DOI QR코드

DOI QR Code

SELF-HOMOTOPY EQUIVALENCES OF MOORE SPACES DEPENDING ON COHOMOTOPY GROUPS

  • Choi, Ho Won (Institute of Natural Science Korea University) ;
  • Lee, Kee Young (Division of Applied Mathematical Sciences Korea University) ;
  • Oh, Hyung Seok (Department of Mathematics Korea University)
  • Received : 2018.10.12
  • Accepted : 2019.01.24
  • Published : 2019.09.01

Abstract

Given a topological space X and a non-negative integer k, ${\varepsilon}^{\sharp}_k(X)$ is the set of all self-homotopy equivalences of X that do not change maps from X to an t-sphere $S^t$ homotopically by the composition for all $t{\geq}k$. This set is a subgroup of the self-homotopy equivalence group ${\varepsilon}(X)$. We find certain homotopic tools for computations of ${\varepsilon}^{\sharp}_k(X)$. Using these results, we determine ${\varepsilon}^{\sharp}_k(M(G,n))$ for $k{\geq}n$, where M(G, n) is a Moore space type of (G, n) for a finitely generated abelian group G.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories. I, Osaka J. Math. 2 (1965), 71-115. http://projecteuclid.org/euclid.ojm/1200691225
  2. M. Arkowitz, The group of self-homotopy equivalences - a survey, in Groups of self-equivalences and related topics (Montreal, PQ, 1988), 170-203, Lecture Notes in Math., 1425, Springer, Berlin, 1990. https://doi.org/10.1007/BFb0083840
  3. M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology Appl. 87 (1998), no. 2, 133-154. https://doi.org/10.1016/S0166-8641(97)00162-4
  4. H. W. Choi and K. Y. Lee, Certain self-homotopy equivalences on wedge products of Moore spaces, Pacific J. Math. 272 (2014), no. 1, 35-57. https://doi.org/10.2140/pjm.2014.272.35
  5. H. W. Choi and K. Y. Lee, Certain numbers on the groups of self-homotopy equivalences, Topology Appl. 181 (2015), 104-111. https://doi.org/10.1016/j.topol.2014.12.004
  6. H. W. Choi, K. Y. Lee, and H. S. Oh, Self-homotopy equivalences related to cohomotopy groups, J. Korean Math. Soc. 54 (2017), no. 2, 399-415. https://doi.org/10.4134/JKMS.j150765
  7. K.-Y. Lee, The groups of self pair homotopy equivalences, J. Korean Math. Soc. 43 (2006), no. 3, 491-506. https://doi.org/10.4134/JKMS.2006.43.3.491
  8. K. Maruyama, ${\pi}{\ast}$-kernels of Lie groups, Trans. Amer. Math. Soc. 358 (2006), no. 6, 2335-2351. https://doi.org/10.1090/S0002-9947-06-04199-7
  9. J. W. Rutter, The group of homotopy self-equivalence classes of CW complexes, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 2, 275-293. https://doi.org/10.1017/S0305004100060576
  10. N. Sawashita, On the group of self-equivalences of the product of spheres, Hiroshima Math. J. 5 (1975), 69-86. http://projecteuclid.org/euclid.hmj/1206136785 https://doi.org/10.32917/hmj/1206136785
  11. A. J. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789-802. http://projecteuclid.org/euclid.pjm/1102971956 https://doi.org/10.2140/pjm.1970.34.789