \in V(G)$. We define $\Delta_{f}(G)=\max _{v \in V(G)}\{\lceil d(v) / f(v)\rceil\}$. Let C denote the set of colors $\{0,1, \ldots, k-1\}$. A vertex (res. edge) coloring of a graph G is a mapping c from $V(G)$ (res. $E(G)$) to the color set C. A proper vertex (res. edge) coloring of

[^0]a graph G is a vertex (res. edge) coloring such that any two adjacent vertices (res. edges) get different colors. The minimum k such that G has a proper vertex (res. edge) coloring with color set $C=\{0,1, \ldots, k-1\}$ is called the chromatic number (res. edge chromatic number) of graph G, and denoted by $\chi(G)$ (res. $\chi^{\prime}(G)$). We use $c(v)$ to denote the color assigned to the vertex v and $c(e)$ for the edge e of graph G. An edge colored with color $\alpha \in C$ is called an α-edge. The number of α-edges of G incident with the vertex v is denoted by $\alpha(v)$. Our terminology and notation will be standard except where indicated. Readers are referred to [1] for undefined terms.

Hakimi and Kariv [4] generalized the proper edge-coloring to f-coloring and obtained many interesting results. Let G be a multigraph and f be a function defined as above. An f-coloring of G is an edge-coloring of G such that each vertex $v \in V(G)$ has at most $f(v)$ edges colored with the same color. The minimum number of colors needed to f-color G is called the f-chromatic index of G and denoted by $\chi_{f}^{\prime}(G)$. Zhang and Liu $[7,8,9]$ studied the f-coloring of graphs and got many interesting results.

Kemnitz and Marangio [6] studied the $[r, s, t]$-coloring of a graph G. Given non-negative integers r, s and t, an $[r, s, t]$-coloring of a graph G is a mapping c from $V(G) \bigcup E(G)$ to the color set $C=\{0,1, \ldots, k-1\}$ such that $\mid c\left(v_{i}\right)-$ $c\left(v_{j}\right) \mid \geq r$ for every two adjacent vertices v_{i} and $v_{j},\left|c\left(e_{i}\right)-c\left(e_{j}\right)\right| \geq s$ for every two adjacent edges e_{i}, e_{j}, and $\left|c\left(e_{i}\right)-c\left(v_{j}\right)\right| \geq t$ for all pairs of incident vertices and edges, respectively. The $[r, s, t]$-chromatic number $\chi_{r, s, t}(G)$ of G is the minimum k such that G has an $[r, s, t]$-coloring. Dekar, et al. [3] gave exact values of $\chi_{r, s, t}(G)$ of stars except one case.

Here we present a new coloring which is defined as $[r, s, t ; f]$-coloring. Let f be a function which assigns a positive integer $f(v)$ to each vertex $v \in V(G)$, let r, s and t be non-negative integers. An $[r, s, t ; f]$-coloring of a graph G is a mapping c from $V(G) \bigcup E(G)$ to the color set $C=\{0,1, \ldots, k-1\}$ such that $\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right| \geq r$ for every two adjacent vertices v_{i} and $v_{j},\left|c\left(e_{i}\right)-c\left(e_{j}\right)\right| \geq s$ and $\alpha\left(v_{i}\right) \leq f\left(v_{i}\right)$ for all $v_{i} \in V(G), \alpha \in C$ where $\alpha\left(v_{i}\right)$ denotes the number of α-edges incident with the vertex v_{i} and e_{i}, e_{j} are edges which are incident with v_{i} but colored with different colors, $\left|c\left(e_{i}\right)-c\left(v_{j}\right)\right| \geq t$ for all pairs of incident vertices and edges. The minimum k such that G has an $[r, s, t ; f]$-coloring is defined as the $[r, s, t ; f]$-chromatic number and denoted by $\chi_{r, s, t ; f}(G)$. Clearly, if $s=1, r=t=0$, then c is an f-coloring; if $f(v)=1$ for all $v \in V(G)$ (we will write $f \equiv 1$ for short in the following), then c is an $[r, s, t]$-coloring; if $f \equiv 1$ and $r=1, s=t=0$, then c is a proper vertex coloring; if $f \equiv 1$ and $s=1, r=t=0$, then c is a proper edge coloring; if $f \equiv 1$ and $r=s=t=1$, then c is a total coloring. Similarly, let $r=s=t=1$, we get another new coloring which we define as f-total coloring.

In this paper, we at first discuss some interesting results for this new coloring. Then we focus on the case $r=s=1$ which are not considered in the $[r, s$, t]-coloring.

2. Basic results

At first, we give two obvious lemmas.
Lemma 2.1. If $H \subseteq G$, then $\chi_{r, s, t ; f}(H) \leq \chi_{r, s, t ; f}(G)$.
Proof. It is obvious that the restriction of an $[r, s, t ; f]$-coloring of G to the element of $H \subseteq G$ is still an $[r, s, t ; f]$-coloring of H.

Lemma 2.2. Let f and f^{\prime} be two functions defined as in the definition of $[r$, $s, t ; f]$-coloring. If $f^{\prime}(v) \geq f(v)$ for all $v \in V(G)$, and $r^{\prime} \leq r, s^{\prime} \leq s, t^{\prime} \leq t$, then $\chi_{r^{\prime}, s^{\prime}, t^{\prime} ; f^{\prime}}(G) \leq \chi_{r, s, t ; f}(G)$.
Proof. The proof is trivial. We leave it to the readers.
These two lemmas are obvious but useful to determine bounds and exact values of the $[r, s, t ; f]$-chromatic number of graphs.

Theorem 2.3. If $a \geq 0$ is an integer, then $\chi_{a r, a s, a t ; f}(G)=a\left(\chi_{r, s, t ; f}(G)-1\right)+$ 1.

Proof. If $a=0$ or 1 , then the assertion is obvious. Suppose $a \geq 2$ and c is an $[r, s, t ; f]$-coloring of G with $\chi_{r, s, t ; f}(G)$ colors. Then $\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right| \geq r$ for every two adjacent vertices v_{i} and $v_{j},\left|c\left(e_{i}\right)-c\left(e_{j}\right)\right| \geq s, \alpha\left(v_{i}\right) \leq f\left(v_{i}\right)$ for all $v_{i} \in V(G), \alpha \in C$ where $\alpha\left(v_{i}\right)$ denotes the number of α-edges incident with the vertex v_{i} and e_{i}, e_{j} are edges which are incident with v_{i} but colored with different colors, $\left|c\left(e_{i}\right)-c\left(v_{j}\right)\right| \geq t$ for all pairs of incident vertices and edges. Let $c^{\prime}(x)=a \cdot c(x)$ for all $x \in V(G) \bigcup E(G)$, and we use $\alpha^{\prime}, C^{\prime}$ denote the new color and the new color set, respectively. Then we have

$$
\begin{aligned}
\left|c^{\prime}\left(v_{i}\right)-c^{\prime}\left(v_{j}\right)\right| & =a \cdot\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right| \geq a r, \\
\left|c^{\prime}\left(e_{i}\right)-c^{\prime}\left(e_{j}\right)\right| & =a \cdot\left|c\left(e_{i}\right)-c\left(e_{j}\right)\right| \geq a s, \\
\left|c^{\prime}\left(e_{i}\right)-c^{\prime}\left(v_{j}\right)\right| & =a \cdot\left|c\left(e_{i}\right)-c\left(v_{j}\right)\right| \geq a t .
\end{aligned}
$$

For $\alpha^{\prime} \in C^{\prime}$, if $\alpha^{\prime}\left(v_{i}\right) \neq 0$, then there is color $\alpha \in C$ such that $\alpha^{\prime}=a \alpha$ and $\alpha^{\prime}\left(v_{i}\right)=\alpha\left(v_{i}\right) \leq f\left(v_{i}\right)$; if $\alpha^{\prime}\left(v_{i}\right)=0$, obviously we have $\alpha^{\prime}\left(v_{i}\right) \leq f\left(v_{i}\right)$. Anyway,

$$
\alpha^{\prime}\left(v_{i}\right) \leq f\left(v_{i}\right) \text { for all } v_{i} \in V(G), \alpha^{\prime} \in C^{\prime}
$$

Therefore, c^{\prime} is an $[a r, a s, a t ; f]$-coloring of G with colors $\left\{0,1, \ldots, a\left(\chi_{r, s, t ; f}(G)\right.\right.$ $-1)\}$.

On the other hand, assume that G has an $[a r, a s, a t ; f]$-coloring c with color set $\left\{0,1, \ldots, a\left(\chi_{r, s, t ; f}(G)-1\right)-1\right\}, a \geq 2$. Then we have $\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right| \geq a r$ for every two adjacent vertices v_{i} and $v_{j},\left|c\left(e_{i}\right)-c\left(e_{j}\right)\right| \geq a s, \alpha\left(v_{i}\right) \leq f\left(v_{i}\right)$ for all $v_{i} \in V(G), \alpha \in C$ where $\alpha\left(v_{i}\right)$ denotes the number of α-edges incident with the vertex v_{i} and e_{i}, e_{j} are edges which are incident with v_{i} but colored with different colors, $\left|c\left(e_{i}\right)-c\left(v_{j}\right)\right| \geq a t$ for all pairs of incident vertices and edges. We define a coloring c^{\prime} by $c^{\prime}(x)=\lfloor c(x) / a\rfloor$ for all $x \in V(G) \bigcup E(G)$, in which
$\lfloor c(x) / a\rfloor$ is the largest integer not larger than $c(x) / a$. Let $\alpha^{\prime}=\lfloor\alpha / a\rfloor \in C^{\prime}, C^{\prime}$ denote the color set of c^{\prime}. Clearly, $|\lfloor x\rfloor| \geq\lfloor|x|\rfloor$ for any real number x. So we have

$$
\begin{aligned}
& \left|c^{\prime}\left(v_{i}\right)-c^{\prime}\left(v_{j}\right)\right| \geq\left\lfloor\left|\frac{c\left(v_{i}\right)-c\left(v_{j}\right)}{a}\right|\right\rfloor \geq r \\
& \left|c^{\prime}\left(e_{i}\right)-c^{\prime}\left(e_{j}\right)\right| \geq\left\lfloor\left|\frac{c\left(e_{i}\right)-c\left(e_{j}\right)}{a}\right|\right\rfloor \geq s, \\
& \left|c^{\prime}\left(e_{i}\right)-c^{\prime}\left(v_{j}\right)\right| \geq\left\lfloor\left|\frac{c\left(e_{i}\right)-c\left(v_{j}\right)}{a}\right|\right\rfloor \geq t
\end{aligned}
$$

Let e_{i}, e_{j} are two edges incident with v_{i}, if they are both α-edges, then $c^{\prime}\left(e_{i}\right)=$ $c^{\prime}\left(e_{j}\right)=\alpha^{\prime}$; if $c\left(e_{i}\right)=\alpha$ and $c\left(e_{j}\right) \neq \alpha$, then $\left|c\left(e_{i}\right)-c\left(e_{j}\right)\right| \geq a s$ for c is an [ar, as, at; f]-coloring of G. This implies $\left|c^{\prime}\left(e_{i}\right)-c^{\prime}\left(e_{j}\right)\right| \geq\left\lfloor\left|\frac{c\left(e_{i}\right)-c\left(e_{j}\right)}{a}\right|\right\rfloor \geq s \geq 1$. Therefore, $\alpha^{\prime}\left(v_{i}\right)=\alpha\left(v_{i}\right) \leq f\left(v_{i}\right)$. So

$$
\alpha^{\prime}\left(v_{i}\right) \leq f\left(v_{i}\right) \text { for all } v_{i} \in V(G), \alpha^{\prime} \in C^{\prime}
$$

That is, c^{\prime} is an $[r, s, t ; f]$-coloring of G with colors

$$
\left\{0,1, \ldots,\left\lfloor\frac{a\left(\chi_{r, s, t ; f}(G)-1\right)-1}{a}\right\rfloor\right\},
$$

where $\left\lfloor\frac{a\left(\chi_{r, s, t ; f}(G)-1\right)-1}{a}\right\rfloor \leq \chi_{r, s, t ; f}(G)-2$. We get an $[r, s, t]$-coloring of G with no more than $\chi_{r, s, t ; f}(G)-1$ colors, a contradiction.

Corollary 2.4. If $r=s=t$ and $f(v) \equiv 1$, then

$$
\chi_{r, s, t ; f}(G)=r\left(\chi^{\prime \prime}(G)-1\right)+1
$$

where $\chi^{\prime \prime}(G)$ is the total chromatic number of graph G.
Corollary 2.5. Let G be a graph and let r, s, t, f be defined as in the definition of $[r, s, t ; f]$-coloring. Then

$$
\begin{aligned}
\chi_{r, 0,0 ; f}(G) & =r(\chi(G)-1)+1 \\
\chi_{0, s, 0 ; f}(G) & =s\left(\chi_{f}^{\prime}(G)-1\right)+1 \\
\chi_{0,0, t ; f}(G) & =t+1
\end{aligned}
$$

Lemma 2.6 ([4]). Let G be a graph. Then

$$
\Delta_{f}(G) \leq \chi_{f}^{\prime}(G) \leq \max _{v \in V(G)}\{\lceil(1+d(v)) / f(v)\rceil\} \leq \Delta_{f}(G)+1
$$

Theorem 2.7. Let G be a graph and let r, s, t, f be defined as in the definition of $[r, s, t ; f]$-coloring. Then

$$
\begin{gathered}
\max \left\{r(\chi(G)-1)+1, s\left(\chi_{f}^{\prime}(G)-1\right)+1, t+1\right\} \\
\leq \chi_{r, s, t ; f}(G) \leq r(\chi(G)-1)+s\left(\chi_{f}^{\prime}(G)-1\right)+t+1
\end{gathered}
$$

Proof. (a) If $f(v)=d(v)$ for all $v \in V(G)$, then

$$
\Delta_{f}(G)=\max _{v \in V(G)}\{\lceil d(v) / f(v)\rceil\}=1
$$

and we can use one color to f-color G. Therefore, $\chi_{f}^{\prime}(G)=\Delta_{f}(G)=1$. Let c be an $[r, 0,0 ; f]$-coloring of G with $r(\chi(G)-1)+1$ colors. Then we assign color $r(\chi(G)-1)+t$ to all the edges of G, we get an $[r, s, t ; f]$-coloring with $r(\chi(G)-1)+t+1$ colors. This is the upper bound, and the lower bound is obvious by Lemma 2.2 and Corollary 2.5.
(b) If there is a vertex $u \in V(G)$ such that $f(u)<d(u)$, then $\chi_{f}^{\prime}(G) \geq 2$. In this case, consider c mentioned in part (a). We use colors $r(\chi(G)-1)+$ $t, r(\chi(G)-1)+t+s, \ldots, r(\chi(G)-1)+t+s\left(\chi_{f}^{\prime}(G)-1\right)$ to color the edges. Then we get an $[r, s, t ; f]$-coloring with $r(\chi(G)-1)+s\left(\chi_{f}^{\prime}(G)-1\right)+t+1$ colors. The lower bound can be got by Lemma 2.2 and Corollary 2.5.

Lemma 2.8. Let G be a graph and let r, s, t, f be defined as in the definition of $[r, s, t ; f]$-coloring. If $t>r(\chi(G)-1)+s\left(\chi_{f}^{\prime}(G)-1\right)$, then

$$
\chi_{r, s, t ; f}(G) \geq r(\chi(G)-1)+s\left(\delta_{f}(G)-1\right)+t+1,
$$

where $\delta_{f}(G)=\min _{v \in V(G)}\{\lceil d(v) / f(v)\rceil\}$.
Proof. Let c be an $[r, s, t ; f]$-coloring of G with $\chi_{r, s, t ; f}(G)$ colors. By Theorem 2.7 and the assumption on t we obtain $2 t+1>r(\chi(G)-1)+s\left(\chi_{f}^{\prime}(G)-1\right)+$ $t+1 \geq \chi_{r, s, t ; f}(G)$. So $\chi_{r, s, t ; f}(G) \leq 2 t$. If there is a vertex v and incident edges e_{1}, e_{2} such that $c\left(e_{1}\right)<c(v)<c\left(e_{2}\right)$ or an edge $e=v_{1} v_{2}$ such that $c\left(v_{1}\right)<c(e)<c\left(v_{2}\right)$, then at least $2 t+1$ colors are needed which contradicts with the conclusion $\chi_{r, s, t ; f}(G) \leq 2 t$. Therefore, if x is an arbitrary element of G, then $c(x)<c(y)$ for all elements y that are incident to x or $c(x)>c(y)$ for all y. By induction, we obtain either $c(v)<c(e)$ for all vertices v and all edges e incident to v or always $c(v)>c(e)$. Without loss of generality, we assume $c(v)<c(e)$.

Consider the vertex u which obtains the greatest color $c(u)$. In order to proper coloring the vertex set of graph G, at least $\chi_{r, 0,0 ; f}(G)$ colors are needed. By Corollary 2.5 we have $\chi_{r, 0,0 ; f}(G)=r(\chi(G)-1)+1$. Therefore, $c(u) \geq$ $r(\chi(G)-1)$. In the f-coloring, denote by $r(u)$ the color numbers appeared on the edges which are incident with u. Obviously, we have $r(u) f(u) \geq d(u)$, which implies $r(u) \geq\lceil d(u) / f(u)\rceil \geq \min _{v \in V(G)}\{\lceil d(v) / f(v)\rceil\}=\delta_{f}(G)$. That is to say, there are at least $\delta_{f}(G)$ different colors which are greater than $c(u)$ by our assumption appeared on u. Then we get $\chi_{r, s, t ; f}(G) \geq c(u)+t+s\left(\delta_{f}(G)-\right.$ $1)+1 \geq r(\chi(G)-1)+s\left(\delta_{f}(G)-1\right)+t+1$.

By Lemma 2.6, all graphs are partitioned into two classes. One is graphs with $\chi_{f}^{\prime}(G)=\Delta_{f}(G)$, called $C_{f} 1$, or f-class 1, and the other with $\chi_{f}^{\prime}(G)=$ $\Delta_{f}(G)+1$, called $C_{f} 2$, or f-class 2 .

Just as the case we discussed in Theorem 2.7, $\chi_{f}^{\prime}(G)=\Delta_{f}(G)=1$ when $f(v)=d(v)$ for all $v \in V(G)$. This also implies that $\delta_{f}(G)=1$. So by Theorem 2.7 and Lemma 2.8 we have the following result.

Corollary 2.9. Suppose that $t>r(\chi(G)-1)+s\left(\chi_{f}^{\prime}(G)-1\right)$.
(1) If $f(v)=d(v)$ for all $v \in V(G)$, then

$$
\chi_{r, s, t ; f}(G)=r(\chi(G)-1)+t+1
$$

(2) If (1) is not satisfied, but G is a $C_{f} 1$ graph with $\Delta_{f}(G)=\delta_{f}(G)$, then

$$
\chi_{r, s, t ; f}(G)=r(\chi(G)-1)+s\left(\chi_{f}^{\prime}(G)-1\right)+t+1
$$

Corollary 2.9 provides a subclass of graphs that can reach the upper bound of Theorem 2.7.

In Section 3 and Section 4, we will give some restriction to the parameters r, s, t, f in order to obtain some new results.

$$
\text { 3. } \min \{r, s, t\}=0
$$

We consider the case only one of r, s, t equals 0 . The case where two of r, s, t equal 0 is discussed in Corollary 2.5.
Theorem 3.1. Let G be a graph. Then

$$
\chi_{r, s, 0 ; f}(G)=\max \left\{r(\chi(G)-1)+1, s\left(\chi_{f}^{\prime}(G)-1\right)+1\right\}
$$

Proof. This equation can be obtained by Theorem 2.7 and the fact that vertices and edges can be colored independently.

Lemma 3.2 ([6]). Let G be a graph. Then
(1) If $\chi(G)=2$, then

$$
\chi_{r, 0, t}(G)=\left\{\begin{aligned}
r+1 & \text { if } r \geq 2 t \\
2 t+1 & \text { if } t \leq r<2 t \\
r+t+1 & \text { if } r<t
\end{aligned}\right.
$$

(2) If $\chi(G) \geq 3$ and $r \geq t$, then

$$
\chi_{r, 0, t}(G)=r(\chi(G)-1)+1
$$

(3) If $\chi(G) \geq 3$ and $r<t$, then

$$
\max \{r(\chi(G)-1)+1, t+1\} \leq \chi_{r, 0, t}(G) \leq r(\chi(G)-3)+t+1+\min \{t, 2 r\}
$$

Theorem 3.3. Let G be a graph. If $f(v)=d(v)$ for all $v \in V(G)$, then $\chi_{r, 0, t ; f}(G)=\chi_{r, 0, t}(G)$, where $\chi_{r, 0, t}(G)$ is the same as that in Lemma 3.2.
Proof. If $f(v)=d(v)$ for all $v \in V(G)$, then $\chi_{f}^{\prime}(G)=\Delta_{f}(G)=1$. That is, we can color all the edges of G with one color and the condition $\alpha\left(v_{i}\right) \leq f\left(v_{i}\right)$ for all $v_{i} \in V(G), \alpha \in C$ in the definition of $[r, s, t ; f]$-coloring has no influence. Therefore, we have $\chi_{r, 0, t ; f}(G)=\chi_{r, 0, t}(G)$.

Note that if there is a vertex $u \in V(G)$ such that $f(u)<d(u)$, then at least 2 colors are needed for the edges of G. Therefore, $s=0$ is impossible in this case.

Lemma 3.4 ([6]). Let G be a graph. Then
(1) If $\Delta(G) \geq 2$ and G is of class 1 , then

$$
\chi_{0, s, t}(G)= \begin{cases}s(\Delta(G)-1)+1 & \text { if } s \geq 2 t \\ s(\Delta(G)-1)+2 t-s+1 & \text { if } t \leq s<2 t \\ s(\Delta(G)-1)+t+1 & \text { if } s<t\end{cases}
$$

(2) If $\Delta(G) \geq 2, G$ is of class 2 and $s \geq t$, then

$$
\chi_{0, s, t}(G)=s\left(\chi^{\prime}(G)-1\right)+1
$$

(3) If $\Delta(G) \geq 2, G$ is of class 2 and $s<t$, then

$$
s(\Delta(G)-1)+t+1 \leq \chi_{0, s, t}(G) \leq \min \{s \Delta(G)+t+1, t \Delta(G)+1\} .
$$

Theorem 3.5. Let G be a graph. Then
(a) if $f(v)=d(v)$ for all $v \in V(G)$, then $\chi_{0, s, t ; f}(G)=t+1$;
(b) otherwise,
(1) If $\Delta_{f}(G) \geq 2$ and G is of $C_{f} 1$, then

$$
\chi_{0, s, t ; f}(G)= \begin{cases}s\left(\Delta_{f}(G)-1\right)+1 & \text { if } s \geq 2 t \\ s\left(\Delta_{f}(G)-1\right)+2 t-s+1 & \text { if } t \leq s<2 t \\ s\left(\Delta_{f}(G)-1\right)+t+1 & \text { if } s<t\end{cases}
$$

(2) If $\Delta_{f}(G) \geq 2, G$ is of $C_{f} 2$ and $s \geq t$, then

$$
\chi_{0, s, t ; f}(G)=s\left(\chi_{f}^{\prime}(G)-1\right)+1
$$

(3) If $\Delta_{f}(G) \geq 2, G$ is of $C_{f} 2$ and $s<t$, then
$s\left(\Delta_{f}(G)-1\right)+t+1 \leq \chi_{0, s, t ; f}(G) \leq \min \left\{s \Delta_{f}(G)+t+1, t \Delta_{f}(G)+1\right\}$.
Proof. (a) If $f(v)=d(v)$ for all $v \in V(G)$, then we can color all the vertices with color 0 and all the edges with color t. Then we obtain an $[0, s, t ; f]$ coloring of G with $t+1$ colors. On the other hand, by Theorem 2.7 we get $\chi_{0, s, t ; f}(G) \geq t+1$. Therefore, $\chi_{0, s, t ; f}(G)=t+1$.
(b) If there is a vertex $u \in V(G)$ such that $f(u)<d(u)$, then the proof is similar to the proof in [4] (see A. Kemnitz, M. Marangio [4] Lemmas 7, 8, 9) just using $\Delta_{f}(G)$ instead of $\Delta(G)$. We don't mention it here.

$$
\text { 4. } \min \{r, s, t\}=1
$$

In this section we will consider the three parameters $\chi_{r, 1,1 ; f}(G), \chi_{1, s, 1 ; f}(G)$, $\chi_{1,1, t ; f}(G)$, especially the last one.

Theorem 4.1. If $r \geq \frac{\chi_{f}^{\prime}(G)}{\chi(G)-1}+1$, then $\chi_{r, 1,1 ; f}(G)=r(\chi(G)-1)+1$.

Proof. Let c be an $[r, 0,0]$-coloring of G with colors $0, r, \ldots, r(\chi(G)-1)$. The assumption implies $\chi_{f}^{\prime}(G) \leq(r-1)(\chi(G)-1)$. So we can use the colors which are not used by c to f-color the edges of G. Then we get an $[r, 1,1 ; f]$-coloring of G. The lower bound can be got by Theorem 2.7. Therefore, $\chi_{r, 1,1 ; f}(G)=$ $r(\chi(G)-1)+1$.

Theorem 4.2. If $f(v)=d(v)$ for all $v \in V(G)$, then $\chi_{1, s, 1 ; f}(G)=\chi(G)+1$. If there is a vertex $u \in V(G)$ such that $f(u)<d(u)$ but $s \geq \frac{\chi(G)}{\chi_{f}^{\prime}(G)-1}+1$, then $\chi_{1, s, 1 ; f}(G)=s\left(\chi_{f}^{\prime}(G)-1\right)+1$.
Proof. (1) If $f(v)=d(v)$ for all $v \in V(G)$, then just one color can f-coloring the edges of G. Suppose c is a proper vertex coloring of G with $\chi(G)$ colors. Then we assign color $\chi(G)$ to all the edges of G and obtain an $[1, s, 1 ; f]$-coloring of G. $\chi_{1, s, 1 ; f} \geq \chi(G)+1$ is obvious by Theorem 2.7.
(2) If there is a vertex $u \in V(G)$ such that $f(u)<d(u)$, then $\chi_{f}^{\prime}(G) \geq 2$. By $s \geq \frac{\chi(G)}{\chi_{f}^{\prime}(G)-1}+1$ we have $\chi(G) \leq(s-1)\left(\chi_{f}^{\prime}(G)-1\right)$. Therefore, we can use the $(s-1)\left(\chi_{f}^{\prime}(G)-1\right)$ colors which are not used in the f-coloring of G to obtain a proper vertex coloring of G. Then we get an $[1, s, 1 ; f]$-coloring of G with $s\left(\chi_{f}^{\prime}(G)-1\right)+1$ colors. The lower bound can be got by Theorem 2.7.

Lemma 4.3. Let G be a graph and let t and f be defined as in the definition of $[r, s, t ; f]$-coloring. Then we have

$$
\Delta_{f}(G)+t \leq \chi_{1,1, t ; f}(G) \leq \chi(G)+\chi_{f}^{\prime}(G)+t-1
$$

Proof. The upper bound can be obtained by Theorem 2.7. On the other hand, by Lemma 2.2 we get $\chi_{1,1, t ; f}(G) \geq \chi_{0,1, t ; f}(G)$. Then by Theorem 3.5 we obtain the lower bound.

When we investigate the $[r, s, t ; f]$-chromatic number under the special case $r=s=1$, we can improve the result in Lemma 4.3 as Theorem 4.6.

Lemma 4.4 ([7]). Let G be a complete graph K_{n}. If k and n are odd integers, $f(v)=k$ and $k \mid d(v)$ for all $v \in V(G)$, then G is of $C_{f} 2$. Otherwise, G is of $C_{f} 1$.

Lemma 4.5 ([2], Brook's Theorem). $\chi(G) \leq \Delta(G)+1$ holds for every graph G. Moreover, $\chi(G)=\Delta(G)+1$ if and only if either $\Delta(G) \neq 2$ and G has a complete graph $K_{\Delta(G)+1}$ as a connected component, or $\Delta(G)=2$ and G has an odd cycle as a connected component.

Theorem 4.6. Let G be a graph and let t, f be defined as in the definition of $[r, s, t ; f]$-coloring. Then we have

$$
\chi_{1,1, t ; f}(G) \leq \Delta(G)+\Delta_{f}(G)+t
$$

Proof. We now consider three cases depending on G.
Case 1. If G is neither a complete graph nor an odd cycle, then $\chi(G) \leq \Delta(G)$ by Lemma 4.5 and $\chi_{f}^{\prime}(G) \leq \Delta_{f}(G)+1$ by Lemma 2.6. Hence, the inequality is true.

Case 2. G is the complete graph K_{n} on n vertices. By Lemma 4.4 we know that K_{n} is of $C_{f} 1$ except one case. Then we have $\chi_{f}^{\prime}(G)=\Delta_{f}(G)$. By Lemma 4.3, we have $\chi_{1,1, t ; f}(G) \leq(\Delta(G)+1)+\Delta_{f}(G)+t-1=\Delta(G)+\Delta_{f}(G)+t$. Now we assume that k and n are odd integers, $f(v)=k$ and $k \mid d(v)$ for all $v \in V(G)$. Then Lemma 4.4 implies that G is of $C_{f} 2$.
Case 2.1. If $f(v)=d(v)$, then we have $\chi_{f}^{\prime}(G)=\Delta_{f}(G)=1$. We can assign all the edges with one color $n+t-1$ and assign the vertices differently with colors $0,1, \ldots, n-1$. Therefore, we obtain an $[1,1, t ; f]$-coloring of K_{n} with $n+t=\Delta\left(K_{n}\right)+\Delta_{f}\left(K_{n}\right)+t$ colors.
Case 2.2. If $f(v) \equiv 1$, then it becomes an $[1,1, t]$-coloring of K_{n}. Let c be a proper edge coloring of K_{n} with n colors and $M_{i}(1 \leq i \leq n)$ be the matchings corresponding to the color classes. Further more, each M_{i} contains all vertices but one v_{i} (We know that it is true for K_{n} when n is odd, because $\chi^{\prime}\left(K_{n}\right)=n=\Delta+1,\left|M_{i}\right| \leq \frac{n-1}{2}, 1 \leq i \leq n$, and if there is an integer j such that $\left|M_{j}\right|<\frac{n-1}{2}$, then $\chi^{\prime}\left(K_{n}\right) \frac{n-1}{2}>\varepsilon\left(K_{n}\right)=\frac{n(n-1)}{2}$, a contradiction). For $1 \leq i \leq n$, color the vertex v_{i} with color $n-i$ and the edges in M_{i} with $n+t-3+i$. Since v_{1} is not incident to M_{1}, then we obtain an [$\left.1,1, t ; 1\right]$-coloring of K_{n} with $2 n+t-3=\Delta\left(K_{n}\right)+\Delta_{1}\left(K_{n}\right)+t$ colors.
Case 2.3. If $1<f(v)<d(v)$, then $f(v)=k \geq 3$ and

$$
\Delta_{f}(G)=\max _{v \in V(G)}\{\lceil d(v) / f(v)\rceil\}=\frac{n-1}{k} \stackrel{\text { def }}{=} 2 \alpha
$$

Let M_{i} be defined as in Case 2.2 and let $M_{1}^{\prime}=M_{1}, M_{i}^{\prime}=\bigcup_{j=2}^{k+1} M_{(i-2) k+j}, 2 \leq$ $i \leq 2 \alpha+1$. Color the vertex v_{i} with color $n-i$ and the edges in M_{i}^{\prime} with color $n+t-3+i, 2 \leq i \leq 2 \alpha+1$. We obtain an $[1,1, t ; f]$-coloring of K_{n} with $n+t-3+(2 \alpha+1)+1=\Delta\left(K_{n}\right)+\Delta_{f}\left(K_{n}\right)+t$ colors.
Case 3. G is an odd cycle. Then $\Delta=2, \Delta_{f}(G)=\max _{v \in V(G)}\left\{\left\lceil\frac{d(v)}{f(v)}\right\rceil\right\} \leq 2$.
Case 3.1. If $f(v)=d(v)$ for all $v \in V(G)$, then $\chi_{f}^{\prime}(G)=\Delta_{f}(G)=1$. We assign colors 0 and 1 to the vertices along the odd cycle alternately and assign color 2 to the final vertex. Then we color all the edges of G with color $\Delta(G)+\Delta_{f}(G)+t-1=t+2$. We obtain an $[1,1, t ; f]$-coloring of G with $\Delta(G)+\Delta_{f}(G)+t$ colors.
Case 3.2. If there is a vertex $u \in V(G)$ such that $f(u)<d(u)=2$, which implies $f(u)=1, \Delta_{f}(G)=2$. We color u with color 2 and the other vertices with 0 and 1 alternately. Denoted by e_{1}, e_{2} the edges incident with u. Next, we color edge e_{1} with color $t+2$, color the edge adjacent with e_{1} but not e_{2}
with color $t+1$. In this order, we color the edges along the cycle with colors $t+2, t+1$ alternately except for coloring e_{2} with color $t+3$. Then we obtain an $[1,1, t ; f]$-coloring of G with $t+4=\Delta(G)+\Delta_{f}(G)+t$ colors.

In any case, we all prove that $\chi_{1,1, t ; f}(G) \leq \Delta(G)+\Delta_{f}(G)+t$.
Lemma 4.7. Let $t \geq 2$ be an integer. Then
(1) If $\delta_{f}(G)=\Delta_{f}(G)$, then $\chi_{1,1, t ; f}(G) \geq \Delta_{f}(G)+t+1$;
(2) If $t \geq \Delta_{f}(G)$, then $\chi_{1,1, t ; f}(G) \geq \Delta_{f}(G)+t+1$.

Proof. Assume that we have an $[1,1, t ; f]$-coloring of G with colors $\{0,1, \ldots$, $\left.\Delta_{f}(G)+t-1\right\}$. We at first prove that the vertex u with $\lceil d(u) / f(u)\rceil=\Delta_{f}(G)$ must be assigned color 0 or $\Delta_{f}(G)+t-1$. Consider u and all the edges which are incident to it. We denote the subgraph by H. Then at least $\Delta_{f}(G)$ colors are needed for $[1,1, t ; f]$-coloring the edges of H. Without loss of generality, we denote the colors by $C_{1}<C_{2}<\cdots<C_{\Delta_{f}}$. If there is an integer i, such that $C_{i}<c(u)<C_{i+1}$, then $C_{\Delta_{f}} \geq 2 t+\Delta_{f}(G)-2>\Delta_{f}(G)+t-1$, a contradiction. If $c(u)<C_{1}$, then $C_{1} \geq t$ which implies that $c(u)=0$ and $C_{1}=t+1, C_{2}=t+2, \ldots, C_{\Delta_{f}}=\Delta_{f}(G)+t-1$; If $c(u)>C_{\Delta_{f}}$, then we can get $c(u)=\Delta_{f}(G)+t-1$ and $C_{1}=t+1, C_{2}=t+2, \ldots, C_{\Delta_{f}}=\Delta_{f}(G)+t-1$ by the same way. Without loss of generality, we assume that $c(u)=0$.
(1) If $\delta_{f}(G)=\Delta_{f}(G)$, then every vertex must be assigned color 0 or $\Delta_{f}(G)+$ $t-1$. Let $u v$ be an edge colored with color $\Delta_{f}(G)+t-1$. We see that v can be labeled by neither 0 nor $\Delta_{f}(G)+t-1$, a contradiction.
(2) If $t \geq \Delta_{f}(G)$, let $u v$ be an edge colored with color t, then $c(v) \geq 2 t \geq$ $\Delta_{f}(G)+t$ by the assumption $t \geq \Delta_{f}(G)$, a contradiction.
Lemma 4.8 ([7]). Let $G(V, E)$ be a bipartite graph and

$$
\Delta_{f}(G)=\max _{v \in V(G)}\{\lceil d(v) / f(v)\rceil\}
$$

Then $\chi_{f}^{\prime}(G)=\Delta_{f}(G)$.
Theorem 4.9. Let $G(V, E)$ be a bipartite graph. Then
(1) $\Delta_{f}(G)+t \leq \chi_{1,1, t ; f}(G) \leq \Delta_{f}(G)+t+1$;
(2) If $t \geq \Delta_{f}(G)$ or $\delta_{f}(G)=\Delta_{f}(G)$, then $\chi_{1,1, t ; f}(G)=\Delta_{f}(G)+t+1$.

Proof. If G is a bipartite graph, then $\chi(G)=2$ and $\chi_{f}^{\prime}(G)=\Delta_{f}(G)$ by Lemma 4.8. Together with Lemma 4.3 we obtain (1).
(2) can be obtained by Lemma 4.7 and (1) of Theorem 4.9.

Note that for a bipartite graph $G, \chi(G)=2$ and $\chi_{f}^{\prime}(G)=\Delta_{f}(G)$. If $t \geq \Delta_{f}(G)$, by (2) of Theorem 4.9 we get $\chi_{1,1, t ; f}(G)=\Delta_{f}(G)+t+1$; If $t=0$, by Theorem 3.1 we get $\chi_{1,1,0 ; f}(G)=\max \left\{2, \Delta_{f}(G)\right\}$; If $1 \leq t<\Delta_{f}(G)$, by (1) of Theorem 4.9 we have $\chi_{1,1, t ; f}(G)=\Delta_{f}(G)+t+1$ or $\Delta_{f}(G)+t$. We may ask what conditions are needed for a bipartite graph G with $1 \leq t<\Delta_{f}(G)$ to satisfy $\chi_{1,1, t ; f}(G)=\Delta_{f}(G)+t+1$?

5. Problems for further research

In this paper, we present a new coloring of a graph G for the first time. We named it an $[r, s, t ; f]$-coloring of G and investigate some interesting properties on the $[r, s, t ; f]$-chromatic number. Some are the generalization of the results about the $[r, s, t]$-coloring and the other are new. However, all the results in our paper are correct for $[r, s, t]$-coloring just let $f(v)=1$ for all $v \in V(G)$.

Finally, we present the following problems for further research.
Problem 1. Find the properties of the f-total coloring as we defined in Section 1. Is there a conjecture like the TCC for it?

Problem 2. Find the other results on the chromatic number $\chi_{1,1, t ; f}(G)$.
Problem 3. Find the exact values of $\chi_{r, s, t ; f}(G)$ for some special graphs.
Acknowledgements. We would like to thank the referees for various comments whose suggestions greatly improved the present paper.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[2] R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941), 194-197.
[3] L. Dekar, et al., [r,s,t]-coloring of trees and bipartite graphs, Discrete Math. (2008) doi:10.1016/j.disc.2008.09.021.
[4] S. L. Hakimi and O. Kariv, A generalization of edge-coloring in graphs, J. Graph Theory 10 (1986), no. 2, 139-154.
[5] F. Havet and M. L. Yu, ($p, 1$)-total labelling of graphs, Discrete Math. 308 (2008), no. 4, 496-513.
[6] A. Kemnitz and M. Marangio, [$r, s, t]$-colorings of graphs, Discrete Math. 307 (2007), no. 2, 199-207.
[7] X. Zhang and G. Liu, The classification of complete graphs K_{n} on f-coloring, J. Appl. Math. Comput. 19 (2005), no. 1-2, 127-133.
[8] , Some sufficient conditions for a graph to be of C_{f} 1, Appl. Math. Lett. 19 (2006), no. 1, 38-44.
[9] , Some graphs of class 1 for f-colorings, Appl. Math. Lett. 21 (2008), no. 1, 23-29.
Yong Yu
School OF Mathematics
Shandong University Jinan
Shandong, 250100, P. R. China
E-mail address: yuyong6834@yahoo.com.cn
Guizhen Liu
School OF Mathematics
Shandong University Jinan
Shandong, 250100, P. R. China
E-mail address: gzliu@sdu.edu.cn

[^0]: Received April 18, 2009; Revised October 13, 2009.
 2010 Mathematics Subject Classification. 05C15.
 Key words and phrases. f-coloring, $[r, s, t]$-coloring, $[r, s, t ; f]$-coloring, f-total coloring, [$r, s, t ; f]$-chromatic number.

 This work is supported by NSFC(10901097), NNSF(10871119) and RSDP(200804220001) of China.

