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RINGS AND MODULES CHARACTERIZED BY OPPOSITES

OF FP-INJECTIVITY

Engİn Büyükaşık and Gİzem Kafkas-Demİrcİ

Abstract. Let R be a ring with unity. Given modules MR and RN , MR

is said to be absolutely RN -pure if M ⊗N → L⊗N is a monomorphism
for every extension LR of MR. For a module MR, the subpurity domain

of MR is defined to be the collection of all modules RN such that MR

is absolutely RN -pure. Clearly MR is absolutely RF -pure for every flat

module RF , and that MR is FP-injective if the subpurity domain of M is

the entire class of left modules. As an opposite of FP-injective modules,
MR is said to be a test for flatness by subpurity (or t.f.b.s. for short) if

its subpurity domain is as small as possible, namely, consisting of exactly

the flat left modules. Every ring has a right t.f.b.s. module. RR is
t.f.b.s. and every finitely generated right ideal is finitely presented if and

only if R is right semihereditary. A domain R is Prüfer if and only if R is

t.f.b.s. The rings whose simple right modules are t.f.b.s. or injective are
completely characterized. Some necessary conditions for the rings whose

right modules are t.f.b.s. or injective are obtained.

1. Introduction and preliminaries

Throughout, R will denote an associative ring with identity, and modules will
be unital right modules unless otherwise stated. As usual, we denote by R-Mod
and Mod-R the categories of left and right modules, respectively. Following [7],
given a right module M and a left module N , M is said to be absolutely N -
pure if M ⊗N → L⊗N is a monomorphism for every extension L of M . The
absolutely pure domain of a left module N is defined as the collection of all
right modules M such that M is absolutely N -pure. Absolutely pure domain
of any module consists of the class of FP-injective modules. A left module N
is said to be f -indigent if its absolutely pure domain is exactly the class of
FP-injective right modules.

In this paper, we investigate the subpurity domain of a right module M as
the collection of all left modules N such that M is absolutely N -pure. Flat
left modules are contained in the subpurity domain of any right module. In
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this setting, a right module M is FP-injective if and only if its subpurity do-
main consists of the entire class R-Mod. From this point of view, a reasonable
opposite to FP-injectivity in this context is obtained by considering modules
whose subpurity domain consists only of flat left modules. A right module M
is called test for flatness by subpurity (t.f.b.s.) if the subpurity domain of M is
exactly the class of flat left modules.

The paper is inspired by similar ideas and notions that have been appeared
in several papers, for example [1, 2, 4, 5, 7]. A module M is said to be A-
subinjective if for every extension B of A any homomorphism ϕ : A→M can
be extended to a homomorphism φ : B → M (see [4]). It is easy to see that
M is injective if and only if M is A-subinjective for each module A. A module
M is called indigent if M is subinjective relative to only injective modules. In
[1], a module A is said to be a test for injectivity by subinjectivity (or t.i.b.s.)
if whenever a module M is A-subinjective implies M is injective.

The paper is organized as follows.
In Section 2, we prove some properties of subpurity domains and absolutely

pure domains. The ring is regular if and only if the subpurity domain of any
right module is closed under homomorphic images. The ring is right semihered-
itary if and only if the absolutely pure domain of any left module is closed under
homomorphic images. The subpurity domain of any flat right module is closed
under submodules.

In Section 3, we prove that every ring has a right t.f.b.s. module. All right
modules are t.f.b.s. if and only if the ring is von Neumann regular. The ring is
t.f.b.s. as a right module and right S-ring (i.e., finitely generated right ideals are
finitely presented) if and only if R is right semihereditary. Hence a commutative
domain R is Prüfer if and only if R is t.f.b.s. The rings whose simple right
modules are t.f.b.s. or FP -injective are completely characterized.

For a ring R, by Lemma 5.1, each right module is t.f.b.s. or FP -injective
if and only if each left module is f-indigent or flat. In Section 4, for a right
Noetherian ring whose right modules are t.f.b.s. or injective some necessary
conditions are proved.

For a ring R and a right module M , E(M), Rad(M), Soc(M), Z(M) will
respectively denote the injective hull, Jacobson radical, socle, singular submod-
ule of M . The character module HomZ(M,Q/Z) will be denoted by M+. By
N ≤ M we mean that N is a submodule of M . For additional terminology,
concepts and results not mentioned here, we refer the reader to [3], [10] and
[12].

2. The notion of subpurity domain of a module

In this section we investigate some properties of subpurity domains. First,
we recall the characterization of FP-injective modules. Note that FP -injective
modules are also known as absolutely pure modules in the literature.
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Proposition 2.1 ([8, 6.2.3]). The following statements are equivalent for a
right module N .

(1) N is FP-injective.
(2) N ⊗M → E(N) ⊗M is a monomorphism for any finitely presented

left module M .
(3) N ⊗M → E(N)⊗M is a monomorphism for each left module M .
(4) Ext1

R(F,N) = 0 for each finitely presented right module F .

Definition 2.2. (1) Given a right module M and a left module N , M is
absolutely N -pure if for every right module K with M ≤ K the map i⊗ 1N :
M ⊗N → K ⊗N is a monomorphism, where i : M → K is the inclusion map
and 1N is the identity map on N .

(2) The subpurity domain of a module MR, denoted as Sp(M), is defined to
be the collection of all modules RN such that M is absolutely N -pure. That
is,

Sp(M) = {N ∈ R-Mod |M is absolutely N -pure}.

The proof of the following is standard, so the proof is omitted here.

Lemma 2.3. The following statements are equivalent for a right module M
and a left module N .

(1) M is absolutely N -pure.
(2) For every right R-module K and essential submodule M of K, the

sequence 0→M ⊗N → K ⊗N is exact.
(3) There is an FP-injective extension Q of M such that 0 → M ⊗ N →

Q⊗N is exact.
(4) The sequence 0→M ⊗N → E(M)⊗N is exact.
(5) The sequence 0→M⊗N → E⊗N is exact for some injective extension

E of M .

Proposition 2.4. The following properties hold for a right module M .

(1) M is absolutely ⊕j∈INj-pure if and only if M is absolutely Nj-pure
for each j ∈ I.

(2) If K is a pure submodule of the left module N , then M is absolutely
N -pure if and only if M is absolutely K-pure and absolutely N/K-pure.

Proof. (1) We have M ⊗ (⊕j∈INj) ∼= ⊕j∈I(M ⊗Nj). Therefore i ⊗ 1⊕j∈INj
:

M ⊗ (⊕j∈INj)→ E(M)⊗ (⊕j∈INj) is a monomorphism if and only if i⊗ 1Nj

is a monomorphism for each j ∈ I. This proves (1).
(2) By [7, Proposition 2.5]. �

Proposition 2.5.
⋂

M∈Mod-R Sp(M) = {N ∈ R-Mod |N is flat}.

Proof. Let N ∈
⋂

M∈Mod-R Sp(M). Then N ∈ Sp(I) for each right ideal I of
R, i.e., I⊗N → R⊗N is a monomorphism. Hence N is flat by [12, Proposition
3.53]. The reverse containment is obvious. �
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Proposition 2.6. The following properties hold for any right module M and
left module N .

(1) ⊕n
i=1Mi is absolutely N -pure if and only if Mi is absolutely N -pure for

each i = 1, 2, . . . , n.
(2) If R is right Noetherian and I is any index set, then ⊕Mi is absolutely

N -pure if and only if Mi is absolutely N -pure for each i ∈ I.

Proof. (1) Set M = ⊕n
i=1Mi and suppose that M is absolutely N -pure. We

have E(M) = ⊕n
i=1E(Mi) and (⊕n

i=1Mi)⊗N ∼= ⊕n
i=1(Mi⊗N). Then (⊕n

i=1Mi)
⊗N → (⊕n

i=1E(Mi))⊗N is a monomorphism if and only if Mi⊗N → E(Mi)⊗
N is a monomorphism for each i = 1, . . . , n. Therefore M is absolutely N -pure
if and only if Mi is absolutely N -pure for each i = 1, . . . , n.

(2) Since R is Noetherian, E(M) = ⊕i∈IE(Mi). The rest of the proof is
similar to that of (1). �

The following is a consequence of Proposition 2.6(1).

Corollary 2.7. Sp(⊕n
i=1Mi) = ∩ni=1Sp(Mi).

In general the subpurity domain is not closed under submodules. For flat
modules we have the following.

Proposition 2.8. Let F be a flat right module. Suppose that F is absolutely
M -pure for some left module M . Then F is absolutely K-pure for any submod-
ule K of M . In other words, the subpurity domain of any flat right module is
closed under submodules.

Proof. Let K be a submodule of M . We have the commutative diagram:

F ⊗K

f

��

h // E(F )⊗K

t

��
F ⊗M

g // E(F )⊗M

induced by the inclusions F → E(F ) and K → M . Since F is flat and abso-
lutely M -pure, the maps f and g are monomorphisms. Then by the commuta-
tivity of the diagram gf = th is a monomorphism. Then h is a monomorphism,
and so F is absolutely K-pure. �

Proposition 2.9. A ring R is regular if and only if the subpurity domain of
each right module is closed under homomorphic images.

Proof. Necessity is clear, since every right and left module is flat over regular
rings. Conversely suppose the subpurity of any right module is closed under
homomorphic images. Since flat left modules are contained in the subpurity
domain of any right module, the hypothesis implies that homomorphic images
of flat left modules are closed under homomorphic images. This implies that
every left module is flat, because every left module is a homomorphic image of
a flat (projective) left module. Therefore R is a regular ring. �
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In [7], for a left module N , the author investigate the absolutely pure domain
of N as the collection of right modules M such that M is absolutely N -pure. In
the following result we characterize when the absolutely pure domain is closed
under quotient modules.

Proposition 2.10. A ring R is right semihereditary if and only if whenever
a right module M is absolutely N -pure for some left module N , then M/K is
absolutely N -pure for each K ≤M .

Proof. Suppose R is right semihereditary and suppose a right module M is
absolutely N -pure for some left module N . Let K ≤ M and let E be the
injective hull of M . Then we have the following commutative diagram:

0 // K

f

��

// M

g

��

// M/K

h

��

// 0

0 // K // E // E/K // 0

with f is an isomorphism. Applying − ⊗ N to the diagram above gives the
following commutative diagram:

0 // K ⊗N

f⊗1N

��

// M ⊗N

g⊗1N

��

// M/K ⊗N

h⊗1N

��

// 0

0 // K ⊗N // E ⊗N // E/K ⊗N // 0

Since f⊗1N and g⊗1N is a monomorphism, h⊗1N is a monomorphism by the
Five Lemma. On the other hand, E/K is FP -injective by the semihereditary
condition (see [11, Theorem 2]). Hence M/K is absolutely N -pure by Lemma
2.3.

Conversely, let M be an FP-injective right module. Then M is absolutely
N -pure for every left module N . By the hypothesis M/K is also absolutely
N -pure for each K ≤ M and left module N . Then M/K is FP-injective by
Proposition 2.3. Hence R is right semihereditary by [11, Theorem 2]. �

The following proposition summarizes various known results that will be
used in the sequel.

Proposition 2.11. Let R be a ring and M , N be right modules. The following
are hold.

(1) [11, Theorem 3] R is right Noetherian if and only if each FP-injective
right module is injective.

(2) [9, Proposition 2.3] If R is nonsingular commutative, then all nonsin-
gular modules are flat if and only if R is semihereditary.

(3) [8, Theorem 3.2.10] M is flat if and only if M+ is injective.
(4) [8, Theorem 3.2.16] If R is right Noetherian, M is injective if and only

if M+ is flat.
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(5) [8, Theorem 3.2.11] If M is finitely presented, then

M ⊗R N
+ ∼= HomR(MR, NR)+.

(6) [11, Theorem 3] A ring R is right Noetherian if and only if every FP-
injective right module is injective.

3. Test modules for flatness

It is clear that a right R-module M is FP-injective if and only if Sp(M) =
R-Mod. On the other hand, it makes sense to consider the opposite case: What
are the modules whose subpurity domain is as small as possible? It is clear
that, Sp(M) consists of the class of left flat modules.

Definition 3.1. A right R-module M is called test for flatness by subpurity
(t.f.b.s.) if Sp(MR) consists of only flat left R-modules.

Proposition 3.2. The following hold for a right R-module M .

(1) If M has a pure submodule N which is t.f.b.s., then M is t.f.b.s.
(2) If M is t.f.b.s., then M ⊕N is t.f.b.s. for any module N .
(3) If A be an FP-injective right module, then M ⊕A is t.f.b.s. if and only

if M is t.f.b.s.
(4) M is t.f.b.s. if and only if Mn is t.f.b.s.
(5) If M is flat and t.f.b.s., then submodules of flat left modules are flat.

Proof. (1) LetM be an absolutelyA-pure module. Then g : M⊗A→ E(M)⊗A
is a monomorphism. As N is pure in M the map f : N ⊗A→M ⊗A is also a
monomorphism. Now the map gf : N ⊗ A → E(M)⊗ A is a monomorphism.
Then N is absolutely A-pure, and so A is flat, because N is t.f.b.s. Hence M
is t.f.b.s.

(2) is clear by Corollary 2.7.
(3) follows from the equality Sp(M ⊕A) = Sp(M) ∩ Sp(A) = Sp(M).
(4) follows from Sp(Mn) = ∩Sp(M) = Sp(M).
(5) is clear by Proposition 2.8. �

Proposition 3.3. Every ring has a t.f.b.s. module.

Proof. Let R be a ring and N = ⊕I, where I ranges among finitely generated
right ideals of R. Assume that a right R-module N is absolutely A-pure. Since
I is a direct summand of N , I is absolutely A-pure. So the map I⊗A→ R⊗A
is a monomorphism. Therefore A is flat by [12, Proposition 3.53]. �

We have seen that each ring has a t.f.b.s. module. The rings over which
each module is t.f.b.s. are as follows.

Proposition 3.4. The following statements are equivalent for a ring R.

(1) R is von Neumann regular.
(2) Every right R-module is t.f.b.s.
(3) There exists an FP-injective right t.f.b.s. R-module.
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Proof. (1)⇒ (2) Suppose M is regular and let M be a right R-module. Since
R is regular every right module is flat, in particular E(M)/M is flat. Then
M is a pure submodule of E(M). So that M is FP -injective. Therefore
Sp(M) = R-Mod, i.e., M is t.f.b.s.

(2)⇒ (3) Clear.
(3)⇒ (1) Let M be an absolutely pure t.f.b.s. right R-module. Since M is

FP-injective, Sp(M) = R-Mod. But M is t.f.b.s., hence every left R-module is
flat. This implies R is a von Neumann regular ring. �

Definition 3.5. A ring R is called a right S-ring if every finitely generated
flat right ideal is projective. Right coherent rings, right semihereditary rings,
local rings and semiperfect rings are examples of right S-rings.

Theorem 3.6. A ring R is right t.f.b.s. and a right S-ring if and only if R is
right semihereditary.

Proof. Suppose RR is t.f.b.s. Then every left ideal of R is flat by Proposition
3.2(5). Hence every right ideal of R is flat by [10, Lemma 4.66]. Now the
right S-ring condition implies that every finitely generated right ideal of R is
projective. Therefore, R is right semihereditary.

Conversely, assume that R is right semihereditary. Then R is a right S-ring.
To prove that RR is t.f.b.s., suppose R is absolutely A-pure. Let I be a finitely
generated right ideal of R. Then Rm = I⊕K, because R is right semihereditary.
So I is absolutely A-pure by Proposition 2.6(1). Hence 0→ I ⊗A→ R⊗A is
a monomorphism, and so A is flat. This gives that RR is t.f.b.s. �

By [13, Corollary 3.1], a commutative ring is an S-ring if and only if ann(I)
is finitely generated for each finitely generated flat ideal I. Therefore any
commutative domain is an S-ring. The following is now clear by Theorem 3.6.

Corollary 3.7. A commutative domain is Prüfer if and only if it is t.f.b.s.

Corollary 3.8. Let R be a semiperfect ring. Then the following are equivalent.

(1) RR is t.f.b.s.
(2) RR is t.f.b.s.
(3) R is semihereditary.

There are t.f.b.s. modules which are not t.i.b.s. For example any Prüfer
domain is t.f.b.s. by Corollary 3.7, but R is not t.i.b.s. unless it is Dedekind
by [1, Corollary 20].

Proposition 3.9. If N is right t.i.b.s., then N is right t.f.b.s.

Proof. Let M be an arbitrary left R-module, and suppose that the exact se-
quence 0→ N ⊗M → E(N)⊗M is a monomorphism. Then (E(N)⊗M)+ →
(N ⊗M)+ is epic. By the First Adjoint Isomorphism Theorem, we get the
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following diagram:

(E(N)⊗M)+

∼=
��

// (N ⊗M)+

∼=
��

// 0

Hom(E(N),M+) // Hom(N,M+) // 0

Hence M+ is N -subinjective, and since N is t.i.b.s., M+ is injective. Therefore,
M is flat by Proposition 2.11(3), and so N is t.f.b.s. �

There are t.f.b.s. modules which are not t.i.b.s., for example, every semi-
hereditary ring is t.f.b.s. as a right module over itself. On the other hand, by
[1, Theorem 19], RR is t.i.b.s. if and only if R is right hereditary and right
Noetherian.

In searching the converse of Proposition 3.9, we have the following.

Proposition 3.10. Let R be a right Noetherian ring. If M is a t.f.b.s. right
R-module and E(M) is finitely generated, then M is right t.i.b.s.

Proof. Suppose a right module N is M -subinjective, i.e., the sequence

HomR(E(M), N)→ HomR(M,N)→ 0

is epic. Then we get the following commutative diagram:

0 // HomR(M,N)+

∼=
��

// HomR(E(M), N)+

∼=
��

0 // M ⊗R N
+ // E(M)⊗R N

+

whose columns are isomorphisms by Proposition 2.11(5). Since M is t.f.b.s.,
N+ is flat, and so N is injective by the Noetherianity of R. �

Proposition 3.11. The following are equivalent for a ring R.

(1) RR is t.f.b.s. and Noetherian.
(2) RR is t.i.b.s.

Proof. (1) ⇒ (2) Suppose that RR is t.f.b.s. Since R is right Noetherian, it is
a right S-ring. So RR is right semihereditary by Theorem 3.6. Then R is right
hereditary since R is Noetherian. Hence RR is t.i.b.s. by [1, Theorem 19].

(2) ⇒ (1) By Proposition 3.9 RR is t.f.b.s., and RR is Noetherian by [1,
Theorem 19]. �

4. Rings whose simple modules are FP-injective or t.f.b.s.

In this section, we characterize the rings over which each simple right module
is t.i.b.s. or injective, and the right Noetherian rings whose simple modules are
t.f.b.s. or injective.
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Remark 4.1. Let R be a right Noetherian ring and M be a right R-module.
Let Γ be an ascending chain of injective submodules of M . Then ∪E∈ΓE is
injective by [12, Exercise 2.31 and Theorem 4.10]. Hence, by Zorn’s Lemma, M
contains a largest injective submodule, and so M can be written as M = K⊕N
where K is injective and N has no nonzero injective submodule.

Theorem 4.2. The following are equivalent for a ring R.

(1) Every simple right module is t.i.b.s. or injective.
(2) R is a right V -ring or R is right Noetherian and every simple right

module is t.f.b.s. or FP-injective.
(3) R is a right V -ring or R ∼= A × B, where A is right Artinian with a

unique non-injective simple right R-module and Soc(AA) is homoge-
neous and B is semisimple.

Proof. (1) ⇒ (2) Suppose that R is not a right V -ring and let T be a simple
module which is not injective. Let us show that R is right Noetherian. Since T
is finitely generated, arbitrary direct sum of injective modules is T -subinjective.
So R is right Noetherian. T is t.i.b.s. by the hypothesis. Then T is t.f.b.s. by
Proposition 3.9.

(2) ⇒ (3) Suppose that every simple right module is t.f.b.s. or injective.
Then there exits a non-injective simple right R-module T , which is t.f.b.s. by
the hypothesis. Let U be a simple right R-module which is not isomorphic to T .
Then Hom(T,U) = 0. Hence, by Proposition 2.11(5), T ⊗U+ ∼= Hom(T,U)+ =
0. This means that, T is absolutely U+-pure. Since T is t.f.b.s., U+ is flat.
Thus U is injective by Proposition 2.11(4). This implies that, T is the unique
non-injective simple right R-module up to isomorphism. We shall prove that
R is right semiartinian. Suppose there is a non-zero right R-module M such
that Soc(M) = 0. Let N be a submodule of M . Then Hom(T,N) = 0,
and so 0 = Hom(T,N)+ ∼= T ⊗ N+ by Proposition 2.11(5). That is, T is
absolutely N+-pure. Since T is t.f.b.s., N+ is flat. Hence N is injective again
by Proposition 2.11(4). Therefore N is a direct summand of M , and so M is
semisimple. This is a contradiction. Hence R is right semiartinian, and R is
right Artinian by the right Noetherian assumption. Let RR = e1R⊕· · ·⊕etR⊕
et+1R⊕· · ·⊕ enR, where {e1, . . . , en} is a complete set of primitive orthogonal
idempotents. Without loss of generality we can assume that et+1R, . . . , enR
are the injective minimal right ideals of R. Set A = e1R ⊕ · · · ⊕ etR and
B = et+1R ⊕ · · · ⊕ enR. Then B is a two sided ideal of R and Hom(A,B) ∼=
⊕t

i=1⊕n
j=t+1Hom(eiR, ejR) = 0. Otherwise we have Hom(eiR, ejR) 6= 0 for

some 1 ≤ i ≤ t and t + 1 ≤ j ≤ n, which implies eiR/eiJ ∼= ejR, and so
eiR ∼= ejR, a contradiction because eiR is not injective. Thus A is a two sided
ideal, and R = A⊕B is a ring direct sum.

(3)⇒ (1) If R is a right V -ring, then (1) follows. Assume R ∼= A×B, where
A is right Artinian with a unique non-injective simple right R-module and
Soc(AA) is homogeneous and B is semisimple. Let T be the unique noninjective
simple right R-module and M be a T -subinjective right R-module. We shall
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prove that M is injective. Since R is right Artinian, M = E ⊕ N for some
injective submodule E and a submodule N which does not contain non-zero
injective submodule by Remark 4.1. Suppose that N 6= 0. Note that Soc(N) 6=
0 by the Artinian assumption. Let S be a simple submodule of N . Since S
is not injective, S ∼= T . Let f : T → N be a non-zero homomorphism. Since
M is T -subinjective and N is a direct summand of M , N is T -subinjective.
Therefore, f extends to a homomorphism g : E(S) → N . As f is one to
one and S essential in E(S), g is one to one. Therefore g(E(S)) is a nonzero
injective submodule of N , a contradiction. Hence we must have N = 0 and so
M is injective. Therefore TR is t.i.b.s. �

Over a von Neumann regular ring, every simple right module is t.f.b.s. by
Proposition 3.4. Thus the rings whose simple right modules are t.f.b.s. or
injective need not be right Noetherian.

By [1, Proposition 25], every nonzero cyclic right module is t.i.b.s. if and
only if R is semisimple Artinian. It is natural ask what are the rings whose
simple right modules are t.i.b.s.? Theorem 4.2 in hand, we have the following.

Corollary 4.3. Every simple module is a t.i.b.s. if and only if R is semisimple
Artinian or right Artinian with a unique simple module.

5. Rings whose modules are FP-injective or t.f.b.s.

In this section, we shall prove some necessary conditions for the right Noe-
therian rings whose right modules are t.f.b.s. or FP-injective.

The following lemma is clear from the definitions, so its proof is omitted.

Lemma 5.1. The following conditions are equivalent for a ring R.

(1) Every right R-module is t.f.b.s. or FP-injective.
(2) If AR is absolutely RB-pure, then AR is absolutely pure or RB is flat.
(3) Every left R-module is flat or f-indigent.

Lemma 5.2. Let R be a right Noetherian right V -ring. Suppose every (cyclic)
right module is t.f.b.s. or injective. Then R ∼= A × B, where B is semisimple
and A is right SI with Soc(AA) = 0.

Proof. By the hypothesis, RR is t.f.b.s. or injective. First suppose RR is t.f.b.s.
Then RR is hereditary by Theorem 3.6. We shall prove that every cyclic sin-
gular right module is injective. Let KR be cyclic singular right R module.
Since RR is nonsingular, then Hom(K,R) = 0. Hence, by Proposition 2.11(5),
Hom(K,R)+ ∼= K⊗R+ = 0. This means that K is absolutely R+-pure. There-
fore R+ is flat or K is injective by Lemma 5.1. Since R is right Noetherian and
non-injective, R+ is not flat. So, K is injective. Hence R is a right SI-ring.
Since R is a right Noetherian right V -ring, all semisimple modules are injective,
so Soc(RR) is injective. Then R = A⊕Soc(RR). Set B = Soc(RR). Then B is
a two sided ideal of R and Hom(A,B) = 0. Otherwise, we have Hom(A,B) 6= 0
which implies A

K
∼= S for K ≤ A and simple ideal S. This gives A ∼= K ⊕ S, a
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contradiction because Soc(AA) = 0. Thus A is a two sided ideal and R ∼= A×B
is a ring direct sum.

If RR is not t.f.b.s., then R is right injective. So R is right QF . Hence R is
semisimple Artinian. This completes the proof. �

In [7, Theorem 4.2], the author prove some necessary conditions for a two
sided Noetherian ring over which each right module is flat or f -indigent. In
light of Lemma 5.1 the following corresponding result is a slight generalization
of [7, Theorem 4.2] to right Noetherian rings.

Theorem 5.3. Let R be a right Noetherian ring. Suppose that every right
R-module is t.f.b.s. or injective. Then R ∼= A×B, where B is semisimple, and

(1) A is right hereditary right Artinian serial with homogeneous socle,
J(A)2 = 0 and A has a unique noninjective simple right A-module,
or;

(2) A is a QF -ring that is isomorphic to a matrix ring over a local ring,
or;

(3) A is right SI with Soc(AA) = 0.

Proof. Suppose that every right module is t.f.b.s. or injective. Then R is a right
V -ring or R ∼= A × B, where A is right Artinian with a unique non-injective
simple right module and Soc(AA) is homogeneous and B is semisimple by
Theorem 4.2. Assume that R is not a V -ring, then A is right Artinian. So AA =
e1A⊕ e2A⊕ · · · ⊕ enA, where e1, . . . , en are primitive orthogonal idempotents.
By the hypothesis and the said property A has a unique noninjective minimal
right ideal, say T , up to isomorphism. Also any simple right ideal which is
not isomorphic to T is injective. Therefore for each 1 ≤ i ≤ n, eiA/eiJ is
injective or isomorphic to T . If eiA/eiJ is injective, then Hom(eiA, T ) = 0.
Then Hom(eiA, T )+ ∼= eiA ⊗ T+ = 0 by Proposition 2.11(5). Therefore, eiA
is absolutely T+-pure, since T+ is not flat, eiA is injective by Lemma 5.1. In
this case, we have Soc(eiA) ∼= T , by injectivity of eiA. As the ring is right
Artinian, Soc(eiA) is essential in eiA. So there is a submodule X ≤ eiA such
that X/Soc(eiA) is singular. By singularity, X/Soc(eiA) is not isomorphic to
T , hence it must be injective, and so it is a direct summand of eiA/Soc(eiA).
Since eiA is local, eiA/Soc(eiA) is indecomposable. Therefore X/Soc(eiA) =
eiA/Soc(eiA), and so the composition length of eiA is 2.

Now, if eiA/eiJ ∼= T , then eiA/eiJ is projective. So eiJ is a direct summand
of eiA. But eiA is local, so eiA must be simple.

As a consequence, A is a direct sum of right ideals which are simple or
injective with composition length 2. Hence by [6, 13.5] we obtain A is serial
and J(A)2 = 0. Now, by the hypothesis, RR is hereditary or injective. If
R is hereditary, we obtain (1). If R is injective, then R is right QF by the
Noetherian assumption. Then eiA ∼= ejA for each i and j. That is, A ∼= (eA)n

for some local idempotent e in A. In conclusion we obtain (2).
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If R is a right V -ring, then (3) follows by Lemma 5.2. This completes the
proof. �
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