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Z,-VECTOR BUNDLES OVER 5!

SUNG S00K KIM

1. Introduction

Let G be a cyclic group of order 2 and let S denote the unit circle
in R? with the standard metric. We consider smooth G-vector bun-
dles over S! when G acts on S' by reflection. Then the fixed point
set of G on S! is two points {29,21). Let E|,, and E|,, be the fiber
G-representation spaces at zg and z) respectively. We associate an or-
thogonal G-representation p; : G — O(n) to E|,,, i = 0,1. Let det p;(g),
g # 1, be denoted by det E|z; since det p;(g) is independent of choice of
pi- We obtain the following results.

THEOREM 1. Let E — S' be a G-vector bundle. Its underlying
vector bundle is trivial if and only if det E|zq = det E|z;.

THEOREM 2. Let (V;,V)) be an ordered pair of G- representation
spaces of the same dimension. Then there exist a G-vector bundle E
over S such that (Vy, V1) is isomorphic to (E|,,, El.,).

THEOREM 3. Let E and E' be G-vector bundles over S'. They are
isomorphic if and only if (E|,,, E|.,) is isomorphic to (E'|z, E'|z ).
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2. Proof of Theorems

To prove our Theorems we need the following Proposition which we
proved in [3]. In our Proposition, G is a compact Lie group.
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PROPOSITION. A smooth G-line bundle L — S' is equivariantly iso-
morphic to a product bundle S(V) x 6 — S(V) or S(V) xz, 6 —
S(V)/Zy = P(V) according as the G-line bundle L — S' is trivial
or not when we forget the action. Here S(V) denotes the unit circle
of a real 2-dimensional orthogonal G-module V', § a real 1-dimensional
G-module and Z; acts on S(V) and § as scalar multiplication.

Also we need the following Lemma.

LEMMA. Suppose G acts on S! by reflection. Then any smooth G-
vector bundle E over S! is isomorphic to the Whitney sum of smooth
G-line bundles.

Proof. Let {9,271} be the fixed set of the G-action on S'. Choose an
eigenvector v; of E at z; and connect vy and v; by a smooth path to
get a non-zero cross section of E on the upper half circle. Extend it to
a cross section of E on S! by using the G-action. The resulting cross
section on S! may not be continuous, but the lines generated by it form
a smooth G-line subbundle L of E. So we can decompose E = E' @ L
where E' is a smooth G-vector bundle. Apply the same argument to E’
and so on. Then the lemma follows.

Proof of Theorem 1. By Lemma, E is isomorphic to By E; & - -QE,,
where F; is a G-line bundle. By Proposition E; is isomorphic to a
product bundle §' x § — S! or S§! xz, § = S*. So E can be expressed

by
a(S' x Ry) @ b(S' x R @ ¢ S? xz, Ry) ®d(S! xz, R_),

where a-+b+c+d = dimension of E and R4 (resp. R_) is the trivial (resp.
non-trivial) one dimensional G-representation space. If the underlying
vector bundle is trivial, then c+d is even because the first Stiefel Whitney
class should vanish.
We have
E|., Eo (a+ )Ry & (b+ R

and

El, = (a+d)Ry & (b+ OR-.



Zy-vector bundles over S! 929

Since ¢ + d is even (—1)*? = (-1)t*c. So det E|,, = det E|,,. Con-
versely, if det E|,, = det E|,,, then (—1)¢ = (=1)°. So ¢ + d is even.
Then the first Stiefel Whitney class vanishes. Therefore our underlying
vector bundle is trivial.

Proof of Theorem 2. Let V, = noRy @ meR_, V; =@ Ry & myR_

180 180
and let n = ny + mo = ny + my;. We consider

E = a(S" xRy) ®b(S' x R_) @ c(S" xz, Ry) B d(S" xz, R_),

180

where a+b+c+d=n.
Since

El, = (a+ )Ry & (b+dR-

and

E)., = (a+d)Ry & (b+ )R-

it suffices to find solutions for the following equation

a+ ¢ = nyp,

b+d:m0,

at+d=m
and

b+c=m1.

So if ng > n;, we can choose a = n;,b = my,c = ng —ny,d =0 and if
ng < np, we can choose a = ng,b =my,c=0,d = ny — ng.

Proof of Theorem 3. The necessity is trivial. Let E and E' be G-
vector bundles over S' and (E|,,, E|,,) = (E'|,,,E'l,,). Then by
180

Lemma and Proposition F and E' can be expressed as follows:
E = a(S"xRy)@HS? x RO)®c(S? xz, Ry) ® d(S* xz, R_),

where a + b + ¢ + d = dimension of E and

E' 2= d' (8T xRy) @b (S x R_) @ /(8! xz, Ry) ®d'(S* xz, R_),

80
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where a' + b + ¢’ + d' = dimension of E'. But since S! xz, Ry & S* xz,

R_ = S' xR, ®S! xR_, we may assume ¢ = 0 or d = 0 for E and
180

¢ =0ord =0 for E'. First, let’s assume d = 0 and d' = 0. Then we

can write F and E' as follows:

E = h(§ xRODES xRS xz, Ry)

180

and
E' =~ h'(S’1 X R+)€Bk'(51 X ]R{_)EBZ’(S1 Xz, Ry).

180

Then we have the following equations.
Elzo E (h + l)R+ S, kR—-a
E|:, = hRy & (k + )R-,

t80

E', 2= (b + 1Ry & K'R_

and
E'l.,, 2Ry (K +1)R_.

i80

Since E|,, & E'|,, and E|;, = E'|,, it follows that

180 180

h+l=h+1,
k=k,
h=~h
and
k+l=k+1.

We have similar results when ¢ = 0 and ¢/ = 0. Now let’s assume d = 0
and ¢/ = 0. Then we can write E and E' as follows:

E= h(S’l X R+)€Bk(51 X ]R_)EBI(S1 Xz, R4)
and

E' = B(S' xRy) @K (S xR @ I'(S! xz, R-).

t8o
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Then we have the following equations.

El,, 2 (h+ )R @kR_,

E|Z1 g hR+ D (k + Z)R*a
E'l,, 2 'Ry o (K +1HR_

and
E'l,, 2 (R +Ry @ E'R_.

Since E|,, = E'|,, and E|,, = E'|,, it follows that

h+1=~h,
k=k+1,
h=h +1

and
k+1{=F".

Sol+1" = 0. But [ and I are a nonnegative integer. Therefore [ = I' = 0.
We have similar results when ¢ = 0 and & = 0. So E is 1somorphic to
E'
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