• Title/Summary/Keyword: S-finitely generated

Search Result 35, Processing Time 0.019 seconds

SOME CHARACTERIZATIONS OF COHEN-MACAULAY MODULES IN DIMENSION > s

  • Dung, Nguyen Thi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.519-530
    • /
    • 2014
  • Let (R,m) be a Noetherian local ring and M a finitely generated R-module. For an integer s > -1, we say that M is Cohen-Macaulay in dimension > s if every system of parameters of M is an M-sequence in dimension > s introduced by Brodmann-Nhan [1]. In this paper, we give some characterizations for Cohen-Macaulay modules in dimension > s in terms of the Noetherian dimension of the local cohomology modules $H^i_m(M)$, the polynomial type of M introduced by Cuong [5] and the multiplicity e($\underline{x}$;M) of M with respect to a system of parameters $\underline{x}$.

A STUDY OF LINKED STAR OPERATIONS

  • Paudel, Lokendra;Tchamna, Simplice
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.837-851
    • /
    • 2021
  • Let R ⊆ L ⊆ S be ring extensions. Two star operations ${\ast}_1{\in}Star(R,S)$, ${\ast}_2{\in}Star(L,S)$ are said to be linked if whenever $A^{{\ast}_1}= R^{{\ast}_1}$ for some finitely generated S-regular R-submodule A of S, then $(AL)^{{\ast}_2}=L^{{\ast}_2}$. We study properties of linked star operations; especially when ${\ast}_1$ and ${\ast}_2$ are strict star operations. We introduce the notion of Prüfer star multiplication extension ($P{\ast}ME$) and we show that under appropriate conditions, if the extension R ⊆ S is $P{\ast}_1ME$ and ${\ast}_1$ is linked to ${\ast}_2$, then L ⊆ S is $P{\ast}_2ME$.

RINGS AND MODULES CHARACTERIZED BY OPPOSITES OF FP-INJECTIVITY

  • Buyukasik, EngIn;Kafkas-DemIrcI, GIzem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.439-450
    • /
    • 2019
  • Let R be a ring with unity. Given modules $M_R$ and $_RN$, $M_R$ is said to be absolutely $_RN$-pure if $M{\otimes}N{\rightarrow}L{\otimes}N$ is a monomorphism for every extension $L_R$ of $M_R$. For a module $M_R$, the subpurity domain of $M_R$ is defined to be the collection of all modules $_RN$ such that $M_R$ is absolutely $_RN$-pure. Clearly $M_R$ is absolutely $_RF$-pure for every flat module $_RF$, and that $M_R$ is FP-injective if the subpurity domain of M is the entire class of left modules. As an opposite of FP-injective modules, $M_R$ is said to be a test for flatness by subpurity (or t.f.b.s. for short) if its subpurity domain is as small as possible, namely, consisting of exactly the flat left modules. Every ring has a right t.f.b.s. module. $R_R$ is t.f.b.s. and every finitely generated right ideal is finitely presented if and only if R is right semihereditary. A domain R is $Pr{\ddot{u}}fer$ if and only if R is t.f.b.s. The rings whose simple right modules are t.f.b.s. or injective are completely characterized. Some necessary conditions for the rings whose right modules are t.f.b.s. or injective are obtained.

ON THE STRUCTURE OF FACTOR LIE ALGEBRAS

  • Arabyani, Homayoon;Panbehkar, Farhad;Safa, Hesam
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.455-461
    • /
    • 2017
  • The Lie algebra analogue of Schur's result which is proved by Moneyhun in 1994, states that if L is a Lie algebra such that dimL/Z(L) = n, then $dimL_{(2)}={\frac{1}{2}}n(n-1)-s$ for some non-negative integer s. In the present paper, we determine the structure of central factor (for s = 0) and the factor Lie algebra $L/Z_2(L)$ (for all $s{\geq}0$) of a finite dimensional nilpotent Lie algebra L, with n-dimensional central factor. Furthermore, by using the concept of n-isoclinism, we discuss an upper bound for the dimension of $L/Z_n(L)$ in terms of $dimL_{(n+1)}$, when the factor Lie algebra $L/Z_n(L)$ is finitely generated and $n{\geq}1$.

ON 𝑺-CLOSED SUBMODULES

  • Durgun, Yilmaz;Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1299
    • /
    • 2017
  • A submodule N of a module M is called ${\mathcal{S}}$-closed (in M) if M/N is nonsingular. It is well-known that the class Closed of short exact sequences determined by closed submodules is a proper class in the sense of Buchsbaum. However, the class $\mathcal{S}-Closed$ of short exact sequences determined by $\mathcal{S}$-closed submodules need not be a proper class. In the first part of the paper, we describe the smallest proper class ${\langle}\mathcal{S-Closed}{\rangle}$ containing $\mathcal{S-Closed}$ in terms of $\mathcal{S}$-closed submodules. We show that this class coincides with the proper classes projectively generated by Goldie torsion modules and coprojectively generated by nonsingular modules. Moreover, for a right nonsingular ring R, it coincides with the proper class generated by neat submodules if and only if R is a right SI-ring. In abelian groups, the elements of this class are exactly torsionsplitting. In the second part, coprojective modules of this class which we call ec-flat modules are also investigated. We prove that injective modules are ec-flat if and only if each injective hull of a Goldie torsion module is projective if and only if every Goldie torsion module embeds in a projective module. For a left Noetherian right nonsingular ring R of which the identity element is a sum of orthogonal primitive idempotents, we prove that the class ${\langle}\mathcal{S-Closed}{\rangle}$ coincides with the class of pure-exact sequences of modules if and only if R is a two-sided hereditary, two-sided $\mathcal{CS}$-ring and every singular right module is a direct sum of finitely presented modules.

$\mathcal{F}_{\mathcal{S}}$-MITTAG-LEFFLER MODULES AND GLOBAL DIMENSION RELATIVE TO $\mathcal{F}_{\mathcal{S}}$-MITTAG-LEFFLER MODULES

  • Chen, Mingzhao;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.961-976
    • /
    • 2019
  • Let R be any commutative ring and S be any multiplicative closed set. We introduce an S-version of $\mathcal{F}$-Mittag-Leffler modules, called $\mathcal{F}_{\mathcal{S}}$-Mittag-Leffler modules, and define the projective dimension with respect to these modules. We give some characterizations of $\mathcal{F}_{\mathcal{S}}$-Mittag-Leffler modules, investigate the relationships between $\mathcal{F}$-Mittag-Leffler modules and $\mathcal{F}_{\mathcal{S}}$-Mittag-Leffler modules, and use these relations to describe noetherian rings and coherent rings, such as R is noetherian if and only if $R_S$ is noetherian and every $\mathcal{F}_{\mathcal{S}}$-Mittag-Leffler module is $\mathcal{F}$-Mittag-Leffler. Besides, we also investigate the $\mathcal{M}^{\mathcal{F}_{\mathcal{S}}$-global dimension of R, and prove that $R_S$ is noetherian if and only if its $\mathcal{M}^{\mathcal{F}_{\mathcal{S}}$-global dimension is zero; $R_S$ is coherent if and only if its $\mathcal{M}^{\mathcal{F}_{\mathcal{S}}$-global dimension is at most one.

Restrictions on the Entries of the Maps in Free Resolutions and $SC_r$-condition

  • Lee, Kisuk
    • Journal of Integrative Natural Science
    • /
    • v.4 no.4
    • /
    • pp.278-281
    • /
    • 2011
  • We discuss an application of 'restrictions on the entries of the maps in the minimal free resolution' and '$SC_r$-condition of modules', and give an alternative proof of the following result of Foxby: Let M be a finitely generated module of dimension over a Noetherian local ring (A,m). Suppose that $\hat{A}$ has no embedded primes. If A is not Gorenstein, then ${\mu}_i(m,A){\geq}2$ for all i ${\geq}$ dimA.

SELF-HOMOTOPY EQUIVALENCES OF MOORE SPACES DEPENDING ON COHOMOTOPY GROUPS

  • Choi, Ho Won;Lee, Kee Young;Oh, Hyung Seok
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1371-1385
    • /
    • 2019
  • Given a topological space X and a non-negative integer k, ${\varepsilon}^{\sharp}_k(X)$ is the set of all self-homotopy equivalences of X that do not change maps from X to an t-sphere $S^t$ homotopically by the composition for all $t{\geq}k$. This set is a subgroup of the self-homotopy equivalence group ${\varepsilon}(X)$. We find certain homotopic tools for computations of ${\varepsilon}^{\sharp}_k(X)$. Using these results, we determine ${\varepsilon}^{\sharp}_k(M(G,n))$ for $k{\geq}n$, where M(G, n) is a Moore space type of (G, n) for a finitely generated abelian group G.

ON NONNIL-SFT RINGS

  • Ali Benhissi;Abdelamir Dabbabi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.663-677
    • /
    • 2023
  • The purpose of this paper is to introduce a new class of rings containing the class of SFT-rings and contained in the class of rings with Noetherian prime spectrum. Let A be a commutative ring with unit and I be an ideal of A. We say that I is SFT if there exist an integer k ≥ 1 and a finitely generated ideal F ⊆ I of A such that xk ∈ F for every x ∈ I. The ring A is said to be nonnil-SFT, if each nonnil-ideal (i.e., not contained in the nilradical of A) is SFT. We investigate the nonnil-SFT variant of some well known theorems on SFT-rings. Also we study the transfer of this property to Nagata's idealization and the amalgamation algebra along an ideal. Many examples are given. In fact, using the amalgamation construction, we give an infinite family of nonnil-SFT rings which are not SFT.

CONEAT SUBMODULES AND CONEAT-FLAT MODULES

  • Buyukasik, Engin;Durgun, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1305-1319
    • /
    • 2014
  • A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism $N{\rightarrow}S$ can be extended to a homomorphism $M{\rightarrow}S$. M is called coneat-flat if the kernel of any epimorphism $Y{\rightarrow}M{\rightarrow}0$ is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if $M^+$ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.