SELF-HOMOTOPY EQUIVALENCES OF MOORE SPACES DEPENDING ON COHOMOTOPY GROUPS

HO WON CHOI, KEE YOUNG LEE, AND HYUNG SEOK OH

ABSTRACT. Given a topological space X and a non-negative integer k, $\mathcal{E}_{k}^{\sharp}(X)$ is the set of all self-homotopy equivalences of X that do not change maps from X to an t-sphere S^{t} homotopically by the composition for all $t \geq k$. This set is a subgroup of the self-homotopy equivalence group $\mathcal{E}(X)$. We find certain homotopic tools for computations of $\mathcal{E}_{k}^{\sharp}(X)$. Using these results, we determine $\mathcal{E}_{k}^{\sharp}(M(G,n))$ for $k \geq n$, where M(G,n) is a Moore space type of (G, n) for a finitely generated abelian group G.

1. Introduction

For a topological space X, we denote $\mathcal{E}(X)$ as the set of all homotopy classes of self-homotopy equivalences of X. Then $\mathcal{E}(X)$ is a subset of [X, X] and has a group structure given by the composition of homotopy classes. The subset $\mathcal{E}(X)$ has been studied extensively by various authors, including Arkowitz [2], Arkowitz and Maruyama [3], Lee [5,7], Rutter [9], Sawashita [10], and Sieradski [11]. Moreover several subgroups of $\mathcal{E}(X)$ have also been studied, notably the group $\mathcal{E}^k_{\sharp}(X)$, which consists of all elements of $\mathcal{E}(X)$ that induce the identity homomorphism on homotopy groups $\pi_t(X)$ for $t = 0, 1, 2, \ldots, k$. In our previous work [4], the first and second authors used homotopy techniques to calculate these subgroups for the wedge products of Moore spaces.

In [6], we introduced $\mathcal{E}_k^{\sharp}(X)$, which consists of the elements of $\mathcal{E}(X)$ that induce the identity homomorphism on cohomotopy groups $\pi^t(X)$ for $t \geq k$. Equivalently, it can be defined as follows: For a non-negative integer *i*, consider the self-map $f: X \to X$ such that $g \circ f$ is homotopic to g for each $g: X \to S^t$

©2019 Korean Mathematical Society

Received October 12, 2018; Accepted January 24, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 55P10, 55Q05, 55Q55.

 $Key\ words\ and\ phrases.$ self-homotopy equivalence, cohomotopy group, Moore space, co-Moore space.

The first-named author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of education(NRF-2015R1C1A1A01055455).

The second-named author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2018R1D1A1B07045599).

and for each $t \ge k$. The set of all homotopy classes of such self-maps of X is denoted by $[X, X]_k^{\sharp}$, that is,

$$[X,X]_k^{\sharp} = \left\{ f \in [X,X] \mid g \circ f \sim g \text{ for each } g : X \to S^t \text{ for all } t \ge k \right\}.$$

Then

$$\mathcal{E}_k^{\sharp}(X) = \mathcal{E}(X) \cap [X, X]_k^{\sharp}.$$

In [6], we proved that $\mathcal{E}_{k}^{\sharp}(X)$ is a subgroup of $\mathcal{E}(X)$ and, if X is a finite CWcomplex, then $\mathcal{E}_{k}^{\sharp}(X)$ has a lower bound whereas $\mathcal{E}_{\sharp}^{k}(X)$ has an upper bound. Moreover, we calculated $\mathcal{E}_{k}^{\sharp}(X)$ for special Moore space $X = M(\mathbb{Z}_{p}, n)$ and co-Moore space $X = C(\mathbb{Z}_{p}, n)$.

In this paper, we determine $\mathcal{E}_{k}^{\sharp}(M(G,n))$ completely for $k \geq n$, where M(G,n) is a Moore space type of (G,n) with G a finitely generated abelian group and $n \geq 3$. To solve this problem, we first study a subset $\mathcal{Z}_{k}^{\sharp}(Y,Z)$ of [Y,Z] for spaces Y and Z. The subset $\mathcal{Z}_{k}^{\sharp}(Y,Z)$ is defined by the set of all $h \in [Y,Z]$ whose induced homomorphism $h^{\sharp t} : \pi^{t}(Z) \to \pi^{t}(Y)$ is the trivial homomorphism for $t \geq k$. Furthermore, we investigate the properties of $\mathcal{E}_{k}^{\sharp}(X)$ for given wedge product space X to prove the following theorem in Section 4:

Theorem 4.3. Let M(G, n) be a Moore space type of (G, n) and $G = F \oplus T$ be a finitely generated abelian group G with free part F and torsion part T. Then $\mathcal{E}_{k}^{\sharp}(M(G, n))$ is isomorphic to

$$\mathcal{E}_{k}^{\sharp}(M(F,n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(F,n),M(T,n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(T,n),M(F,n)) \oplus \mathcal{E}_{k}^{\sharp}(M(T,n)).$$

From Theorem 4.3, the problem of computing $\mathcal{E}_{k}^{\sharp}(M(G,n))$ reduces to that of computing the \mathcal{E}_{k}^{\sharp} -groups and \mathcal{Z}_{k}^{\sharp} -groups for Moore spaces for (possibly infinite) cyclic groups. In Section 5, we compute explicitly \mathcal{Z}_{k}^{\sharp} -groups for Moore spaces for (possibly infinite) cyclic groups and combine the relevant \mathcal{E}_{k}^{\sharp} -groups computed in our previous paper and are recorded as Theorem 2.4 to obtain the following main result:

Corollary 5.13. Let
$$G = \left(\bigoplus_{i=1}^{m} \mathbb{Z} \right) \bigoplus \left(\bigoplus_{j=1}^{s} \mathbb{Z}_{q_j} \right)$$
. Then, we have

$$\mathcal{E}_k^{\sharp}(M(G,n)) \cong \begin{cases} GL(m,\mathbb{Z}) \bigoplus^{m \times t} \mathbb{Z}_2 \bigoplus_{j=1}^{s} \left(\bigoplus^m \mathbb{Z}_{q_j} \right) \bigoplus \mathcal{E}(M(T,n)) & \text{if } k \ge n+2, \\ GL(m,\mathbb{Z}) \bigoplus^{m \times t+t+\ell} \mathbb{Z}_2 \bigoplus \left(\bigoplus_{j=1}^{s} \left(\bigoplus^m \mathbb{Z}_{q_j} \right) \right) & \text{if } k = n+1, \\ GL(m,\mathbb{Z}) \bigoplus^{t+\ell} \mathbb{Z}_2 \bigoplus \left(\bigoplus_{j=1}^{s} \left(\bigoplus^m \mathbb{Z}_{q_j} \right) \right) & \text{if } k = n, \end{cases}$$

where $GL(m,\mathbb{Z})$ is the general linear group of degree m, t is the number of even q_j and ℓ is the number of pairs $\{i, j\} \subset \{1, \ldots, s\}$ such that both q_i and q_j are even and $i \neq j$.

Throughout this paper, all topological spaces are based and have the based homotopy type of a CW-complex, and all maps and homotopies preserve base points. For the spaces X and Y, we denote by [X, Y] the set of all homotopy classes of maps from X to Y. No distinction is made between the notation of a map $X \to Y$ and that of its homotopy class in [X, Y]. When a group G is generated by a set $\{a_1, \ldots, a_n\}$, then we denote it by $G\{a_1, \ldots, a_n\}$. Moreover, when $f: X \to Y$ is a map, $f^{\sharp k}: \pi^k(Y) \to \pi^k(X)$ denote the induced homomorphisms on the k-th cohomotopy group.

2. Preliminaries

In this section, we review some results provided in [3,6], knowledge of which would be useful when reading this paper. First, we introduce the following proposition from [3] that is a basic concept in developing this paper.

Proposition 2.1 (Arkowitz and Maruyama [3]). If X is (k-1)-connected, Y is $(\ell - 1)$ -connected and, further, if $k, \ell \geq 2$ and dim $P \leq k + \ell - 1$, then the projections $X \lor Y \to X$ and $X \lor Y \to Y$ induce a bijection:

$$[P, X \lor Y] \to [P, X] \oplus [P, Y].$$

Consider abelian groups G_1 and G_2 and Moore spaces $M_1 = M(G_1, n_1)$ and $M_2 = M(G_2, n_2)$. When $X = M_1 \vee M_2$, we denote by $i_j : M_j \to X$ the inclusion and by $p_j: X \to M_j$ the projection, where j = 1, 2. If $f: X \to X$, then we define $f_{jk} = M_k \to M_j$ by $f_{jk} = p_j \circ f \circ i_k$ for j, k = 1, 2. Then, by Proposition 2.1, we have

$$[X, X] \cong [M_1, M_1] \oplus [M_1, M_2] \oplus [M_2, M_1] \oplus [M_2, M_2]$$

and, from [3, Proposition 2.6], there exists a bijective function θ that assigns to each $f \in [X, X]$ a 2 × 2 matrix

$$\theta(f) = \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix},$$

where $f_{jk} \in [M_k, M_j]$. In addition, we have the following:

- (1) $\theta(f+g) = \theta(f) + \theta(g)$, so θ is an isomorphism $[X, X] \to \bigoplus_{j,k=1,2} [M_k, M_j];$
- (2) $\theta(f \circ g) = \theta(f)\theta(g)$, where $f \circ g$ denotes composition in [X, X] and $\theta(f)\theta(g)$ denotes matrix multiplication.

Moreover, for each $f \in [X, X]$, the induced homomorphism $f^{\sharp k}$ on the cohomotopy groups $\pi^k(X)$ is determined as in the following propositions:

Proposition 2.2 (Proposition 3.4 in [6]). For any $f \in [M_1 \vee M_2, M_1 \vee M_2]$, we have 11.7

$$f^{\sharp k}(\gamma_1, \gamma_2) = (f_{11}^{\sharp k}(\gamma_1) + f_{21}^{\sharp k}(\gamma_2), f_{12}^{\sharp k}(\gamma_1) + f_{22}^{\sharp k}(\gamma_2)),$$

where $\gamma_1 \in \pi^k(M_1)$ and $\gamma_2 \in \pi^k(M_2)$.

Proposition 2.3 (Proposition 3.5 in [6]). If $f \in \mathcal{E}_k^{\sharp}(M_1 \vee M_2)$, then

$$f^{\sharp k} = \begin{pmatrix} 1_{\pi^k(M_1)} & 0\\ 0 & 1_{\pi^k(M_2)} \end{pmatrix}$$

In [6], we computed $\mathcal{E}_{k}^{\sharp}(M(\mathbb{Z}_{q}, n))$ and obtained the following table:

Theorem 2.4	(Theorems 4.	1, 4.2, 4.3	, and 4.4 in	[6]).
-------------	--------------	-------------	----------------	-------

	q: odd	$q \equiv 0 \pmod{4}$	$q \equiv 2 \pmod{4}$
$\mathcal{E}_{n+1}^{\sharp}(M(\mathbb{Z}_q, n))$	1	\mathbb{Z}_2	\mathbb{Z}_2
$\mathcal{E}_n^{\sharp}(M(\mathbb{Z}_q, n))$	1	\mathbb{Z}_2	\mathbb{Z}_2
$\mathcal{E}_{n-1}^{\sharp}(M(\mathbb{Z}_q, n))$	1	1	1

3. Maps inducing a trivial homomorphism on cohomotopy groups

In [8], Maruyama studied the subset $\mathcal{Z}^k_{\sharp}(Y,Z)$ of [Y,Z]. $\mathcal{Z}^k_{\sharp}(Y,Z)$ is the subset of all homotopy classes from Y to Z that induce the trivial homomorphism $\pi_t(Y)$ to $\pi_t(Z)$ for $0 \le t \le k$. In this section, we introduce a subset $\mathcal{Z}_k^{\sharp}(Y,Z)$ of [Y, Z] that is a dual concept of $\mathcal{Z}^k_{\sharp}(Y, Z)$ and, in particular, investigate some properties of $\mathcal{Z}_{k}^{\sharp}(Y, Z)$ for wedge spaces Y and Z.

Definition 3.1. Let Y and Z be topological spaces. Then the subset $\mathcal{Z}_{k}^{\sharp}(Y,Z)$ is defined by the set of all $h \in [Y, Z]$ whose induced homomorphism $h^{\sharp t}$: $\pi^t(Z) \to \pi^t(Y)$ is the trivial homomorphism for $t \ge k$. Equivalently,

$$\mathcal{Z}_{k}^{\sharp}(Y,Z) = \{ f \in [Y,Z] \mid \alpha \circ f \simeq 0 \text{ for all } \alpha : Z \to S^{t}, t \geq k \}.$$

If Z = Y, then $\mathcal{Z}_k^{\sharp}(Y, Y)$ is simply denoted by $\mathcal{Z}_k^{\sharp}(Y)$.

It is well known that there is a bijective map $\tau : [Y \lor Z, W] \to [Y, W] \oplus [Z, W]$ defined by $\tau(f) = (f \circ i_Y, f \circ i_Z)$, where $i_I : I \to Y \lor W$ is an inclusion map for I = Y, W. The inverse of τ is defined by $\rho : [Y, W] \oplus [Z, W] \to [Y \lor Z, W]$ defined by $\rho(g,h) = \nabla \circ (g \lor h)$, where ∇ is the folding map.

Proposition 3.1. Let Y, Z, and W be CW-complexes. Then there is a bijective map $\tau : \mathcal{Z}_k^{\sharp}(Y \vee Z, W) \to \mathcal{Z}_k^{\sharp}(Y, W) \oplus \mathcal{Z}_k^{\sharp}(Z, W)$ defined by $\tau(f) =$ $(f \circ i_Y, f \circ i_Z).$

Proof. It is sufficient to show that $\tau(\mathcal{Z}_k^{\sharp}(Y \lor W)) \subset \mathcal{Z}_k^{\sharp}(Y, W) \oplus \mathcal{Z}_k^{\sharp}(Z, W)$ and $\rho(\mathcal{Z}_k^{\sharp}(Y,W)\oplus \mathcal{Z}_k^{\sharp}(Z,W))\subset \mathcal{Z}_k^{\sharp}(Y\vee Z,W).$

Let $f \in \mathcal{Z}_k^{\sharp}(Y \vee Z, W)$ and $t \ge k$. Since $f^{\sharp t} = 0$, $(f \circ i_I)^{\sharp t} = i_I^{\sharp} \circ f^{\sharp t} = 0$ for

$$\begin{split} I &= Y, W. \text{ Hence, } \tau(f) = (f \circ i_Y, f \circ i_Z) \in \mathcal{Z}_k^{\sharp}(Y, W) \oplus \mathcal{Z}_k^{\sharp}(Z, W). \\ \text{Let } (g, h) \in \mathcal{Z}_k^{\sharp}(Y, W) \oplus \mathcal{Z}_k^{\sharp}(Z, W). \text{ Since } g^{\sharp t} = 0 \text{ and } h^{\sharp t} = 0 \text{ for } t \geq k, \\ \rho(g, h)^{\sharp t} = (\nabla \circ (g \lor h))^{\sharp t} = (g \lor h)^{\sharp t} \circ \nabla^{\sharp t} = (g^{\sharp t} \lor h^{\sharp t}) \circ \nabla^{\sharp t} = (0 \lor 0) \circ \nabla^{\sharp t} = 0. \end{split}$$
Hence, $\rho(g,h) = \nabla \circ (g \lor h) \in \mathcal{Z}_k^{\sharp}(Y \lor Z, W).$ \square

Define a map

$$\Phi: [Y, W \lor Z] \to [Y, W] \oplus [Y, Z]$$

by $\Phi(f) = (p_W \circ f, p_Z \circ f)$, where $p_I = W \lor Z \to I$ is the projection map for I = W, Z. If Y is a suspension of a space, that is $Y = \Sigma Y'$ for some Y', then there is a suspension co-multiplication C_Y . Using C_Y , we can obtain a map

$$\Psi: [Y, W] \oplus [Y, Z] \to [Y, W \lor Z]$$

given by $\Psi(g,h) = (g \lor h) \circ C_Y$. Then $\Phi \circ \Psi = id_{[Y,W]} \oplus id_{[Y,Z]}$. Hence Ψ is an injection and Φ is a surjection.

Proposition 3.2. Let Y, Z, and W be CW-complexes. Suppose that $Y = \Sigma Y'$ with dim $(Y) \leq k + \ell - 1$, Z is (k - 1)-connected, and W is $(\ell - 1)$ -connected for $k, \ell \geq 2$. Then there is a bijection map from $\mathcal{Z}_k^{\sharp}(Y, Z \vee W)$ to $\mathcal{Z}_k^{\sharp}(Y, Z) \oplus \mathcal{Z}_k^{\sharp}(Y, W)$.

Proof. By Proposition 2.1, $\Phi : [X, Y \lor Z] \to [X, Y] \oplus [X, Z]$ is bijective. Since $Y = \Sigma Y'$, there is a suspension co-multiplication C_Y and the map $\Psi : [X, Y] \oplus [X, Z] \to [X, Y \lor Z]$ is bijective. By a method similar to Proposition 3.1, we can complete the proof.

Let Y be a Moore space of type $(G_1 \oplus G_2, n)$ for $n \geq 3$ and let Y_1 and Y_2 be Moore spaces of type (G_1, n) and (G_2, n) , respectively. Then we have $Y \simeq Y_1 \lor Y_2$.

Corollary 3.3. Let Y be a Moore space type of $(G_1 \oplus G_2, n)$ for $n \ge 3$. Then we have

$$\mathcal{Z}_{k}^{\sharp}(Y) \cong \mathcal{Z}_{k}^{\sharp}(Y_{1}) \oplus \mathcal{Z}_{k}^{\sharp}(Y_{1}, Y_{2}) \oplus \mathcal{Z}_{k}^{\sharp}(Y_{2}, Y_{1}) \oplus \mathcal{Z}_{k}^{\sharp}(Y_{2}),$$

where $Y_1 = M(G_1, n)$ and $Y_2 = M(G_2, n)$.

4. Properties of $\mathcal{E}_k^{\sharp}(M(G,n))$

In [6], we investigated some properties and determined $\mathcal{E}_k^{\sharp}(M(\mathbb{Z}_p, n))$. In this section, we extend and apply these results to a Moore space M(G, n), where G is a finitely generated abelian group and $n \geq 3$. Since G is a finitely generated abelian group, $G = \bigoplus_{i=1}^s G_i$, where G_i is a cyclic group. Then, we have $M(G, n) \simeq \bigvee_{i=1}^s M(G_i, n)$. Therefore, we have

$$[M(G,n), M(G,n)] \cong \bigoplus_{i,j=1}^{s} [M(G_i,n), M(G_j,n)]$$

and

$$\pi^k(M(G,n)) \cong \bigoplus_{i=1}^s \pi^k(M(G_i,n))$$

by Proposition 2.1.

Let $i_i = M(G_i, n) \to M(G, n)$ be the inclusion and let $p_j : M(G, n) \to M(G_j, n)$ be the projection. For a self-map $f : M(G, n) \to M(G, n)$, we define

 $f_{ji} = M_i \to M_j$ by $f_{ji} = p_j \circ f \circ i_i$. Then there is a bijection θ that assigns each $f \in [M(G, n), M(G, n)]$ the $s \times s$ matrix

$$\theta(f) = \begin{pmatrix} f_{11} & \cdots & f_{1s} \\ \vdots & \ddots & \vdots \\ f_{s1} & \cdots & f_{ss} \end{pmatrix}.$$

Thus, there is a bijection θ^{\sharp} that assigns each

$$f^{\sharp k} \in \operatorname{Hom}(\pi^k(M(G,n)), \pi^k(M(G,n)))$$

the $s \times s$ matrix

$$\theta^{\sharp}(f^{\sharp k}) = \begin{pmatrix} f_{11}^{\sharp k} & \cdots & f_{1s}^{\sharp k} \\ \vdots & \ddots & \vdots \\ f_{s1}^{\sharp k} & \cdots & f_{ss}^{\sharp k} \end{pmatrix}.$$

Throughout this paper, $\theta(f)$ and $\theta^{\sharp}(f^{\sharp k})$ are identified with f and $f^{\sharp k}$ and are called the *matrix representations* of f and $f^{\sharp k}$, respectively. Furthermore, each $\gamma \in \pi^k(M(G, n))$ can be represented as $\gamma = (\gamma_1, \gamma_2, \ldots, \gamma_s)$, where $\gamma_i = \gamma \circ i_i \in \pi^k(M(G_i, n))$.

Proposition 4.1. For each $f \in [M(G, n), M(G, n)]$, we have

$$f^{\sharp k}(\gamma) = \left(\sum_{i=1}^{s} f_{i1}^{\sharp k}(\gamma_i), \dots, \sum_{i=1}^{s} f_{is}^{\sharp k}(\gamma_i)\right)$$

for $\gamma \in \pi^k(M(G, n))$ and $\gamma_i = \gamma \circ i_i$.

Proof. This can be proved in a manner similar to Proposition 3.4 in [6]. \Box

The matrix representations of the identity map $1_{M(G,n)}$ and the induced map $1_{M(G,n)}^{\sharp t}$ are

$$\theta(1_{M(G,n)}) = \begin{pmatrix} 1_{M_1} & 0 & \cdots & 0\\ 0 & 1_{M_2} & & \vdots\\ \vdots & & \ddots & 0\\ 0 & \cdots & 0 & 1_{M_s} \end{pmatrix}$$

and

$$\theta^{\sharp}(1_{M(G,n)}^{\sharp t}) = \begin{pmatrix} 1_{M_{1}}^{\sharp t} & 0 & \cdots & 0\\ 0 & 1_{M_{2}}^{\sharp t} & & \vdots\\ \vdots & & \ddots & 0\\ 0 & \cdots & 0 & 1_{M_{s}}^{\sharp t} \end{pmatrix},$$

respectively, where 1_{M_i} is the identity map in $[M(G_i, n), M(G_i, n)]$ and $1_{M_i}^{\sharp t}$ is the induced map of 1_{M_i} on the *t*-th cohomotopy group. $\theta(1_{M(G,n)})$ and $\theta^{\sharp}(1_{M(G,n)}^{\sharp t})$ are simply denoted by I_s and $I_s^{\sharp t}$, respectively.

Proposition 4.2. Let $G = \bigoplus_{j=1}^{s} G_j$ be a finitely generated abelian group. If $f \in \mathcal{E}_k^{\sharp}(M(G,n))$, then

 $f^{\sharp t} = I_s^{\sharp t}$

for $t \geq k$.

Proof. For any $f \in \mathcal{E}_k^{\sharp}(M(G,n))$, f induces the identity homomorphism on $\pi^t(M(G,n))$ for $t \geq k$. Thus $f^{\sharp t} = id_{\pi^t(M(G,n))} = 1_{M(G,n)}^{\sharp t}$. Hence, $\theta^{\sharp}(f^{\sharp t}) = \theta^{\sharp}(1_{M(G,n)})^{\sharp t} = I_s^{\sharp t}$. Therefore,

$$f^{\sharp t} = I_s^{\sharp t}$$

for $t \geq k$.

We determine the set of self-homotopy equivalences that induce the identity map on cohomotopy groups for Moore space of type (G, n), where G is a finitely generated abelian group and n is a positive integer. G can be represented as follows:

$$G \cong \left(\bigoplus_{i=1}^{m} \mathbb{Z} \right) \oplus \left(\bigoplus_{j=1}^{s} \mathbb{Z}_{q_j} \right),$$

where \mathbb{Z}_{q_j} is a primary cyclic group and q_j represents powers of prime numbers.

Let
$$G_1 = (\bigoplus_{i=1}^m \mathbb{Z}) \oplus \left(\bigoplus_{j=1}^s \mathbb{Z}_{q_j}\right)$$
 and $G_2 = \left(\bigoplus_{i=1}^r \mathbb{Z}\right) \oplus \left(\bigoplus_{j=1}^t \mathbb{Z}_{q'_j}\right)$. Then,

(4.1)
$$G_1 \oplus G_2 \cong \left(\bigoplus_{i=1}^{m+r} \mathbb{Z}\right) \bigoplus \left(\bigoplus_{j=1}^{s+t} \mathbb{Z}_{q_j}\right),$$

where $q_{j+s} = q'_j$ for $1 \le j \le t$. Let $X = M(G_1 \oplus G_2, n)$ be a Moore space. Since

$$M(G_1 \oplus G_2, n) \simeq M(G_1, n) \lor M(G_2, n),$$

we have

(4.2)
$$X \simeq (\vee_{i=1}^{m} M(\mathbb{Z}, n)) \vee \left(\vee_{j=1}^{s} M(\mathbb{Z}_{q_{j}}, n)\right)$$

From (4.2), we have

$$[X, X]$$

$$\cong [\vee_{i=1}^{m} M(\mathbb{Z}, n), \vee_{i=1}^{m} M(\mathbb{Z}, n)] \bigoplus [\vee_{j=1}^{s} M(\mathbb{Z}_{q_{j}}, n), \vee_{i=1}^{m} M(\mathbb{Z}, n)]$$

$$\bigoplus [\vee_{i=1}^{m} M(\mathbb{Z}, n), \vee_{j=1}^{s} M(\mathbb{Z}_{q_{j}}, n)] \bigoplus [\vee_{j=1}^{s} M(\mathbb{Z}_{q_{j}}, n), \vee_{j=1}^{s} M(\mathbb{Z}_{q_{j}}, n)].$$

For each $f \in [X, X]$, the matrix representation of f is

$$\theta(f) = \begin{pmatrix} p_1 \circ f \circ i_1 & \cdots & p_{m+s} \circ f \circ i_1 \\ \vdots & \ddots & \vdots \\ p_1 \circ f \circ i_{m+s} & \cdots & p_{m+s} \circ f \circ i_{m+s} \end{pmatrix}$$

and we have

$$f^{\sharp k}(\gamma) = \left(\sum_{i=1}^{m+s} (p_i \circ f \circ i_1)^{\sharp k}(\gamma_i), \ \dots \ , \sum_{i=1}^{m+s} (p_i \circ f \circ i_{m+s})^{\sharp k}(\gamma_i)\right),$$

where $\gamma_i = \gamma \circ i_i$.

Now, we divide the matrix representation of f into

$$\theta(f) = \left(\begin{array}{c|c} M_1(f) & M_2(f) \\ \hline M_3(f) & M_4(f) \end{array}\right),$$

where $M_1(f)$ is the square matrix of degree n whose components are the maps in $[M(\mathbb{Z}, n), M(\mathbb{Z}, n)], M_2(f)$ is the $m \times s$ matrix whose components are the maps in $[M(\mathbb{Z}, n), M(\mathbb{Z}_{q_j}, n)], M_3(f)$ is the $s \times m$ matrix whose components are the maps in $[M(\mathbb{Z}_{q_j}, n), M(\mathbb{Z}, n)], \text{ and } M_4(f)$ is the square matrix of degree s matrix whose components are the maps in $[M(\mathbb{Z}_{q_j}, n), M(\mathbb{Z}_{q'_j}, n)].$

From the above matrix, we have the following induced matrix:

$$\theta^{\sharp}(f^{\sharp t}) = \left(\begin{array}{c|c} M_1(f)^{\sharp t} & M_2(f)^{\sharp t} \\ \hline M_3(f)^{\sharp t} & M_4(f)^{\sharp t} \end{array} \right).$$

In [3], for given $X = M(F \oplus T, n)$,

(4.3)
$$\mathcal{E}(X) \cong \mathcal{E}(M(F,n)) \oplus [M(F,n), M(T,n)] \oplus [M(T,n), M(F,n)] \oplus \mathcal{E}(M(T,n)),$$

where F and T are finitely generated abelian groups.

Theorem 4.3. Let $X = M(F \oplus T, n)$ be a Moore space with finitely generated abelian groups F and T and positive integer n. Then

$$\mathcal{E}_{k}^{\sharp}(X) \cong \mathcal{E}_{k}^{\sharp}(M(F,n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(F,n), M(T,n))$$
$$\oplus \mathcal{Z}_{k}^{\sharp}(M(T,n), M(F,n)) \oplus \mathcal{E}_{k}^{\sharp}(M(T,n)).$$

Proof. From (4.3), for $f \in \mathcal{E}(X)$, f can be represented by $f = (f_1, f_2, f_3, f_4)$ for some $f_1 \in \mathcal{E}(M(F, n))$, $f_2 \in [M(F, n), M(T, n)]$, $f_3 \in [M(T, n), M(F, n)]$, and $f_4 \in \mathcal{E}(M(T, n))$. Then,

$$M_1(f) = \theta(f_1), M_2(f) = \theta(f_2), M_3(f) = \theta(f_3), \text{ and } M_4(f) = \theta(f_4).$$

Since, for $t \ge k$,

$$\theta^{\sharp}(f^{\sharp t}) = \left(\frac{M_1(f)^{\sharp t}}{M_3(f)^{\sharp t}} \frac{M_2(f)^{\sharp t}}{M_4(f)^{\sharp t}}\right) = I_{m \times s}^{\sharp t}$$

by Proposition 4.2,

$$M_1(f)^{\sharp t} = I_m^{\sharp t}, M_2(f)^{\sharp t} = O_{m \times s}^{\sharp t}, M_3(f)^{\sharp t} = O_{s \times m}^{\sharp t}, M_4(f)^{\sharp t} = I_s^{\sharp t}$$

for $t \geq k$, where $O_{m \times s}^{\sharp t}$ and $O_{s \times m}^{\sharp t}$ are an $m \times s$ zero matrix and an $s \times m$ zero matrix, respectively. Thus, if $f = (f_1, f_2, f_3, f_4) \in \mathcal{E}_k^{\sharp}(X)$, then $f_1 \in \mathcal{E}_k^{\sharp}(X)$

 $\mathcal{E}_{k}^{\sharp}(M(F,n)), f_{2} \in \mathcal{Z}_{k}^{\sharp}(M(F,n)), f_{3} \in \mathcal{Z}_{k}^{\sharp}(M(F,n)), \text{ and } f_{4} \in \mathcal{E}_{k}^{\sharp}(M(T,n)).$ Therefore, $\mathcal{E}_{k}^{\sharp}(X)$ is contained in

 $\mathcal{E}_k^{\sharp}(M(F,n)) \oplus \mathcal{Z}_k^{\sharp}(M(F,n), M(T,n)) \oplus \mathcal{Z}_k^{\sharp}(M(T,n), M(F,n)) \oplus \mathcal{E}_k^{\sharp}(M(T,n)).$

Conversely, let $f = (f_1, f_2, f_3, f_4)$ belong to

 $\begin{aligned} & \mathcal{E}_{k}^{\sharp}(M(F,n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(F,n),M(T,n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(T,n),M(F,n)) \oplus \mathcal{E}_{k}^{\sharp}(M(T,n)). \\ & \text{Then } f \in \mathcal{E}(X) \text{ from (4.3). Since } \theta^{\sharp}(f_{1}^{\sharp t}) = I_{m}^{\sharp t}, \theta^{\sharp}(f_{2}^{\sharp t}) = O_{s \times m}^{\sharp t}, \theta^{\sharp}(f_{3}^{\sharp t}) = O_{m \times s}^{\sharp t}, \text{ and } \theta^{\sharp}(f_{4}^{\sharp t}) = I_{s}^{\sharp t}, \ \theta^{\sharp}(f^{\sharp t}) = I_{s \times m}^{\sharp t} \text{ for each } t \geq k. \end{aligned}$

5. Computations of $\mathcal{E}_k^{\sharp}(M(G,n))$

Let $X_1 = M(\bigoplus_{i=1}^m \mathbb{Z}, n)$ and $X_2 = M(\bigoplus_{j=1}^s \mathbb{Z}_{q_j}, n)$. For the wedge product space $X = X_1 \vee X_2$, to determine $\mathcal{E}_k^{\sharp}(X)$ by Theorem 4.3, we need to calculate each $\mathcal{E}_k^{\sharp}(X_1), \ \mathcal{Z}_k^{\sharp}(X_2, X_1), \ \mathcal{Z}_k^{\sharp}(X_1, X_2)$, and $\mathcal{E}_k^{\sharp}(X_2)$.

We first compute $\mathcal{E}_k^{\sharp}(X_1)$. Since $X_1 \simeq \bigvee_{i=1}^m M(\mathbb{Z}, n) \simeq \bigvee_{i=1}^m S_i^n$, where S_i^n is a copy of S^n , we have

$$[X_1, X_1] \cong \bigoplus_{i,j=1}^m [S_i^n, S_j^n] \cong \bigoplus_{i=1}^{m \times m} \mathbb{Z}$$

by Proposition 2.1 in [9]. Thus, $\mathcal{E}(X_1) = GL(m, \mathbb{Z})$, where $GL(m, \mathbb{Z})$ is the general linear group of degree m.

Let $i_i: S_i^n \to X_1$ be the inclusion and $p_j: X_1 \to S_j^n$ be the projection. For a self-map $f: X_1 \to X_1$, we define $f_{ji}: S_i^n \to S_j^n$ by $f_{ji} = p_j \circ f \circ i_i$. Since S_i^n and S_j^n are the copies of the *n*-dimensional sphere, we see that $[S_i^n, S_j^n] = [S^n, S^n]$. Let ι_n be the identity map on $[S^n, S^n]$; in particular, let $(\iota_n)_{ji}$ be the identity map on $[S_i^n, S_j^n]$. Then the matrix representation of f is given by

$$\theta(f) = \begin{pmatrix} t_{11}(\iota_n)_{11} & \cdots & t_{1m}(\iota_n)_{1m} \\ \vdots & \ddots & \vdots \\ t_{m1}(\iota_n)_{m1} & \cdots & t_{mm}(\iota_n)_{mm} \end{pmatrix},$$

where t_{ji} is the degree of f_{ji} for j, i = 1, 2, ..., m.

Lemma 5.1. For $n \ge 1$,

$$\mathcal{Z}_k^{\sharp}(S^n) \cong \begin{cases} \mathbb{Z} & \text{ if } k > n, \\ 0 & \text{ if } k \le n. \end{cases}$$

Proof. If k > n, then $[S^n, S^k] = 0$. Thus, each $f \in [S^n, S^n]$ induces the trivial homomorphism on $\pi^t(S^n)$ for $t \ge k$. Hence, $\mathcal{Z}_k^{\sharp}(S^n) \cong \mathbb{Z}$. If k = n, then $[S^n, S^n] \cong \mathbb{Z}\{\iota_n\}$. Since $f = (\deg f)\iota_n$ for each $f \in [S^n, S^n]$, $f^{\sharp n}(\iota_n) = ((\deg f)\iota_n)^{\sharp n}(\iota_n) = (\deg f)\iota_n$. Thus, if $f \in \mathcal{Z}_k^{\sharp}(S^n)$, then $\deg f$ must be 0. Hence, $\mathcal{Z}_n^{\sharp}(S^n) = 0$. From the definition, we have $\mathcal{Z}_k^{\sharp}(S^n) = 0$ for k < n. \Box

Theorem 5.2. For $n \ge 2$,

$$\mathcal{E}_k^{\sharp}(X_1) \cong \begin{cases} GL(m, \mathbb{Z}) & k > n, \\ 1 & k \le n. \end{cases}$$

Proof. Since $\pi^k(X_1) = 0$ for k > n, $\mathcal{E}_k^{\sharp}(X_1) = \mathcal{E}(X_1)$ for k > n. Suppose that $k \le n$. Then, for each $f \in \mathcal{E}_k^{\sharp}(X_1)$, $\theta^{\sharp}(f^{\sharp t}) = I_s^{\sharp t}$ for $t \ge k$. Thus

$$f_{ji}^{\sharp t} = \begin{cases} (\iota_n)_{ji}^{\sharp t} & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Hence, if i = j, then $f_{ji} \in \mathcal{E}_k^{\sharp}(S^n)$ and if $i \neq j$, then $f_{ji} \in \mathcal{Z}_k^{\sharp}(S^n)$. By Lemma 5.1, $\theta^{\sharp}(f^{\sharp t}) = id_{X_1}^{\sharp t}$ for $t \geq k$.

Now, we investigate $\mathcal{Z}_{k}^{\sharp}(X_{2}, X_{1})$ and $\mathcal{Z}_{k}^{\sharp}(X_{1}, X_{2})$. We review briefly the following lemmas in [1] and [4].

Lemma 5.3. Let $M(\mathbb{Z}_q, n)$ be a Moore space type of (\mathbb{Z}_q, n) . Then the k-th cohomotopy groups $\pi^k(M(\mathbb{Z}_q, n))$ are isomorphic to

	$k \ge n+2$	k = n + 1	k = n
$q \equiv 1 \pmod{2}$	0	\mathbb{Z}_q	0
$q \equiv 0 \pmod{2}$	0	\mathbb{Z}_q	\mathbb{Z}_2
Generator	-	$\iota_{n+1} \circ \pi_q$	$\eta_n \circ \pi_q$

Lemma 5.4. Let $M(\mathbb{Z}_q, n)$ be a Moore space type of (\mathbb{Z}_q, n) . Then the k-th homotopy groups $\pi_k(M(\mathbb{Z}_q, n))$ are isomorphic to

	k = n + 2	k = n + 1	k = n	$k \le n-1$
$q \equiv 1 \pmod{2}$	0	0	\mathbb{Z}_q	0
$q \equiv 0 \pmod{4}$	$\mathbb{Z}_2\oplus\mathbb{Z}_2$	\mathbb{Z}_2	\mathbb{Z}_q^-	0
$q \equiv 2 \pmod{4}$	\mathbb{Z}_4	\mathbb{Z}_2	\mathbb{Z}_q^-	0
Generator	-	$i_q \circ \eta_n$	$i_q \circ \iota_n$	-

Proposition 5.5. For k > 0,

$$\mathcal{Z}_k^{\sharp}(M(\mathbb{Z}_q, n), M(\mathbb{Z}, n)) \cong \begin{cases} 0 & \text{if } q \equiv 1 \pmod{2}, \\ \mathbb{Z}_2\{\eta_n \circ \pi_q\} & \text{if } k \ge n+1 \text{ and } q \equiv 0 \pmod{2}, \\ 0 & \text{if } k \le n \text{ and } q \equiv 0 \pmod{2}. \end{cases}$$

Proof. By Lemma 5.3,

$$[M(\mathbb{Z}_q, n), M(\mathbb{Z}, n)] = \pi^n(M(\mathbb{Z}_q, n)) \cong \begin{cases} 0 & \text{if } q \equiv 1 \pmod{2}, \\ \mathbb{Z}_2\{\eta_n \circ \pi_q\} & \text{if } q \equiv 0 \pmod{2}. \end{cases}$$

If q is odd, then $\mathcal{Z}_k^{\sharp}(M(\mathbb{Z}_q, n), M(\mathbb{Z}, n)) = 0$. Let q be even. If $k \ge n + 1$, then $\pi^k(M(\mathbb{Z}, n)) = 0$. Thus $\mathcal{Z}_k^{\sharp}(M(\mathbb{Z}_q, n), M(\mathbb{Z}, n)) = [M(\mathbb{Z}_q, n), M(\mathbb{Z}, n)] =$

 $\pi^n(M(\mathbb{Z}_q, n)) \cong \mathbb{Z}_2$. If k = n, then $\pi^n(M(\mathbb{Z}, n)) \cong \mathbb{Z}\{\iota_n\}$ and $\pi^n(M(\mathbb{Z}_q, n)) \cong \mathbb{Z}_2\{\eta_n \circ \pi_q\}$ and so

$$(\eta_n \circ \pi_q)^{\sharp n}(\iota_n) = \iota_n \circ \eta_n \circ \pi_q = \eta_n \circ \pi_q \neq 0$$

Therefore, $\mathcal{Z}_n^{\sharp}(M(\mathbb{Z}_q, n), M(\mathbb{Z}, n)) = 0.$

Proposition 5.6. For $k \ge n$,

$$\mathcal{Z}_k^{\sharp}(M(\mathbb{Z},n),M(\mathbb{Z}_q,n)) \cong \mathbb{Z}_q\{i_q \circ \iota_n\}.$$

Proof. By Lemma 5.4, $[M(\mathbb{Z}, n), M(\mathbb{Z}_q, n)] = \pi_n(M(\mathbb{Z}_q, n)) \cong \mathbb{Z}_q\{i_q \circ \iota_n\}$. Since $\pi^k(S^n) = 0$ for $k \ge n+1$, $\mathcal{Z}_k^{\sharp}(M(\mathbb{Z}, n), M(\mathbb{Z}_q, n)) \cong \mathbb{Z}_q$. If k = n, then $\pi^n(S^n) \cong \mathbb{Z}\{\iota_n\}$ and

$$\pi^n(M(\mathbb{Z}_q, n)) \cong \begin{cases} 0 & \text{if } q \equiv 1 \pmod{2}, \\ \mathbb{Z}_2\{\eta_n \circ \pi_q\} & \text{if } q \equiv 0 \pmod{2}. \end{cases}$$

If $q \equiv 1 \pmod{2}$, then $\mathcal{Z}_n^{\sharp}(M(\mathbb{Z}, n), M(\mathbb{Z}_q, n)) \cong \mathbb{Z}_q$. If $q \equiv 0 \pmod{2}$, then $(i_q \circ \iota_n)^{\sharp n}(\eta_n \circ \pi_q) = \eta_n \circ \pi_q \circ i_q \circ \iota_n = 0$ because $\pi_q \circ i_q \simeq 0$. Thus, $\mathcal{Z}_n^{\sharp}(M(\mathbb{Z}, n), M(\mathbb{Z}_q, n)) \cong \mathbb{Z}_q$.

Theorem 5.7. For k > 0,

$$\mathcal{Z}_k^{\sharp}(X_2, X_1) \cong \begin{cases} \bigoplus^{m \times t} \mathbb{Z}_2 & \text{if } k \ge n+1, \\ 0 & \text{if } k \le n, \end{cases}$$

where t is the number of even q_j .

Proof. By Corollary 3.3,

$$\mathcal{Z}_k^{\sharp}(X_2, X_1) \cong \bigoplus^m \left(\bigoplus_{i=1}^s \mathcal{Z}_k^{\sharp}(M(\mathbb{Z}_{q_j}, n), M(\mathbb{Z}, n)) \right).$$

By Proposition 5.5, we have $\mathcal{Z}_{k}^{\sharp}(X_{2}, X_{1}) \cong \bigoplus^{m \times t} \mathbb{Z}_{2}$ for $k \geq n+1$, where t is the number of even q_{j} . If $k \leq n$, then $\mathcal{Z}_{k}^{\sharp}(M(\mathbb{Z}_{q_{j}}, n), M(\mathbb{Z}, n)) = 0$. Therefore, $\mathcal{Z}_{k}^{\sharp}(X_{2}, X_{1}) = 0$.

Theorem 5.8. For $k \ge n$,

$$\mathcal{Z}_k^{\sharp}(X_1, X_2) \cong \bigoplus_{j=1}^s \left(\bigoplus^m \mathbb{Z}_{q_j} \right).$$

Proof. This follows immediately from Corollary 3.3 and Proposition 5.6. \Box

Finally, we determine $\mathcal{E}_k^{\sharp}(X_2)$. Since $X_2 \cong \bigvee_{i=1}^s M(\mathbb{Z}_{q_i}, n)$, we have

$$[X_2, X_2] \cong \bigoplus_{j=1}^s \left(\bigoplus_{i=1}^s [M(\mathbb{Z}_{q_i}, n), M(\mathbb{Z}_{q_j}, n)] \right)$$

by Proposition 2.1. In [3], it was shown that

$$\mathcal{E}(X_2) \cong \left(\bigoplus_{i=1}^s \mathcal{E}(M(\mathbb{Z}_{q_i}, n))\right) \bigoplus \left(\bigoplus_{i \neq j} [M(\mathbb{Z}_{q_i}, n), M(\mathbb{Z}_{q_j}, n)]\right).$$

Theorem 5.9. For k > 0,

$$\mathcal{E}_{k}^{\sharp}(X_{2}) \cong \left(\bigoplus_{i=1}^{s} \mathcal{E}_{k}^{\sharp}(M(\mathbb{Z}_{q_{i}}, n))\right) \bigoplus \left(\bigoplus_{i \neq j} \mathcal{Z}_{k}^{\sharp}(M(\mathbb{Z}_{q_{j}}, n), M(\mathbb{Z}_{q_{i}}, n))\right)$$

Proof. Let $f \in \mathcal{E}_k^{\sharp}(X_2)$. Then $\theta^{\sharp}(f^{\sharp t}) = I_s^{\sharp t}$ for $t \geq k$. This means that $f_{ii}^{\sharp t} = 1_{\pi^t(M(\mathbb{Z}_{q_i}, n))}$ for all $1 \leq i \leq s$ and $\theta^{\sharp}(f_{ji}^{\sharp t}) = 0$ for $i \neq j$. Thus, $f_{ii} \in \mathcal{E}_k^{\sharp}(M(\mathbb{Z}_{q_i}, n))$ and $f_{ji} \in \mathcal{Z}_k^{\sharp}(M(\mathbb{Z}_{q_i}, n), M(\mathbb{Z}_{q_j}, n))$. Therefore,

$$f \in \left(\mathcal{E}_{k}^{\sharp}(M(\mathbb{Z}_{q_{i}}, n))\right) \bigoplus \left(\bigoplus_{i \neq j} \mathcal{Z}_{k}^{\sharp}(M(\mathbb{Z}_{q_{j}}, n), M(\mathbb{Z}_{q_{i}}, n))\right).$$

Conversely, let $f \in \left(\mathcal{E}_k^{\sharp}(M(\mathbb{Z}_{q_i}, n))\right) \bigoplus \left(\bigoplus_{i \neq j} \mathcal{Z}_k^{\sharp}(M(\mathbb{Z}_{q_j}, n), M(\mathbb{Z}_{q_i}, n))\right)$. Then, $f_{ji}^{\sharp t} = \begin{cases} 1_{\pi^t(M(\mathbb{Z}_{q_i}, n))} & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$

for all $t \ge k$. By Proposition 4.2 and the definition of $\mathcal{E}_k^{\sharp}(M(\mathbb{Z}_{q_i}, n))$, the matrix representation of $f^{\sharp t}$ is equal to $I_s^{\sharp t}$ for all $t \ge k$. Hence, $f \in \mathcal{E}_k^{\sharp}(X_2)$.

From [3], we have the following lemma:

Lemma 5.10. Let $M_j = M(\mathbb{Z}_{q_i}, n)$ and $M_i = M(\mathbb{Z}_{q_i}, n)$. Then we have

	either q_j or q_i : odd	$q_j \equiv q_i \equiv 2 \pmod{4}$	$q_j \equiv q_i \equiv 0 \pmod{4}$
$[M_j, M_i]$	\mathbb{Z}_d	\mathbb{Z}_{2d}	$\mathbb{Z}_d\oplus\mathbb{Z}_2$
Generator	α_i	α_i	$\alpha_i, i_a \circ \eta_a \circ \pi_a$

where $\pi_{q_i} \circ \alpha_j = \overline{j}\iota_{n+1} \circ \pi_{q_j}$, \overline{j} is an integer such that $q_j = \overline{j}d$, and $d = (q_i, q_j)$ is the greatest common divisor.

Proposition 5.11. Let $M_i = M(\mathbb{Z}_{q_i}, n)$ and $M_j = M(\mathbb{Z}_{q_j}, n)$. Then we have

$$\mathcal{Z}_{k}(M_{j}, M_{i}) \cong \begin{cases} [M_{j}, M_{i}] & \text{if } k \ge n+2, \\ 0 & \text{if } q_{j} \text{ or } q_{i} : \text{odd and } k = n \text{ or } n+1, \\ \mathbb{Z}_{2} & \text{if } q_{j} \equiv q_{i} \equiv 0 \pmod{2} \text{ and } k = n \text{ or } n+1. \end{cases}$$

Proof. If $k \ge n+2$, then $\pi^k(M_j) = \pi^k(M_i) = 0$. Thus, $\mathcal{Z}_k^{\sharp}(M_j, M_i) = [M_j, M_i]$ for $k \ge n+2$. By Lemma 5.3, we have $\pi^{n+1}(M_\ell) \cong \mathbb{Z}_{q_\ell}\{\iota_{n+1} \circ \pi_{q_\ell}\}$ and

$$\pi^n(M_\ell) \cong \begin{cases} 0 & \text{if } q_\ell \equiv 1 \pmod{2}, \\ \mathbb{Z}_2\{\eta_n \circ \pi_{q_\ell}\} & \text{if } q_\ell \equiv 0 \pmod{2}, \end{cases}$$

where $\ell = i, j$. By Lemma 5.10, we have

$$[M_j, M_i] \cong \begin{cases} \mathbb{Z}_d\{\alpha_j\} & \text{if } q_j \text{ or } q_i : \text{odd,} \\ \mathbb{Z}_{2d}\{\alpha_j\} & \text{if } q_j \equiv q_i \equiv 2 \pmod{4}, \\ \mathbb{Z}_d \oplus \mathbb{Z}_2\{\alpha_j, i_{q_i} \circ \eta_n \circ \pi_{q_j}\} & \text{if } q_j \equiv q_i \equiv 0 \pmod{4}, \end{cases}$$

where $d = (q_j, q_i)$.

Case 1. Let q_j or q_i be odd.

Let
$$g \in [M_j, M_i]$$
. Then, $g = s\alpha_j$ for some $0 \le s \le d$. Thus, we have

$$g^{\sharp n+1}(\iota_{n+1} \circ \pi_{q_i}) = \iota_{n+1} \circ \pi_{q_i} \circ s\alpha_j$$

$$= s\iota_{n+1} \circ \pi_{q_i} \circ \alpha_j$$

$$= s\iota_{n+1} \circ \overline{j}\iota_n \circ \pi_{q_j}$$

$$= s\overline{j}\iota_n \circ \pi_{q_j}.$$

Since $0 \le s\overline{j} \le q_j$, $g^{\sharp n+1}$ is trivial if and only if s = 0. Hence, $\mathcal{Z}_{n+1}^{\sharp}(M_j, M_i) = 0$. Moreover, $\mathcal{Z}_n^{\sharp}(M_j, M_i) = 0$ by the definition.

Case 2. Let $q_j \equiv q_i \equiv 2 \pmod{4}$.

Let
$$g \in [M_j, M_i]$$
. Then $g = s\alpha_j$ for some $0 \le s \le 2d$. Thus, if $s = d$, then

 $g^{\sharp n+1}(\iota_{n+1}\circ\pi_{q_i}) = \iota_{n+1}\circ\pi_{q_i}\circ i_{q_i}\circ\eta_n\circ\pi_{q_j} = 0$

because $\pi_{q_i} \circ i_{q_i} \simeq 0$. If $s \neq d$, then

$$g^{\sharp n+1}(\iota_{n+1}\pi_{q_i}) = s\iota_{n+1}\pi_{q_i} \circ \alpha_j = s\bar{j}\iota_{n+1} \circ \pi_{q_j}$$

Hence, s = 0 or d. Therefore $\mathcal{Z}_{n+1}^{\sharp}(M_j, M_i) \cong \mathbb{Z}_2\{d\alpha_j\}$. Then, for $g \in \mathcal{Z}_{n+1}^{\sharp}(M_j, M_i)$,

$$g^{\sharp n+1}(\eta_n \circ \pi_{q_i}) = d\eta_n \circ \pi_{q_i} \circ \alpha_j = d\bar{j}\eta_{n+1} \circ \pi_{q_j} = q_j\eta_{n+1} \circ \pi_{q_j} = 0$$

because q_j is even. Therefore, $\mathcal{Z}_n^{\sharp}(M_j, M_i) \cong \mathbb{Z}_2\{d\alpha_j\}.$

Case 3. Let $q_j \equiv q_i \equiv 0 \pmod{4}$.

Let $g \in [M_j, M_i]$. Then, $g = s\alpha_j \oplus ti_{q_i} \circ \eta_n \circ \pi_{q_j}$ for some $0 \le s < d$ and t = 0, 1. Then,

 $g^{\sharp n+1}(\iota_{n+1} \circ \pi_{q_i}) = s\bar{j}\iota_{n+1} \circ \pi_{q_j} \oplus t\iota_{n+1} \circ \pi_{q_i} \circ i_{q_i} \circ \eta_n \circ \pi_{q_j} = s\bar{j}\iota_{n+1} \circ \pi_{q_j} \oplus 0$ because $\pi_{q_i} \circ i_{q_i} \simeq 0$. Thus, s = 0 and t = 0, 1. Hence, $\mathcal{Z}_{n+1}^{\sharp}(M_j, M_i) \cong \mathbb{Z}_2\{0 \oplus i_{q_i} \circ \eta_n \circ \pi_{q_j}\}$. Then, for $g \in \mathcal{Z}_{n+1}^{\sharp}(M_j, M_i)$,

$$g^{\sharp n}(\eta_n \circ \pi_{q_i}) = 0 \oplus \eta_n \circ \pi_{q_i} \circ i_{q_i} \circ \eta_n \circ \pi_{q_j} = 0.$$

Hence, $\mathcal{Z}_n^{\sharp}(M_j, M_i) \cong \mathbb{Z}_2\{0 \oplus i_{q_i} \circ \eta_n \circ \pi_{q_j}\}.$

Theorem 5.12. For $n \geq 3$,

$$\mathcal{E}_{k}^{\sharp}(X_{2}) \cong \begin{cases} \left(\bigoplus_{i=1}^{s} \mathcal{E}(M(\mathbb{Z}_{q_{i}}, n)) \right) \bigoplus \left(\bigoplus_{i \neq j} [M(\mathbb{Z}_{q_{j}}, n), M(\mathbb{Z}_{q_{i}}, n)] \right) & \text{if } k \ge n+2, \\ \bigoplus_{i \neq j} \mathbb{Z}_{2} & \text{if } k = n \text{ or } n+1, \end{cases}$$

where t is the number of even q_j and ℓ is the number of pairs $\{i, j\} \subset \{1, \ldots, s\}$ such that both q_i and q_j are even and $i \neq j$.

Proof. If $k \ge n+2$, then $\pi^k(X_2) = 0$. Thus, $\mathcal{E}_k^{\sharp}(X_2) = \mathcal{E}(X_2)$. If k = n or n+1, then by [6, Theorems 4.1 and 4.2], $\mathcal{E}_k^{\sharp}(M(\mathbb{Z}_{q_i}, n)) \cong \bigoplus_{i \ne j}^t \mathbb{Z}_2$, where t is the number of even q_i . By Proposition 5.11, $\bigoplus_{i \ne j} \mathcal{Z}_k^{\sharp}(M(\mathbb{Z}_{q_j}, n), M(\mathbb{Z}_{q_i}, n)) \cong \bigoplus_{i \ne j}^\ell \mathbb{Z}_2$, where ℓ is the number of pairs $\{i, j\} \subset \{1, \ldots, s\}$ such that both q_i and q_j are even and $i \ne j$. Therefore,

$$\mathcal{E}_k^{\sharp}(X_2) \cong \bigoplus^{t+\ell} \mathbb{Z}_2.$$

If we combine Theorems 5.2, 5.7, 5.8, and 5.12, we obtain the following main result:

Corollary 5.13. Let
$$G = \left(\bigoplus_{i=1}^{m} \mathbb{Z}\right) \bigoplus \left(\bigoplus_{j=1}^{s} \mathbb{Z}_{q_{j}}\right)$$
. Then, we have

$$\mathcal{E}_{k}^{\sharp}(M(G,n)) \cong \begin{cases} GL(m,\mathbb{Z}) \bigoplus^{m \times t} \mathbb{Z}_{2} \bigoplus_{j=1}^{s} \left(\bigoplus^{m} \mathbb{Z}_{q_{j}}\right) \bigoplus \mathcal{E}(M(T,n)) & \text{if } k \ge n+2 \\ GL(m,\mathbb{Z}) \bigoplus^{m \times t+t+\ell} \mathbb{Z}_{2} \bigoplus \left(\bigoplus_{j=1}^{s} \left(\bigoplus^{m} \mathbb{Z}_{q_{j}}\right)\right) & \text{if } k = n+1 \\ GL(m,\mathbb{Z}) \bigoplus^{t+\ell} \mathbb{Z}_{2} \bigoplus \left(\bigoplus_{j=1}^{s} \left(\bigoplus^{m} \mathbb{Z}_{q_{j}}\right)\right) & \text{if } k = n, \end{cases}$$

where $GL(m,\mathbb{Z})$ is the general linear group of degree m, t is the number of even q_j and ℓ is the number of pairs $\{i, j\} \subset \{1, \ldots, s\}$ such that both q_i and q_j are even and $i \neq j$.

References

- S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories. I, Osaka J. Math. 2 (1965), 71-115. http://projecteuclid.org/euclid.ojm/1200691225
- [2] M. Arkowitz, The group of self-homotopy equivalences—a survey, in Groups of selfequivalences and related topics (Montreal, PQ, 1988), 170–203, Lecture Notes in Math., 1425, Springer, Berlin, 1990. https://doi.org/10.1007/BFb0083840
- M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology Appl. 87 (1998), no. 2, 133–154. https://doi.org/10.1016/S0166-8641(97)00162-4
- [4] H. W. Choi and K. Y. Lee, Certain self-homotopy equivalences on wedge products of Moore spaces, Pacific J. Math. 272 (2014), no. 1, 35-57. https://doi.org/10.2140/ pjm.2014.272.35
- [5] _____, Certain numbers on the groups of self-homotopy equivalences, Topology Appl. 181 (2015), 104–111. https://doi.org/10.1016/j.topol.2014.12.004
- [6] H. W. Choi, K. Y. Lee, and H. S. Oh, Self-homotopy equivalences related to cohomotopy groups, J. Korean Math. Soc. 54 (2017), no. 2, 399-415. https://doi.org/10.4134/ JKMS.j150765

SELF-HOMOTOPY EQUIVALENCES DEPENDING ON COHOMOTOPY GROUPS 1385

- K.-Y. Lee, The groups of self pair homotopy equivalences, J. Korean Math. Soc. 43 (2006), no. 3, 491–506. https://doi.org/10.4134/JKMS.2006.43.3.491
- [8] K. Maruyama, π_{*}-kernels of Lie groups, Trans. Amer. Math. Soc. 358 (2006), no. 6, 2335–2351. https://doi.org/10.1090/S0002-9947-06-04199-7
- J. W. Rutter, The group of homotopy self-equivalence classes of CW complexes, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 2, 275–293. https://doi.org/10.1017/ S0305004100060576
- [10] N. Sawashita, On the group of self-equivalences of the product of spheres, Hiroshima Math. J. 5 (1975), 69-86. http://projecteuclid.org/euclid.hmj/1206136785
- [11] A. J. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789-802. http://projecteuclid.org/euclid.pjm/1102971956

Ho Won Choi Institute of Natural Science Korea University Sejong 339-700, Korea *Email address*: howon@korea.ac.kr

KEE YOUNG LEE DIVISION OF APPLIED MATHEMATICAL SCIENCES KOREA UNIVERSITY SEJONG 339-700, KOREA *Email address*: keyolee@korea.ac.kr

Hyung Seok Oh Department of Mathematics Korea University Seoul 702-701, Korea *Email address*: hyungseok@korea.ac.kr