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SELF-HOMOTOPY EQUIVALENCES OF MOORE SPACES

DEPENDING ON COHOMOTOPY GROUPS

Ho Won Choi, Kee Young Lee, and Hyung Seok Oh

Abstract. Given a topological space X and a non-negative integer k,

E]k(X) is the set of all self-homotopy equivalences of X that do not change

maps from X to an t-sphere St homotopically by the composition for all
t ≥ k. This set is a subgroup of the self-homotopy equivalence group

E(X). We find certain homotopic tools for computations of E]k(X). Using

these results, we determine E]k(M(G,n)) for k ≥ n, where M(G,n) is a
Moore space type of (G,n) for a finitely generated abelian group G.

1. Introduction

For a topological space X, we denote E(X) as the set of all homotopy classes
of self-homotopy equivalences of X. Then E(X) is a subset of [X,X] and has
a group structure given by the composition of homotopy classes. The subset
E(X) has been studied extensively by various authors, including Arkowitz [2],
Arkowitz and Maruyama [3], Lee [5, 7], Rutter [9], Sawashita [10], and Sierad-
ski [11]. Moreover several subgroups of E(X) have also been studied, notably
the group Ek] (X), which consists of all elements of E(X) that induce the iden-

tity homomorphism on homotopy groups πt(X) for t = 0, 1, 2, . . . , k. In our
previous work [4], the first and second authors used homotopy techniques to
calculate these subgroups for the wedge products of Moore spaces.

In [6], we introduced E]k(X), which consists of the elements of E(X) that
induce the identity homomorphism on cohomotopy groups πt(X) for t ≥ k.
Equivalently, it can be defined as follows: For a non-negative integer i, consider
the self-map f : X → X such that g ◦ f is homotopic to g for each g : X → St
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and for each t ≥ k. The set of all homotopy classes of such self-maps of X is

denoted by [X,X]]k, that is,

[X,X]]k =
{
f ∈ [X,X] | g ◦ f ∼ g for each g : X → St for all t ≥ k

}
.

Then

E]k(X) = E(X) ∩ [X,X]]k.

In [6], we proved that E]k(X) is a subgroup of E(X) and, if X is a finite CW-

complex, then E]k(X) has a lower bound whereas Ek] (X) has an upper bound.

Moreover, we calculated E]k(X) for special Moore space X = M(Zp, n) and
co-Moore space X = C(Zp, n).

In this paper, we determine E]k(M(G,n)) completely for k ≥ n, where
M(G,n) is a Moore space type of (G,n) with G a finitely generated abelian

group and n ≥ 3. To solve this problem, we first study a subset Z]k(Y,Z) of

[Y, Z] for spaces Y and Z. The subset Z]k(Y,Z) is defined by the set of all

h ∈ [Y,Z] whose induced homomorphism h]t : πt(Z) → πt(Y ) is the trivial

homomorphism for t ≥ k. Furthermore, we investigate the properties of E]k(X)
for given wedge product space X to prove the following theorem in Section 4:

Theorem 4.3. Let M(G,n) be a Moore space type of (G,n) and G = F ⊕T be
a finitely generated abelian group G with free part F and torsion part T . Then

E]k(M(G,n)) is isomorphic to

E]k(M(F, n))⊕Z]k(M(F, n),M(T, n))⊕Z]k(M(T, n),M(F, n))⊕ E]k(M(T, n)).

From Theorem 4.3, the problem of computing E]k(M(G,n)) reduces to that

of computing the E]k-groups and Z]k-groups for Moore spaces for (possibly in-

finite) cyclic groups. In Section 5, we compute explicitly Z]k-groups for Moore

spaces for (possibly infinite) cyclic groups and combine the relevant E]k-groups
computed in our previous paper and are recorded as Theorem 2.4 to obtain the
following main result:

Corollary 5.13. Let G =

(
m⊕
i=1

Z
)⊕(

s⊕
j=1

Zqj

)
. Then, we have

E]k(M(G,n)) ∼=



GL(m,Z)
m×t⊕

Z2

s⊕
j=1

(
m⊕

Zqj
)⊕

E(M(T, n)) if k ≥ n+ 2,

GL(m,Z)
m×t+t+`⊕

Z2

⊕(
s⊕
j=1

(
m⊕

Zqj
))

if k = n+ 1,

GL(m,Z)
t+⊕̀

Z2

⊕(
s⊕
j=1

(
m⊕

Zqj
))

if k = n,
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where GL(m,Z) is the general linear group of degree m, t is the number of even
qj and ` is the number of pairs {i, j} ⊂ {1, . . . , s} such that both qi and qj are
even and i 6= j.

Throughout this paper, all topological spaces are based and have the based
homotopy type of a CW-complex, and all maps and homotopies preserve base
points. For the spaces X and Y , we denote by [X,Y ] the set of all homotopy
classes of maps from X to Y . No distinction is made between the notation of
a map X → Y and that of its homotopy class in [X,Y ]. When a group G is
generated by a set {a1, . . . , an}, then we denote it by G{a1, . . . , an}. More-
over, when f : X → Y is a map, f ]k : πk(Y ) → πk(X) denote the induced
homomorphisms on the k-th cohomotopy group.

2. Preliminaries

In this section, we review some results provided in [3,6], knowledge of which
would be useful when reading this paper. First, we introduce the following
proposition from [3] that is a basic concept in developing this paper.

Proposition 2.1 (Arkowitz and Maruyama [3]). If X is (k− 1)-connected, Y
is (` − 1)-connected and, further, if k, ` ≥ 2 and dimP ≤ k + ` − 1, then the
projections X ∨ Y → X and X ∨ Y → Y induce a bijection:

[P,X ∨ Y ]→ [P,X]⊕ [P, Y ].

Consider abelian groups G1 and G2 and Moore spaces M1 = M(G1, n1)
and M2 = M(G2, n2). When X = M1 ∨M2, we denote by ij : Mj → X the
inclusion and by pj : X → Mj the projection, where j = 1, 2. If f : X → X,
then we define fjk = Mk → Mj by fjk = pj ◦ f ◦ ik for j, k = 1, 2. Then, by
Proposition 2.1, we have

[X,X] ∼= [M1,M1]⊕ [M1,M2]⊕ [M2,M1]⊕ [M2,M2]

and, from [3, Proposition 2.6], there exists a bijective function θ that assigns
to each f ∈ [X,X] a 2× 2 matrix

θ(f) =

(
f11 f12
f21 f22

)
,

where fjk ∈ [Mk,Mj ]. In addition, we have the following:

(1) θ(f + g) = θ(f) + θ(g), so θ is an isomorphism [X,X]→
⊕

j,k=1,2

[Mk,Mj ];

(2) θ(f◦g) = θ(f)θ(g), where f◦g denotes composition in [X,X] and θ(f)θ(g)
denotes matrix multiplication.

Moreover, for each f ∈ [X,X], the induced homomorphism f ]k on the coho-
motopy groups πk(X) is determined as in the following propositions:

Proposition 2.2 (Proposition 3.4 in [6]). For any f ∈ [M1 ∨M2,M1 ∨M2],
we have

f ]k(γ1, γ2) = (f ]k11 (γ1) + f ]k21 (γ2), f ]k12 (γ1) + f ]k22 (γ2)),
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where γ1 ∈ πk(M1) and γ2 ∈ πk(M2).

Proposition 2.3 (Proposition 3.5 in [6]). If f ∈ E]k(M1 ∨M2), then

f ]k =

(
1πk(M1) 0

0 1πk(M2)

)
.

In [6], we computed E]k(M(Zq, n)) and obtained the following table:

Theorem 2.4 (Theorems 4.1, 4.2, 4.3, and 4.4 in [6]).

q : odd q ≡ 0 (mod 4) q ≡ 2 (mod 4)

E]n+1(M(Zq, n)) 1 Z2 Z2

E]n(M(Zq, n)) 1 Z2 Z2

E]n−1(M(Zq, n)) 1 1 1

3. Maps inducing a trivial homomorphism on cohomotopy groups

In [8], Maruyama studied the subset Zk] (Y, Z) of [Y, Z]. Zk] (Y, Z) is the sub-
set of all homotopy classes from Y to Z that induce the trivial homomorphism

πt(Y ) to πt(Z) for 0 ≤ t ≤ k. In this section, we introduce a subset Z]k(Y, Z)

of [Y, Z] that is a dual concept of Zk] (Y,Z) and, in particular, investigate some

properties of Z]k(Y, Z) for wedge spaces Y and Z.

Definition 3.1. Let Y and Z be topological spaces. Then the subset Z]k(Y, Z)

is defined by the set of all h ∈ [Y, Z] whose induced homomorphism h]t :
πt(Z)→ πt(Y ) is the trivial homomorphism for t ≥ k. Equivalently,

Z]k(Y,Z) = {f ∈ [Y, Z] |α ◦ f ' 0 for all α : Z → St, t ≥ k}.

If Z = Y , then Z]k(Y, Y ) is simply denoted by Z]k(Y ).

It is well known that there is a bijective map τ : [Y ∨Z,W ]→ [Y,W ]⊕[Z,W ]
defined by τ(f) = (f ◦ iY , f ◦ iZ), where iI : I → Y ∨W is an inclusion map
for I = Y,W . The inverse of τ is defined by ρ : [Y,W ]⊕ [Z,W ] → [Y ∨ Z,W ]
defined by ρ(g, h) = ∇ ◦ (g ∨ h), where ∇ is the folding map.

Proposition 3.1. Let Y , Z, and W be CW-complexes. Then there is a bi-

jective map τ : Z]k(Y ∨ Z,W ) → Z]k(Y,W ) ⊕ Z]k(Z,W ) defined by τ(f) =
(f ◦ iY , f ◦ iZ).

Proof. It is sufficient to show that τ(Z]k(Y ∨W )) ⊂ Z]k(Y,W )⊕Z]k(Z,W ) and

ρ(Z]k(Y,W )⊕Z]k(Z,W )) ⊂ Z]k(Y ∨ Z,W ).

Let f ∈ Z]k(Y ∨ Z,W ) and t ≥ k. Since f ]t = 0, (f ◦ iI)]t = i]I ◦ f ]t = 0 for

I = Y,W . Hence, τ(f) = (f ◦ iY , f ◦ iZ) ∈ Z]k(Y,W )⊕Z]k(Z,W ).

Let (g, h) ∈ Z]k(Y,W ) ⊕ Z]k(Z,W ). Since g]t = 0 and h]t = 0 for t ≥ k,

ρ(g, h)]t = (∇◦ (g∨h))]t = (g∨h)]t ◦∇]t = (g]t∨h]t)◦∇]t = (0∨0)◦∇]t = 0.

Hence, ρ(g, h) = ∇ ◦ (g ∨ h) ∈ Z]k(Y ∨ Z,W ). �
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Define a map

Φ : [Y,W ∨ Z]→ [Y,W ]⊕ [Y, Z]

by Φ(f) = (pW ◦ f, pZ ◦ f), where pI = W ∨ Z → I is the projection map for
I = W,Z. If Y is a suspension of a space, that is Y = ΣY ′ for some Y ′, then
there is a suspension co-multiplication CY . Using CY , we can obtain a map

Ψ : [Y,W ]⊕ [Y,Z]→ [Y,W ∨ Z]

given by Ψ(g, h) = (g ∨ h) ◦CY . Then Φ ◦Ψ = id[Y,W ]⊕ id[Y,Z]. Hence Ψ is an
injection and Φ is a surjection.

Proposition 3.2. Let Y , Z, and W be CW-complexes. Suppose that Y =
ΣY ′ with dim(Y ) ≤ k + ` − 1, Z is (k − 1)-connected, and W is (` − 1)-

connected for k, ` ≥ 2. Then there is a bijection map from Z]k(Y,Z ∨W ) to

Z]k(Y, Z)⊕Z]k(Y,W ).

Proof. By Proposition 2.1, Φ : [X,Y ∨ Z]→ [X,Y ]⊕ [X,Z] is bijective. Since
Y = ΣY ′, there is a suspension co-multiplication CY and the map Ψ : [X,Y ]⊕
[X,Z] → [X,Y ∨ Z] is bijective. By a method similar to Proposition 3.1, we
can complete the proof. �

Let Y be a Moore space of type (G1 ⊕ G2, n) for n ≥ 3 and let Y1 and
Y2 be Moore spaces of type (G1, n) and (G2, n), respectively. Then we have
Y ' Y1 ∨ Y2.

Corollary 3.3. Let Y be a Moore space type of (G1 ⊕G2, n) for n ≥ 3. Then
we have

Z]k(Y ) ∼= Z]k(Y1)⊕Z]k(Y1, Y2)⊕Z]k(Y2, Y1)⊕Z]k(Y2),

where Y1 = M(G1, n) and Y2 = M(G2, n).

4. Properties of E]
k(M(G,n))

In [6], we investigated some properties and determined E]k(M(Zp, n)). In
this section, we extend and apply these results to a Moore space M(G,n),
where G is a finitely generated abelian group and n ≥ 3. Since G is a finitely
generated abelian group, G =

⊕s
i=1Gi, where Gi is a cyclic group. Then, we

have M(G,n) '
∨s
i=1M(Gi, n). Therefore, we have

[M(G,n),M(G,n)] ∼=
s⊕

i,j=1

[M(Gi, n),M(Gj , n)]

and

πk(M(G,n)) ∼=
s⊕
i=1

πk(M(Gi, n))

by Proposition 2.1.
Let ii = M(Gi, n) → M(G,n) be the inclusion and let pj : M(G,n) →

M(Gj , n) be the projection. For a self-map f : M(G,n)→M(G,n), we define
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fji = Mi → Mj by fji = pj ◦ f ◦ ii. Then there is a bijection θ that assigns
each f ∈ [M(G,n),M(G,n)] the s× s matrix

θ(f) =

f11 · · · f1s
...

. . .
...

fs1 · · · fss

 .

Thus, there is a bijection θ] that assigns each

f ]k ∈ Hom(πk(M(G,n)), πk(M(G,n)))

the s× s matrix

θ](f ]k) =

f
]k
11 · · · f ]k1s
...

. . .
...

f ]ks1 · · · f ]kss

 .

Throughout this paper, θ(f) and θ](f ]k) are identified with f and f ]k and are
called the matrix representations of f and f ]k, respectively. Furthermore, each
γ ∈ πk(M(G,n)) can be represented as γ = (γ1, γ2, . . . , γs), where γi = γ ◦ ii ∈
πk(M(Gi, n)).

Proposition 4.1. For each f ∈ [M(G,n),M(G,n)], we have

f ]k(γ) = (

s∑
i=1

f ]ki1 (γi), . . . ,

s∑
i=1

f ]kis (γi))

for γ ∈ πk(M(G,n)) and γi = γ ◦ ii.

Proof. This can be proved in a manner similar to Proposition 3.4 in [6]. �

The matrix representations of the identity map 1M(G,n) and the induced

map 1]tM(G,n) are

θ(1M(G,n)) =


1M1

0 · · · 0

0 1M2

...
...

. . . 0
0 · · · 0 1Ms


and

θ](1]tM(G,n)) =


1]tM1

0 · · · 0

0 1]tM2

...
...

. . . 0

0 · · · 0 1]tMs

 ,

respectively, where 1Mi
is the identity map in [M(Gi, n),M(Gi, n)] and 1]tMi

is the induced map of 1Mi on the t-th cohomotopy group. θ(1M(G,n)) and

θ](1]tM(G,n)) are simply denoted by Is and I]ts , respectively.



SELF-HOMOTOPY EQUIVALENCES DEPENDING ON COHOMOTOPY GROUPS 1377

Proposition 4.2. Let G =
⊕s

j=1Gj be a finitely generated abelian group. If

f ∈ E]k(M(G,n)), then

f ]t = I]ts

for t ≥ k.

Proof. For any f ∈ E]k(M(G,n)), f induces the identity homomorphism on

πt(M(G,n)) for t ≥ k. Thus f ]t = idπt(M(G,n)) = 1]tM(G,n). Hence, θ](f ]t) =

θ](1M(G,n))
]t) = I]ts . Therefore,

f ]t = I]ts

for t ≥ k. �

We determine the set of self-homotopy equivalences that induce the identity
map on cohomotopy groups for Moore space of type (G,n), where G is a finitely
generated abelian group and n is a positive integer. G can be represented as
follows:

G ∼=

(
m⊕
i=1

Z

)
⊕

 s⊕
j=1

Zqj

 ,

where Zqj is a primary cyclic group and qj represents powers of prime numbers.

Let G1 = (
⊕m

i=1 Z)⊕
(⊕s

j=1 Zqj
)

and G2 = (
⊕r

i=1 Z)⊕
(⊕t

j=1 Zq′j
)

. Then,

(4.1) G1 ⊕G2
∼=

(
m+r⊕
i=1

Z

)⊕s+t⊕
j=1

Zqj

 ,

where qj+s = q′j for 1 ≤ j ≤ t. Let X = M(G1 ⊕ G2, n) be a Moore space.
Since

M(G1 ⊕G2, n) 'M(G1, n) ∨M(G2, n),

we have

(4.2) X ' (∨mi=1M(Z, n)) ∨
(
∨sj=1M(Zqj , n)

)
.

From (4.2), we have

[X,X]

∼= [∨mi=1M(Z, n),∨mi=1M(Z, n)]
⊕[

∨sj=1M(Zqj , n),∨mi=1M(Z, n)
]⊕[

∨mi=1M(Z, n),∨sj=1M(Zqj , n)
]⊕[

∨sj=1M(Zqj , n),∨sj=1M(Zqj , n)
]
.

For each f ∈ [X,X], the matrix representation of f is

θ(f) =

 p1 ◦ f ◦ i1 · · · pm+s ◦ f ◦ i1
...

. . .
...

p1 ◦ f ◦ im+s · · · pm+s ◦ f ◦ im+s





1378 H. W. CHOI, K. Y. LEE, AND H. S. OH

and we have

f ]k(γ) =

(
m+s∑
i=1

(pi ◦ f ◦ i1)]k(γi), . . . ,

m+s∑
i=1

(pi ◦ f ◦ im+s)
]k(γi)

)
,

where γi = γ ◦ ii.
Now, we divide the matrix representation of f into

θ(f) =

(
M1(f) M2(f)
M3(f) M4(f)

)
,

where M1(f) is the square matrix of degree n whose components are the maps
in [M(Z, n),M(Z, n)], M2(f) is the m × s matrix whose components are the
maps in [M(Z, n),M(Zqj , n)], M3(f) is the s × m matrix whose components
are the maps in [M(Zqj , n),M(Z, n)], and M4(f) is the square matrix of degree
s matrix whose components are the maps in [M(Zqj , n),M(Zq′j , n)].

From the above matrix, we have the following induced matrix:

θ](f ]t) =

(
M1(f)]t M2(f)]t

M3(f)]t M4(f)]t

)
.

In [3], for given X = M(F ⊕ T, n),

E(X) ∼= E(M(F, n))⊕ [M(F, n),M(T, n)]⊕ [M(T, n),M(F, n)](4.3)

⊕ E(M(T, n)),

where F and T are finitely generated abelian groups.

Theorem 4.3. Let X = M(F ⊕ T, n) be a Moore space with finitely generated
abelian groups F and T and positive integer n. Then

E]k(X) ∼= E]k(M(F, n))⊕Z]k(M(F, n),M(T, n))

⊕Z]k(M(T, n),M(F, n))⊕ E]k(M(T, n)).

Proof. From (4.3), for f ∈ E(X), f can be represented by f = (f1, f2, f3, f4)
for some f1 ∈ E(M(F, n)), f2 ∈ [M(F, n),M(T, n)], f3 ∈ [M(T, n),M(F, n)],
and f4 ∈ E(M(T, n)). Then,

M1(f) = θ(f1),M2(f) = θ(f2),M3(f) = θ(f3), and M4(f) = θ(f4).

Since, for t ≥ k,

θ](f ]t) =

(
M1(f)]t M2(f)]t

M3(f)]t M4(f)]t

)
= I]tm×s

by Proposition 4.2,

M1(f)]t = I]tm,M2(f)]t = O]tm×s,M3(f)]t = O]ts×m,M4(f)]t = I]ts

for t ≥ k, where O]tm×s and O]ts×m are an m × s zero matrix and an s × m

zero matrix, respectively. Thus, if f = (f1, f2, f3, f4) ∈ E]k(X), then f1 ∈
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E]k(M(F, n)), f2 ∈ Z]k(M(F, n)), f3 ∈ Z]k(M(F, n)), and f4 ∈ E]k(M(T, n)).

Therefore, E]k(X) is contained in

E]k(M(F, n))⊕Z]k(M(F, n),M(T, n))⊕Z]k(M(T, n),M(F, n))⊕ E]k(M(T, n)).

Conversely, let f = (f1, f2, f3, f4) belong to

E]k(M(F, n))⊕Z]k(M(F, n),M(T, n))⊕Z]k(M(T, n),M(F, n))⊕ E]k(M(T, n)).

Then f ∈ E(X) from (4.3). Since θ](f ]t1 ) = I]tm, θ
](f ]t2 ) = O]ts×m, θ

](f ]t3 ) =

O]tm×s, and θ](f ]t4 ) = I]ts , θ](f ]t) = I]ts×m for each t ≥ k. Therefore, f ∈
E]k(X). �

5. Computations of E]
k(M(G,n))

Let X1 = M(
⊕m

i=1 Z, n) and X2 = M(
⊕s

j=1 Zqj , n). For the wedge product

space X = X1 ∨X2, to determine E]k(X) by Theorem 4.3, we need to calculate

each E]k(X1), Z]k(X2, X1), Z]k(X1, X2), and E]k(X2).

We first compute E]k(X1). Since X1 ' ∨mi=1M(Z, n) ' ∨mi=1S
n
i , where Sni is

a copy of Sn, we have

[X1, X1] ∼=
m⊕

i,j=1

[Sni , S
n
j ] ∼=

m×m⊕
i=1

Z

by Proposition 2.1 in [9]. Thus, E(X1) = GL(m,Z), where GL(m,Z) is the
general linear group of degree m.

Let ii : Sni → X1 be the inclusion and pj : X1 → Snj be the projection. For a
self-map f : X1 → X1, we define fji : Sni → Snj by fji = pj ◦f ◦ii. Since Sni and
Snj are the copies of the n-dimensional sphere, we see that [Sni , S

n
j ] = [Sn, Sn].

Let ιn be the identity map on [Sn, Sn]; in particular, let (ιn)ji be the identity
map on [Sni , S

n
j ]. Then the matrix representation of f is given by

θ(f) =

 t11(ιn)11 · · · t1m(ιn)1m
...

. . .
...

tm1(ιn)m1 · · · tmm(ιn)mm

 ,

where tji is the degree of fji for j, i = 1, 2, . . . ,m.

Lemma 5.1. For n ≥ 1,

Z]k(Sn) ∼=

{
Z if k > n,

0 if k ≤ n.

Proof. If k > n, then [Sn, Sk] = 0. Thus, each f ∈ [Sn, Sn] induces the

trivial homomorphism on πt(Sn) for t ≥ k. Hence, Z]k(Sn) ∼= Z. If k = n,

then [Sn, Sn] ∼= Z{ιn}. Since f = (deg f)ιn for each f ∈ [Sn, Sn], f ]n(ιn) =

((deg f)ιn)]n(ιn) = (deg f)ιn. Thus, if f ∈ Z]k(Sn), then deg f must be 0.

Hence, Z]n(Sn) = 0. From the definition, we have Z]k(Sn) = 0 for k < n. �
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Theorem 5.2. For n ≥ 2,

E]k(X1) ∼=

{
GL(m,Z) k > n,

1 k ≤ n.

Proof. Since πk(X1) = 0 for k > n, E]k(X1) = E(X1) for k > n. Suppose that

k ≤ n. Then, for each f ∈ E]k(X1), θ](f ]t) = I]ts for t ≥ k. Thus

f ]tji =

{
(ιn)]tji if i = j,

0 if i 6= j.

Hence, if i = j, then fji ∈ E]k(Sn) and if i 6= j, then fji ∈ Z]k(Sn). By Lemma

5.1, θ](f ]t) = id]tX1
for t ≥ k. �

Now, we investigate Z]k(X2, X1) and Z]k(X1, X2). We review briefly the
following lemmas in [1] and [4].

Lemma 5.3. Let M(Zq, n) be a Moore space type of (Zq, n). Then the k-th
cohomotopy groups πk(M(Zq, n)) are isomorphic to

k ≥ n+ 2 k = n+ 1 k = n

q ≡ 1 (mod 2) 0 Zq 0
q ≡ 0 (mod 2) 0 Zq Z2

Generator - ιn+1 ◦ πq ηn ◦ πq

Lemma 5.4. Let M(Zq, n) be a Moore space type of (Zq, n). Then the k-th
homotopy groups πk(M(Zq, n)) are isomorphic to

k = n+ 2 k = n+ 1 k = n k ≤ n− 1

q ≡ 1 (mod 2) 0 0 Zq 0
q ≡ 0 (mod 4) Z2 ⊕ Z2 Z2 Zq 0
q ≡ 2 (mod 4) Z4 Z2 Zq 0

Generator - iq ◦ ηn iq ◦ ιn -

Proposition 5.5. For k > 0,

Z]k(M(Zq, n),M(Z, n)) ∼=


0 if q ≡ 1 (mod 2),

Z2{ηn ◦ πq} if k ≥ n+ 1 and q ≡ 0 (mod 2),

0 if k ≤ n and q ≡ 0 (mod 2).

Proof. By Lemma 5.3,

[M(Zq, n),M(Z, n)] = πn(M(Zq, n)) ∼=

{
0 if q ≡ 1 (mod 2),

Z2{ηn ◦ πq} if q ≡ 0 (mod 2).

If q is odd, then Z]k(M(Zq, n),M(Z, n)) = 0. Let q be even. If k ≥ n + 1,

then πk(M(Z, n)) = 0. Thus Z]k(M(Zq, n),M(Z, n)) = [M(Zq, n),M(Z, n)] =
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πn(M(Zq, n)) ∼= Z2. If k = n, then πn(M(Z, n)) ∼= Z{ιn} and πn(M(Zq, n)) ∼=
Z2{ηn ◦ πq} and so

(ηn ◦ πq)]n(ιn) = ιn ◦ ηn ◦ πq = ηn ◦ πq 6= 0.

Therefore, Z]n(M(Zq, n),M(Z, n)) = 0. �

Proposition 5.6. For k ≥ n,

Z]k(M(Z, n),M(Zq, n)) ∼= Zq{iq ◦ ιn}.

Proof. By Lemma 5.4, [M(Z, n),M(Zq, n)] = πn(M(Zq, n)) ∼= Zq{iq ◦ ιn}.
Since πk(Sn) = 0 for k ≥ n + 1, Z]k(M(Z, n),M(Zq, n)) ∼= Zq. If k = n, then
πn(Sn) ∼= Z{ιn} and

πn(M(Zq, n)) ∼=

{
0 if q ≡ 1 (mod 2),

Z2{ηn ◦ πq} if q ≡ 0 (mod 2).

If q ≡ 1 (mod 2), then Z]n(M(Z, n),M(Zq, n)) ∼= Zq. If q ≡ 0 (mod 2),
then (iq ◦ ιn)]n(ηn ◦ πq) = ηn ◦ πq ◦ iq ◦ ιn = 0 because πq ◦ iq ' 0. Thus,
Z]n(M(Z, n),M(Zq, n)) ∼= Zq. �

Theorem 5.7. For k > 0,

Z]k(X2, X1) ∼=


m×t⊕

Z2 if k ≥ n+ 1,

0 if k ≤ n,

where t is the number of even qj.

Proof. By Corollary 3.3,

Z]k(X2, X1) ∼=
m⊕(

s⊕
i=1

Z]k(M(Zqj , n),M(Z, n))

)
.

By Proposition 5.5, we have Z]k(X2, X1) ∼=
m×t⊕

Z2 for k ≥ n + 1, where t is

the number of even qj . If k ≤ n, then Z]k(M(Zqj , n),M(Z, n)) = 0. Therefore,

Z]k(X2, X1) = 0. �

Theorem 5.8. For k ≥ n,

Z]k(X1, X2) ∼=
s⊕
j=1

(
m⊕

Zqj

)
.

Proof. This follows immediately from Corollary 3.3 and Proposition 5.6. �

Finally, we determine E]k(X2). Since X2
∼= ∨si=1M(Zqi , n), we have

[X2, X2] ∼=
s⊕
j=1

(
s⊕
i=1

[M(Zqi , n),M(Zqj , n)]

)
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by Proposition 2.1. In [3], it was shown that

E(X2) ∼=

(
s⊕
i=1

E(M(Zqi , n))

)⊕⊕
i6=j

[M(Zqi , n),M(Zqj , n)]

 .

Theorem 5.9. For k > 0,

E]k(X2) ∼=

(
s⊕
i=1

E]k(M(Zqi , n))

)⊕⊕
i 6=j

Z]k(M(Zqj , n),M(Zqi , n))

 .

Proof. Let f ∈ E]k(X2). Then θ](f ]t) = I]ts for t ≥ k. This means that

f ]tii = 1πt(M(Zqi
,n)) for all 1 ≤ i ≤ s and θ](f ]tji ) = 0 for i 6= j. Thus, fii ∈

E]k(M(Zqi , n)) and fji ∈ Z]k(M(Zqi , n),M(Zqj , n)). Therefore,

f ∈
(
E]k(M(Zqi , n))

)⊕⊕
i 6=j

Z]k(M(Zqj , n),M(Zqi , n))

 .

Conversely, let f ∈
(
E]k(M(Zqi , n))

)⊕(⊕
i 6=j
Z]k(M(Zqj , n),M(Zqi , n))

)
. Then,

f ]tji =

{
1πt(M(Zqi

,n)) if i = j,

0 if i 6= j,

for all t ≥ k. By Proposition 4.2 and the definition of E]k(M(Zqi , n)), the matrix

representation of f ]t is equal to I]ts for all t ≥ k. Hence, f ∈ E]k(X2). �

From [3], we have the following lemma:

Lemma 5.10. Let Mj = M(Zqj , n) and Mi = M(Zqi , n). Then we have

either qj or qi : odd qj ≡ qi ≡ 2 (mod 4) qj ≡ qi ≡ 0 (mod 4)

[Mj ,Mi] Zd Z2d Zd ⊕ Z2

Generator αj αj αj , iq ◦ ηn ◦ πqj
where πqi ◦ αj = j̄ιn+1 ◦ πqj , j̄ is an integer such that qj = j̄d, and d = (qi, qj)
is the greatest common divisor.

Proposition 5.11. Let Mi = M(Zqi , n) and Mj = M(Zqj , n). Then we have

Zk(Mj ,Mi) ∼=


[Mj ,Mi] if k ≥ n+ 2,

0 if qj or qi : odd and k = n or n+ 1,

Z2 if qj ≡ qi ≡ 0 (mod 2) and k = n or n+ 1.

Proof. If k ≥ n+2, then πk(Mj) = πk(Mi) = 0. Thus, Z]k(Mj ,Mi) = [Mj ,Mi]
for k ≥ n+ 2. By Lemma 5.3, we have πn+1(M`) ∼= Zq`{ιn+1 ◦ πq`} and

πn(M`) ∼=

{
0 if q` ≡ 1 (mod 2),

Z2{ηn ◦ πq`} if q` ≡ 0 (mod 2),
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where ` = i, j. By Lemma 5.10, we have

[Mj ,Mi] ∼=


Zd{αj} if qj or qi : odd,

Z2d{αj} if qj ≡ qi ≡ 2 (mod 4),

Zd ⊕ Z2{αj , iqi ◦ ηn ◦ πqj} if qj ≡ qi ≡ 0 (mod 4),

where d = (qj , qi).
Case 1. Let qj or qi be odd.
Let g ∈ [Mj ,Mi]. Then, g = sαj for some 0 ≤ s ≤ d. Thus, we have

g]n+1(ιn+1 ◦ πqi) = ιn+1 ◦ πqi ◦ sαj
= sιn+1 ◦ πqi ◦ αj
= sιn+1 ◦ j̄ιn ◦ πqj
= sj̄ιn ◦ πqj .

Since 0 ≤ sj̄ ≤ qj , g]n+1 is trivial if and only if s = 0. Hence, Z]n+1(Mj ,Mi) =

0. Moreover, Z]n(Mj ,Mi) = 0 by the definition.
Case 2. Let qj ≡ qi ≡ 2 (mod 4).
Let g ∈ [Mj ,Mi]. Then g = sαj for some 0 ≤ s ≤ 2d. Thus, if s = d, then

g]n+1(ιn+1 ◦ πqi) = ιn+1 ◦ πqi ◦ iqi ◦ ηn ◦ πqj = 0

because πqi ◦ iqi ' 0. If s 6= d, then

g]n+1(ιn+1πqi) = sιn+1πqi ◦ αj = sj̄ιn+1 ◦ πqj .

Hence, s = 0 or d. Therefore Z]n+1(Mj ,Mi) ∼= Z2{dαj}. Then, for g ∈
Z]n+1(Mj ,Mi),

g]n+1(ηn ◦ πqi) = dηn ◦ πqi ◦ αj = dj̄ηn+1 ◦ πqj = qjηn+1 ◦ πqj = 0

because qj is even. Therefore, Z]n(Mj ,Mi) ∼= Z2{dαj}.
Case 3. Let qj ≡ qi ≡ 0 (mod 4).
Let g ∈ [Mj ,Mi]. Then, g = sαj ⊕ tiqi ◦ ηn ◦ πqj for some 0 ≤ s < d and

t = 0, 1. Then,

g]n+1(ιn+1 ◦ πqi) = sj̄ιn+1 ◦ πqj ⊕ tιn+1 ◦ πqi ◦ iqi ◦ ηn ◦ πqj = sj̄ιn+1 ◦ πqj ⊕ 0

because πqi ◦ iqi ' 0. Thus, s = 0 and t = 0, 1. Hence, Z]n+1(Mj ,Mi) ∼=
Z2{0⊕ iqi ◦ ηn ◦ πqj}. Then, for g ∈ Z]n+1(Mj ,Mi),

g]n(ηn ◦ πqi) = 0⊕ ηn ◦ πqi ◦ iqi ◦ ηn ◦ πqj = 0.

Hence, Z]n(Mj ,Mi) ∼= Z2{0⊕ iqi ◦ ηn ◦ πqj}. �

Theorem 5.12. For n ≥ 3,

E]k(X2) ∼=


(

s⊕
i=1

E(M(Zqi , n))

)⊕(⊕
i 6=j

[M(Zqj , n),M(Zqi , n)]

)
if k ≥ n+ 2,

t+⊕̀
Z2 if k = n or n+ 1,
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where t is the number of even qj and ` is the number of pairs {i, j} ⊂ {1, . . . , s}
such that both qi and qj are even and i 6= j.

Proof. If k ≥ n + 2, then πk(X2) = 0. Thus, E]k(X2) = E(X2). If k = n or

n+ 1, then by [6, Theorems 4.1 and 4.2], E]k(M(Zqi , n)) ∼=
t⊕
Z2, where t is the

number of even qi. By Proposition 5.11,
⊕
i 6=j
Z]k(M(Zqj , n),M(Zqi , n)) ∼=

⊕̀
Z2,

where ` is the number of pairs {i, j} ⊂ {1, . . . , s} such that both qi and qj are
even and i 6= j. Therefore,

E]k(X2) ∼=
t+⊕̀

Z2. �

If we combine Theorems 5.2, 5.7, 5.8, and 5.12, we obtain the following main
result:

Corollary 5.13. Let G =

(
m⊕
i=1

Z
)⊕(

s⊕
j=1

Zqj

)
. Then, we have

E]k(M(G,n)) ∼=



GL(m,Z)
m×t⊕

Z2

s⊕
j=1

(
m⊕

Zqj
)⊕

E(M(T, n)) if k ≥ n+ 2,

GL(m,Z)
m×t+t+`⊕

Z2

⊕(
s⊕
j=1

(
m⊕

Zqj
))

if k = n+ 1,

GL(m,Z)
t+⊕̀

Z2

⊕(
s⊕
j=1

(
m⊕

Zqj
))

if k = n,

where GL(m,Z) is the general linear group of degree m, t is the number of even
qj and ` is the number of pairs {i, j} ⊂ {1, . . . , s} such that both qi and qj are
even and i 6= j.
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