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FS-MITTAG-LEFFLER MODULES
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Abstract. Let R be any commutative ring and S be any multiplicative
closed set. We introduce an S-version of F-Mittag-Leffler modules, called

FS -Mittag-Leffler modules, and define the projective dimension with re-

spect to these modules. We give some characterizations of FS -Mittag-
Leffler modules, investigate the relationships between F-Mittag-Leffler

modules and FS -Mittag-Leffler modules, and use these relations to de-
scribe noetherian rings and coherent rings, such as R is noetherian if and

only if RS is noetherian and every FS -Mittag-Leffler module is F-Mittag-

Leffler. Besides, we also investigate theMFS -global dimension of R, and
prove that RS is noetherian if and only if its MFS -global dimension is

zero; RS is coherent if and only if its MFS -global dimension is at most

one.

1. Introduction

Throughout this paper, denote by R a commutative ring with identity and
by S any multiplicative closed set. In addition, Mod-R and Mod-RS denote
the categories consisting of all R-modules and RS-modules, respectively.

In recent years, S-versions of some classical notions have attracted the inter-
est of some authors. For example, D. D. Anderson and T. Dumitrescu defined
S-finite modules and S-Noetherian rings in [1], and generalized several well-
known results including classical Cohen’s result and Hilbert basis theorem;
S. Bazzoni and L. Positselski defined S-strongly flat modules and S-almost
perfect rings in [5], and proved that R is S-almost perfect if and only if every
flat module is S-strongly flat; H. Kim, M. O. Kim and J. W. Lim [13] defined
S-SM domains, S-factorial domains, and generalized some well-known results
to these rings, such as a domain is S-factorial if and only if every prime ω-ideal
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is S-principal. In [16] and [17], Lim and Oh studied the S-Noetherian proper-
ties in terms of amalgamated algebra and composite ring extensions. Also, in
[15], the author studied the Nagata ring of S-Noetherian rings. In [4], Baeck
et al. introduced the noncommutative version of S-Noetherian rings. In [14],
Kim and Lim generalized S-principal ideal domains by using star-operations.

In this article, according to [5] and [13], we also use these two S-versions
to generalize the F-Mittag-Leffler. For example, R is S-Noetherian if RS is
noetherian, which is not as same as S-Noetherian rings in [1]; R is S-coherent
if RS is coherent which is also unlike to the definition in [6]; M is S-finitely
generated if MS is finitely generated in Mod-RS , which is also equivalent to
saying that there is a finitely generated submodule N of M such that MS = NS ;
a map β : M → N is S-injective if βS is injective.

Now, we recall some known notions and facts which are necessary for study-
ing F-Mittag-Leffler modules.

Clarke (1976) called an R-module M R-Mittag-Leffler if the natural map
M⊗RΓ →MΓ is injective for any set Γ, or called F-Mittag-Leffler modules by
some authors such as Rothmaler [19] and Herbera [2]. With the investigation
of Goodearl (1972), an R-Mittag-Leffler module M is equivalently to say that,
for any finitely generated submodule N of M , the conclusion N ↪→ M factors
through a finitely presented R-module, and then we can easily see that every
module is R-Mittag-Leffler if and only if R is noetherian. Besides, the notion
of R-Mittag-Leffler modules was also called finitely pure-projective modules
by Azumaya [3]. Rothmaler (1994) showed that Mittag-Leffler modules are
as same as F-Mittag-Leffler modules over von-Neumann rings [18, Theorem
6.7]. Simson (1977) showed that every modules is Mittag-Leffler if and only if
R is pure-semisimple (or called an artinian principle ideal ring [11, Theorem
4.3]) [21, Theorem 6.3]. Cortés-Izurdiaga (2016) investigated F-Mittag-Leffler
modules and their relative dimension, and proved that R is coherent if and only
if every ideal is F-Mittag-Leffler. Besides, F-Mittag-Leffler modules were also
studied by other authors, such as [12].

In the article, we mainly study the properties of FS -Mittag-Leffler modules,
investigate the relative projective dimension and relative global dimension with
respect to these modules, and compare these dimensions with the dimension rel-
ative to F-Mittag-Leffler modules. Some results about Mittag-Leffler modules
or F-Mittag-Leffler modules are developed. Denote by MFS , MF and ML
the class of all of FS -Mittag-Leffler R-modules, F-Mittag-Leffler R-modules
and Mittag-Leffler R-modules respectively.

In Section 2, we introduce some main basic notations, such as S-finitely
generated, S-torsion, S-exact and FS -Mittag-Leffler. We note that there is
a deference between the notion of S-finitely generated here and S-finite in
[1, Definition 1]. Some examples of F-Mittag-Leffler modules are given, and it
is shown that every finitely generated S-torsion module is F-Mittag-Leffler if
and only if it is finitely presented Proposition 2.6.
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In Section 3, we give several characterizations of FS -Mittag-Leffler modules
(Theorem 3.1), and prove some results, such as RS is noetherian if and only if
every R-module is FS -Mittag-Leffler if and only if every finitely generated R-
module is FS -Mittag-Leffler; R is noetherian if and only if RS is noetherian and
MFS =MF . Besides, we also consider some cases FS -Mittag-Leffler modules
is closed under direct products.

In Section 4, we introduce the MFS -projective dimension and MFS -global
dimension. We prove that pdMFSM ≤ n in Mod-R if and only if pdMFMS ≤ n
in Mod-RS for any R-module M . We also give a sufficient condition forMF =
MFS and some examples to show that, although there is a bad relation between
pdMFSM and pdMFM in Mod-R, pdMFSM ≤ n if and only if pdMFM ≤ n
for any R-module M of flat dimension at most n (Example 4.3). In addition,
we show that RS is coherent if and only if glMF .dim(R) ≤ 1 if and only if
every finitely generated R-module is FS -Mittag-Leffler (Corollary 4.9), and
ML = MF = MFS over a von-Neumann ring with S consisting of non-zero
divisors.

2. Basic definitions

In this section, we introduce some notions with respect to the multiplicative
closed set S, such as S-finitely generated modules and S-exact sequences, and
some other definitions we need in this article. In addition, we give some exam-
ples of FS -modules and a property of finitely generated S-torsion modules.

Definition 2.1. Let M and N be R-modules. We say that
(1) M is S-finitely generated (respectively, cyclic, presented) if MS is finitely

generated (respectively, cyclic, presented) as an RS-module.
(2) τS(M) = {x ∈ M | sx = 0 for some s ∈ S} is called the total S-torsion

submodule of M . If τS(M) = 0, M is called S-torsion-free; If τS(M) = M , M
is called S-torsion.

(3) An ideal I of R is S-regular if it contains some elements of S. Thus, any
S-regular ideal is S-cyclic.

(4) An R-homomorphism f : M → N is S-injective (respectively, S-surjec-
tive, S-isomorphic) if the induced RS-homomorphism fS : MS → NS is in-
jective (respectively, surjective, isomorphic). In these case, we say that M
is an S-submodule of N , N is an S-homomorphic image of M and M is S-
isomorphic to N , respectively. We note that f is also injective if M and N are
also RS-modules under the natural ring homomorphism R→ RS .

(5) A sequence A
f→ B

g→ C is S-exact if it induces the exact sequence

0→ AS
fS→ BS

gS→ CS → 0.
(6) An R-homomorphism f : M → N can factor through a module L over

RS if there are two RS-homomorphisms φ : MS → LS and ϕ : LS → NS such
that fS = ϕφ.
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Remark 2.2. The notion of S-finitely generated here is not the same as that
of S-finite in [1]. For example, let R be not an S-Noetherian domain, where
S = R \ 0. Then any ideal is S-finitely generated, but there is an ideal which
is not S-finite.

Lemma 2.3. If M is S-finitely generated, then there is a finitely generated
submodule N of M such that NS = MS.

Proof. By assumption, we set MS =
∑n
i=1RS

mi
1 , and the submodule N gen-

erated by {mi}. Thus NS = MS . �

Recall the notion of X -Mittag-Leffler with respect to a class X of modules;
see [2] or [18].

Definition 2.4. Let M and N be R-modules, and X be a class of modules.
(a) We say that M is an X -Mittag-Leffler module if the natural homomor-

phism φ : M
⊗

R

∏
Xα →

∏
(M

⊗
RXα) is injective for any family {Xα}α∈Γ

of modules in X . If X just consists of a single module X, then M is also called
Q-Mittag-Leffler.

(1) If X =Mod-R, M is called Mittag-Leffler, and denote by ML the class
of all Mittag-Leffler modules.

(2) If X = F , consisting of all of flat R-modules, M is called F-Mittag-
Leffler, and denote by MF the class of all F-Mittag-Leffler modules. See [8].

(3) If X = FS , consisting of all of flat RS-modules, M is called FS -Mittag-
Leffler, and denote by MFS the class of all FS -Mittag-Leffler modules.

(b) We say that M is an X -filtered module if there are an ordinal κ and a
continuous chain of modules, {Mα}α≤κ, consisting of submodules of M , satis-
fying:

(1) M = Mκ, and
(2) each of the modules Mα+1/Mα is isomorphic to an element of X .
In the case, the chain {Mα}α≤κ is called an X -filtration of M , and X is

closed under filtration if it contains all X -filtered modules.
(c) We say that an (S-)exact sequence 0 → A → B → C → 0 is X -

pure if (0 → AS
⊗

RM → BS
⊗

RM → CS
⊗

RM → 0) 0 → A
⊗

RM →
B
⊗

RM → C
⊗

RM → 0 is also exact for any R-module M ∈ X . In this
case, A is called an (S-)pure submodule of B with respect to X .

Example 2.5. (1) Any S-torsion R-module M is FS -Mittag-Leffler. In fact,
for RS-module X, we have M

⊗
RX

∼= MS

⊗
RX = 0.

(2) Let R be any non-coherent domain. Then there is an ideal I of R such
that R/I is not an F-Mittag-Leffler module. Taking S as any multiplicative
closed set such that it intersects I non-empty. As a result, R/I is FS -Mittag-
Leffler.

In the following, we give a characterization of an S-torsion R-module being
F-Mittag-Leffler.
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Proposition 2.6. Let M be a finitely generated and S-torsion R-module. Then
M is F-Mittag-Leffler if and only if it is finitely presented. In particular, if
MF =MFS , then any S-regular ideal is finitely generated.

Proof. (⇐) Trivially.
(⇒) Let M be F-Mittag-Leffler, and consider the identity map I : M →

M . Then there is a finitely presented R-module F such that the map I can
factor through F by [10, Theorem 1], and hence M is a direct summand of F .
Therefore, M is finitely presented. �

3. FS-Mittag-Leffler modules

We begin this section by generalizing, we generalize the result [10, The-
orem 1] to FS (or RS)-Mittag-Leffler modules, and give some properties of
FS -Mittag-Leffler modules and a characterization of noetherian rings, etc.

Theorem 3.1. For any R-module M , the following statements are equivalent:

(a) M is FS-Mittag-Leffler.
(b) The natural homomorphism φ : M

⊗
R(RS)Γ → (MS)Γ is injective for

any set Γ.
(c) The natural homomorphism φ : M

⊗
R(RS)I → (MS)I is injective for

some set I of cardinality at least Card(R).
(d) For any S-finitely generated submodule N of M , the inclusion λ : N ↪→

M can factor through a finitely presented module over RS.
(e) For any finitely generated submodule N of M , the inclusion λ : N ↪→M

can factor through a finitely presented module over RS.
(f) For any finitely generated submodule N of M , the inclusion B ↪→ A

can factor through an S-finitely presented module over RS.

Proof. (a)⇒(b)⇒(c) and (d)⇒(e)⇒(f) are trivial. It only needs to show that
(f)⇒(a) and (c)⇒(d).

(f)⇒(a) Let x =
∑n
i=1mi ⊗ βi ∈ Kerφ, and N be generated by {mi}ni=1.

Thus, there is an S-finitely presented R-module T such that the following
diagram is commutative in Mod-RS :

NS
λS //

ψ !!

MS

TS

ϕ

==

Now, for any family of flat RS-modules {Fα}α∈Γ, we consider the following
commutative diagram in Mod-RS :
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(N
⊗

R

∏
Fα ∼=)NS

⊗
RS

∏
Fα

λS⊗1 //

φ′′

��

ψ⊗1 **

MS

⊗
RS

∏
Fα(∼= M

⊗
R

∏
Fα)

φ

��

TS
⊗

RS

∏
Fα

ϕ⊗1

44

φ′

��∏
(TS

⊗
RS

Fα)

**
(
∏

(N
⊗

R Fα) ∼=)
∏

(NS
⊗

RS
Fα)

[λS⊗1] //
[ψ⊗1]

44

∏
(MS

⊗
RS

Fα)(∼=
∏

(M
⊗

R Fα))

Without loss of generality, we view x as an element of MS

⊗
RS

∏
Fα. Then

[λS ⊗ 1] is injective because all the Fα’s are flat, and φ′ is isomorphic for TS
being finitely presented. Therefore, x = (λS ⊗ 1)(x) = (ϕ ⊗ 1)(ψ ⊗ 1)(x) =
(ϕ⊗ 1)(φ′)−1([ψ ⊗ 1])φ′′(x) = 0 follows from φ′′(x) ∈ Ker[λS ⊗ 1].

(c)⇒(d) If Card(R) is finite, then R is noetherian and RS is a finitely gen-
erated R-module. (d) holds by taking T = N . Thus we assume that Card(R)
is infinite.

Let N be an S-finitely generated submodules of M , R-homomorphism f :
F → M be an epimorphism with FR free, and set K = Kerf . Besides, we
also assume that {xi}i∈ΓM (respectively, {yj}j∈ΓN ) is a generating system of
M (respectively, N). Since NS is finitely generated, we set NS =

∑p
k=1RS

zk
1 ,

where zk ∈ N , and then we can also set zk =
∑pk
t=1 rtytk for all k ≤ p. Thus,

we have N ′ =
∑p
k=1Rzk ⊆ N ′′ =

∑p1
t=1Ryt1 + · · ·+

∑pp
t=1Rytp ⊆ N . It’s easy

to see N ′S = N ′′S = NS . Let q =
∑p
t=1 pt. Therefore, there is a submodule G

generated by {gtk}k≤p,t≤pk of F , and f(gtk) = ytk. It follows that f(G) = N ′′.
Now, we consider the following commutative diagram with exact rows:

K
⊗

R(RS)I

∼=
��

λ⊗1 // F
⊗

R(RS)I

∼=
��

f⊗1 // M
⊗

R(RS)I

∼=
��

// 0

KS

⊗
RS

(RS)I

φ

��

λ⊗1 // FS
⊗

RS
(RS)I

φ′

��

f⊗1 // MS

⊗
RS

(RS)I

φ′′

��

// 0

0 // (KS)I
[λS ] // (FS)I

[fS ] // (MS)I // 0

First, G can be embedded into a finitely generated free submodules F ′ of
F , and F ′ ↪→ F splits. It follows that GS ↪→ F ′S and F ′S ↪→ FS split. In
addition, we can get GI ↪→ (F ′)I ∼= F ′

⊗
RR

I ↪→ F I , and then (GS)I ↪→
(F ′S)I ∼= F ′S

⊗
RS

(RS)I ↪→ (FS)I . Thus, (GS)I ↪→ φ′(FS
⊗

RS
(RS)I). By the

assumption (c), φ′′ is injective, and then 0 → (KS)I

Imφ →
(FS)I

Imφ′ is exact follows

from “Snake Lemma”. So (GS ∩KS) ↪→ Imφ.
Since Card(GS) ≤ Card(RS) = Card(R) because R is infinite, we have

Card(Gs ∩KS) ≤ Card(RS).
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Thus there exists a surjection i 7→ gi of I onto Gs ∩ KS . Let {ul}l∈I′ be a
generating system of RS-module GS ∩ KS , where Card(I ′) ≤ Card(I). On
the other hand, for any l ∈ I ′, we can assume that ul ∈

∑nl
i=1RS

gi
1 , where

gi ∈ {gtk}k≤p,t≤pk . In follows, we consider the inverse image of the element

[ui]i∈I =

{
ui = ul, i ∈ I ′;
0, i 6∈ I ′.

Since of (GS∩KS)I ⊆ Imφ′, there is an element α ∈ FS
⊗

RS
(RS)I such that

[λS ]([ui]i∈I) = φ′(α). Since [fS ]φ′(α) = [fS ][λS ]([ui]i∈I) = 0 and [fS ]φ′(α) =
φ′′(f ⊗ 1)(α), we have α ∈ Ker(f ⊗ 1) for φ′′ being injective. Therefore, we can

find an element β ∈ KS

⊗
RS

(RS)I and write it as β =
∑n
j=1

hj
1 ⊗[r′ji]i∈I , where

{hj}j≤n ⊆ K and r′ji ∈ RS . Thus, φ(β) = [ui]i∈I , and ui = φ(
∑n
j=1

hj
1 ⊗ r

′
ji),

where r′ji denotes the ith element of [r′ji]i∈I for any i. Here, we view r′ji as

[r′i]k∈I =

{
r′ji, k = i;
0, k 6= i.

We claim that for any [gi]i∈I ∈ (GS ∩ KS)I , there is some element β′ =∑n
j=1

hj
1 ⊗ [

rji
sji

]i∈I ∈ KS

⊗
RS

(RS)I such that [gi]i∈I = φ(β′). Let gi =∑ni
j=1 r

′
ijuj for any i ∈ I. Then gi =

∑ni
j=1 r

′
ijφ(

∑n
k=1

hk
1 ⊗r

′
kj) = φ(

∑n
k=1

hk
1 ⊗

(
∑ni
j=1 r

′
ij)r
′
kj). It follows that [gi]i∈I = φ(

∑n
k=1

hk
1 ⊗ [(

∑ni
j=1 r

′
ij)r
′
kj ]i∈I).

Now, we set H to be the submodule generated by {hj}j≤n of K, and then

the submodule HS is generated by {hj1 }j≤n of KS . It is easy to see that
G ∩H ⊆ G ∩K and GS ∩HS = GS ∩KS . In addition, G+H is contained in
some finitely generated free submodule F0 of F , and then GS +HS ⊆ (F0)S .

Now, we obtain an exact sequence 0 −→ GS ∩ KS
λS−→ GS

fS−→ NS −→ 0

from the short exact sequence 0 −→ KS
λS−→ FS

fS−→MS −→ 0. Consequently,
fS induces the following commutative diagram:

(GS/(GS ∩HS) ∼=)(GS +HS)/HS

∼=f′
S //

λ **

N ′′S = NS

(F0)S/HS

ϕ

88

As a result, we finish the proof with F0/H being finitely presented and the
commutative diagram as follows:

NS
λS //

λ·(f ′S)−1 $$

MS

(F0)S/HS

ϕ

::

�

Corollary 3.2. The following statements or conditions are equivalent:
(a) RS is noetherian.
(b) Every R-module is FS-Mittag-Leffler.
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(c) Every finitely generated R-module is FS-Mittag-Leffler.

Proof. (a)⇒(b) If RS is noetherian, then MS is finitely presented in Mod-RS
for any finitely generated module M .

(b)⇒(c) Trivially.
(c)⇒(a) We consider the R-module R/I for any ideal I of R. Then there

is a finitely presented RS-module T such that (R/I)S is a direct summand
of T by Theorem 3.1. Therefore, I is S-finitely generated, and hence RS is
noetherian. �

Through Corollary 3.2, we give some examples, which show that there is an
FS -Mittag-Leffler module but not an F-Mittag-Leffler module.

Example 3.3. (1) Let R be a non-noetherian domain and S = R \ {0} which
means that S consists of all non-zero elements in R. Then any R-module is
FS -Mittag-Leffler, but some modules are not F-Mittag-Leffler.

(2) Let T be any noetherian ring, R = T [{Xi}∞i=1], and S = {Xi}i>k for any
non-negative integral k. Then every R-module is FS -Mittag-Leffler, but some
modules are not F-Mittag-Leffler.

Corollary 3.4. Let RS be a noetherian ring. Then R is noetherian if and only
if MF =MFS .

Proof. It follows from Corollary 3.2 and [18, Corollary 5.14]. �

Corollary 3.5. Let RS be a coherent ring. An R-module M is FS-Mittag-
Leffler if and only if every finitely generated submodule of M is S-finitely pre-
sented.

Proof. It follows from the condition (e) in Theorem 3.1. �

Corollary 3.6. Suppose that RS is von-Neumann regular. The following state-
ments and conditions are equivalent for any R-module M :

(a) The natural homomorphism φ : M
⊗

R

∏
Fα →

∏
(M

⊗
R Fα) is in-

jective for any collection of RS-modules {Fα}α∈Γ.
(b) Every S-finitely generated submodule N of M such that NS is projective

in Mod-RS.
(c) Every finitely generated submodule N of M such that NS is projective

in Mod-RS.

Proof. The equivalences between these conditions follow from the facts that
finitely generated projective modules are finitely presented and finitely pre-
sented flat modules are projective. �

Proposition 3.7. (a) Let M be an R-module. Then the following condi-
tions are equivalent:
(1) M belongs to MFS .
(2) MS belongs to MFS .
(3) MS belongs to MF in Mod-RS.
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(b) If M is FS-Mittag-Leffler, then M/τS(M) is also FS-Mittag-Leffler.
(c) MFS is closed under direct summands and finite direct sums.
(d) Let 0 → A → B → C → 0 be an S-exact sequence of R-modules. If A

and C belong to MFS , then B also belongs to MFS .
(e) Every S-pure submodule of an FS-Mittag-Leffler module M is FS-

Mittag-Leffler.

Proof. (a) These equivalences follow from the following commutative diagram:

M
⊗

R(RS)I

φ

��

∼= // MS

⊗
R(RS)I

φ

��

∼= // MS

⊗
RS

(RS)I

φ

��
(MS)I

= // (MS)I
= // (MS)I

(b) The assertion follows for (M/τS(M))S ∼= MS and (a).
(c) It is known that MF is closed under direct summands and finite direct

sums, and then the assertion follows from (a).
(d) Considering the commutative diagram with exact rows as below:

A
⊗

R(RS)I

φ′

��

// B
⊗

R(RS)I

φ

��

// C
⊗

R(RS)I

φ′′

��
0 // (AS)I // (BS)I // (CS)I

A short diagram chase which use φ′ and φ′′ shows that φ is injective.
(e) It is easy to show the assertion by the similar argument as in (d). �

It was known that every direct product of Mittag-Leffler modules is Mittag-
Leffler if and only if R is self-injective over a von-Neumann ring R. According
to this property, we give a relative result below:

Corollary 3.8. Let RS be a von-Neumann regular ring. Then, RS is self-
injective if and only if

∏
α∈ΓMα is FS-Mittag-Leffler for any family of S-

torsion-free and FS-Mittag-Leffler R-modules {Mα}α∈Γ.

Proof. (⇐) Let {Mα}α∈Γ be any family of Mittag-Leffler RS-modules. Then
Mα is also an FS -Mittag-Leffler and S-torsion-free R-module for any α ∈ Γ.
Thus,

∏
α∈ΓMα is an FS -Mittag-Leffler R-module by assumption. Therefore,∏

α∈ΓMα
∼= (

∏
α∈ΓMα)S is an F-Mittag-Leffler RS-module by Proposition

3.7, and hence is also a Mittag-Leffler RS-module [19, Fact 3.19].
(⇒) Let {Mα}α∈Γ be any family of S-torsion-free and FS -Mittag-Leffler R-

modules. Then 0 → (
∏
α∈ΓMα)S →

∏
α∈Γ(Mα)S is pure exact for RS being

von-Neumann regular. Thus, (
∏
α∈ΓMα)S is a Mittag-Leffler RS-module, and

then
∏
α∈ΓMα is an FS -Mittag-Leffler R-module. �
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4. Global dimension with respect to FS-Mittag-Leffler modules

Since the class MFS is not hereditary, which means that we can not obtain
A ∈ MFS for an exact sequence 0 → A → B → C → 0, where both B
and C are FS -Mittag-Leffler, we can not define the projective dimension of
an R-module with respect to FS -Mittag-Leffler modules by any resolution in
which every module is FS -Mittag-Leffler. Now, we give a modified definition of
the projective dimension of an R-module, and the global dimension of R with
respect to FS -Mittag-Leffler modules [8, Definition 3.1].

Definition 4.1. Let n be a natural number and M be an R-module.
(1) We say that M has projective dimension with respect to FS -Mittag-

Leffler modules (orMFS -projective dimension) at most n, denoted by pdMFSM
≤ n, if there is a projective resolution

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

d0 // M
d−1 // 0

such that Ker(dn−1) is FS -Mittag-Leffler. If such n does not exist, pdMFSM =
∞. In addition, if n is the least such integer, define pdMFSM = n.

(2) The global dimension with respect to FS -Mittag-Leffler modules of R,
denoted by glMFS .dim(R), is the supremum of the set consisting of pdMFSM
for all of R-modules M , that is,

glMFS .dim(R) = sup{pdMFSM |M is an R-module}.

Proposition 4.2. Let n be a natural number and M be an R-module. Then

(a) The MFS -projective dimension of M does not depend on the chosen
projective resolution.

(b) The following conditions are equivalent:
(1) pdMFSM ≤ n.
(2) pdMFMS ≤ n in Mod-RS.

(3) There exists an S-exact sequence 0 −→ K ↪→ Qn−1
δn−1−→ · · · −→

Q1
δ1−→ Q0

δ0−→ M
δ−1−→ 0 such that K is MFS -Mittag-Leffler,

where K = Ker(δn−1) and (Qi)S is projective in Mod-RS for any
i ≤ n− 1.

(c) For any S-exact sequence 0 −→ K
f−→ P

g−→M −→ 0, where PS is a
projective RS-module, then pdMFSM ≤ n+1 if and only if pdMFSK ≤
n.

Proof. (a) Let

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

d0 // M // 0

and

· · · // P ′n
d′n // P ′n−1

d′n−1 // · · · // P ′1
d′1 // P ′0

d′0 // M // 0
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be any two of projective resolutions of M . Set Kn = Ker(dn−1) and K ′n =
Ker(d′n−1), and then Kn ⊕ F ∼= K ′n ⊕ F for some projective R-module F by
[20, Proposition 8.5]. Thus, Kn is FS -Mittag-Leffler if and only if K ′n is FS -
Mittag-Leffler by Proposition 3.7.

(b) (1) ⇔ (2) Let 0 → K → Pn−1 → · · · → P1 → P0 → M → 0 be a
projective resolution of M . Then 0 → KS → (Pn−1)S → · · · → (P1)S →
(P0)S → MS → 0 be a projective resolution of MS in Mod-RS . Therefore, it
follows from Proposition 3.7 that pdMFSM ≤ n is equivalent to pdMFMS ≤ n
in Mod-RS .

(1)⇒ (3) Trivially.
(3)⇒ (2) With the assumption, we obtain an exact sequence of RS-modules

0→ KS ↪→ (Qn−1)S
(δn−1)S−→ · · · −→ (Q1)S

(δ1)S−→ (Q0)S
(δ0)S−→ MS −→ 0,

and KS is F-Mittag-Leffler by Proposition 3.7. Thus, pdMFSMS ≤ n in Mod-
RS .

(c) By assumption, the sequence 0 −→ KS
fS−→ PS

gS−→ MS −→ 0 is exact
in Mod-RS . In addition, it is equivalent to show that pdMFMS ≤ n+ 1 if and
only if pdMFKS ≤ n in Mod-RS by (b). Thus, the assertion holds. �

It is obvious that pdMFSM ≤ pdMFM for any R-module M , but there does
not exist some integer n such that pdMFM ≤ pdMFSM + n for an R-module
M in general. However, there is a good relationship between them for an R-
module M of finite flat dimension and a special multiplicative closed set S. See
the examples below:

Example 4.3. (1) Let R be a domain but not weak n-coherent for some
integer n. We note that if R is weak n-coherent, then R is weak m-coherent
for any integer m ≥ n. Consequently, there is an ideal I of R such that
pdMFR/I > n + 1 [8, Theorem 4.2]. Set a multiplicative closed set S to
intersect I non-empty. Then pdMFSR/I = 0.

(2) Let R be an arithmetical and locally IF ring, but not coherent. Set
S = R\m for any maximal ideal m of R. Then fdRR

Γ = ∞ for any set Γ of
cardinality at least Card(R) by [9, Theorem 1]. Consequently, for any integer n,
there is an ideal I of R such that pdMF I ≥ n, but pdMFS I = 0 by Proposition
4.2 and [8, Corollary 4.3].

(3) Let n be an integer, an R-module M be of flat dimension at most n and
the multiplicative closed set S consist of non-zero divisors. Then pdMFSM ≤ n
if and only if pdMFM ≤ n.

Proof. The sufficiency is obvious. If pdMFSM ≤ n, then the (n− 1)th syzygy
K of any projective resolution of M is flat and FS -Mittag-Leffler. Therefore,
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pdMFM ≤ n follows from K being F-Mittag-Leffler for the commutative dia-
gram below:

0

��
M
⊗

RR
Γ

��

// MΓ

��
0 // M

⊗
R(RS)Γ // (MS)Γ

�

Next, we give a sufficient condition such that MF = MFS , that is, every
FS -Mittag-Leffler module is an F-Mittag-Leffler module.

Proposition 4.4. Let Γ be any set of cardinality at least Card(R), and let the
multiplicative closed set S consist of non-zero divisors. If the exact sequence
0→ RΓ → (RS)Γ → (RS/R)Γ → 0 is MFS–pure, then MF =MFS .

Proof. Let M be an FS -Mittag-Leffler module. Considering the commutative
diagram below:

0

��
0 // M

⊗
RR

Γ

φ

��

δ // M
⊗

R(RS)Γ

φ′

��
MΓ η // (MS)Γ

By assumption, δ and φ′ are injective, and hence it follows from ηφ = φ′δ that
φ is also injective. Thus M is F-Mittag-Leffler. �

Definition 4.5. Let κ be an infinite cardinal and X a class of modules. We
call a module M (κ,X )-free if M has a (κ,X )-dense system of submodules,
that is, a direct family S of submodules of M , satisfying:

(1) S ⊆ X ;
(2) S is closed under well order ascending chains of length smaller than κ,

and
(3) Any subset of M of cardinality smaller than κ is contained in an element

of S.
In this case, we say that X is closed under κ-free modules if every (κ,X )-free

module belongs to X .

If an R-module M is (N0,X )-free, then M =
⋃
Mα∈SMα follows from the

condition (3) in Definition 4.5, for any (N0,X )-dense system S = {Mα}α∈Γ.
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Lemma 4.6 ([8]). Let n be a non-zero natural number and X a class of R-
modules closed under filtration that contains all projective modules. The fol-
lowing statements and conditions are equivalent:

(a) glX .dim(R) ≤ n.
(b) pdX I ≤ n− 1 for any ideal I of R.

If in addition, X is closed under direct summands, finite direct sums and κ-
free modules for some infinite regular cardinal κ, then these conditions are also
equivalent to:

(c) pdX I ≤ n− 1 for any ideal I of R, which can be generated by a set of
cardinality smaller than κ.

Corollary 4.7. Let n be a non-zero natural number. Then glMFS .dim(R) ≤ n
if and only if pdMFS I ≤ n− 1 for any finitely generated ideal I of R.

Proof. According to Proposition 3.7 and Lemma 4.6, it only needs to show that
MFS is closed under filtration and κ-free modules for some infinite regular
cardinal κ.

First, let M be anMFS -filtered module. Replace S and Q byMFS and FS
respectively, then M belongs to MFS by [2, Proposition 1.9].

Finally, assume that M is (N0,MFS )-free, that is, M =
⋃
Mα∈SMα for some

(N0,X )-dense system S = {Mα}α∈Γ. For any submodule N of M generated
by elements {x1, . . . , xn}, there is an element Mα ∈ S such that {x1, . . . , xn} ⊆
Mα. Consequently, N ⊆Mα and M ∈MFS by Theorem 3.1. �

Theorem 4.8. Let n be a non-zero natural number. Then the following state-
ments and conditions are equivalent:

(a) glMFS .dim(R) ≤ n.
(b) glMF .dim(RS) ≤ n.
(c) pdMFSM ≤ n for any S-cyclic R-module M .
(d) pdMFSR/I ≤ n for any finitely generated ideal I of R.
(e) There is a set Γ of cardinality at least Card(R) such that fdR(RS)Γ ≤

n− 1.

Proof. (a)⇔(b) follows from Proposition 4.2.
(a)⇒(c)⇒(d) Trivially.
(d)⇒(a) follows from Proposition 4.2 and Corollary 4.7.
(a)⇔(e) Let M be an R-module. We claim that pdMFSM ≤ n if and only

if TorRn (M, (RS)Γ) = 0, and hence the equivalence between (a) and (c) holds.
We proceed by induction on n. Let 0 → K → P → M → 0 be a projective

resolution of M . Consider the following commutative diagram with exact rows:

K
⊗

R(RS)Γ

φ′

��

ϕ // P
⊗

R(RS)Γ

φ

��

// M
⊗

R(RS)Γ

φ′′

��
0 // (KS)Γ // (PS)Γ // (MS)Γ
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In the case n = 1, since TorR1 (P, (RS)Γ) = 0, we can easily obtain that

TorR1 (M, (RS)Γ) = 0 if and only if ϕ is injective if and only if φ′ is injective if
and only if K is FS -Mittag-Leffler by Theorem 3.1, if and only if pdMFSM ≤ 1
by Proposition 4.2.

Suppose we have shown the claim for some integral n. Then we have
TorRn+1(M, (RS)Γ) = 0 if and only if TorRn (K, (RS)Γ) = 0 if and only if
pdMFSK ≤ n, by induction assumption, if and only if pdMFSM ≤ n+ 1. �

In the case of n = 1 in Theorem 4.8, we have a new characterization of
S-coherent rings:

Corollary 4.9. The following conditions are equivalent:

(a) RS is coherent.
(b) For any family {Fα}α∈Γ of S-divisible and flat R-modules,

∏
α∈Γ Fα is

flat.
(c) For any non-zero integral m, and any family {Fα}α∈Γ of RS-modules

of flat dimension at most m, then fdR
∏
α∈Γ Fα ≤ m.

(d) glMFS .dim(R) ≤ 1.
(e) Every ideal of R is FS-Mittag-Leffler.
(f) Every finitely generated ideal of R is FS-Mittag-Leffler.
(g) Every submodule of an FS-Mittag-Leffler module is FS-Mittag-Leffler.
(h) Every S-submodule of an FS-Mittag-Leffler module is FS-Mittag-Leffler.

Proof. (a)⇔(b)⇔(c) follow from [7, Theorem 2.1].
(a)⇔(d)⇔(e)⇔(f) follow from Theorem 4.8 and [8, Corollary 4.3].
(a)⇔(g) follows from Proposition 4.2 and [8, Corollary 4.3].
(h)⇒(g) Trivially.
(g)⇒(h) follows from Proposition 3.7. �

Corollary 4.10. Let RS be coherent. If MFS =MF , then
(a) R is coherent.
(b) any S-regular ideal of R is finitely presented.

Proof. (a) The conclusion holds by Corollary 4.9 and [8, Corollary 4.3].
(b) Let I be an S-regular ideal. Then R/I is FS -Mittag-Leffler. Thus, I is

finitely presented by Proposition 2.6 and (a). �

Finally, we give some examples to show the relationship among Mittag-
Leffler modules, F-Mittag-Leffler modules and FS -Mittag-Leffler modules.

Example 4.11. (1) Let R be a domain and S = R\{0}, or RS be noetherian
for some S. Then MF = MFS if and only if R is noetherian; MFS = ML
if and only if R is a field or an artinian principle ideal ring [18, Corollary 4.8]
and [11, Theorem 4.3].

(2) Let R be a von-Neumann regular ring, and the multiplicative closed set
S consist of non-zero divisors. Then we have ML =MF =MFS by Example
4.3 and [19, Fact 3.19].
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