SELF-HOMOTOPY EQUIVALENCES OF MOORE SPACES DEPENDING ON COHOMOTOPY GROUPS

Ho Won Choi, Kee Young Lee, and Hyung Seok Oh

Abstract

Given a topological space X and a non-negative integer k $\mathcal{E}_{k}^{\sharp}(X)$ is the set of all self-homotopy equivalences of X that do not change maps from X to an t-sphere S^{t} homotopically by the composition for all $t \geq k$. This set is a subgroup of the self-homotopy equivalence group $\mathcal{E}(X)$. We find certain homotopic tools for computations of $\mathcal{E}_{k}^{\sharp}(X)$. Using these results, we determine $\mathcal{E}_{k}^{\sharp}(M(G, n))$ for $k \geq n$, where $M(G, n)$ is a Moore space type of (G, n) for a finitely generated abelian group G.

1. Introduction

For a topological space X, we denote $\mathcal{E}(X)$ as the set of all homotopy classes of self-homotopy equivalences of X. Then $\mathcal{E}(X)$ is a subset of $[X, X]$ and has a group structure given by the composition of homotopy classes. The subset $\mathcal{E}(X)$ has been studied extensively by various authors, including Arkowitz [2], Arkowitz and Maruyama [3], Lee [5, 7], Rutter [9], Sawashita [10], and Sieradski [11]. Moreover several subgroups of $\mathcal{E}(X)$ have also been studied, notably the group $\mathcal{E}_{\sharp}^{k}(X)$, which consists of all elements of $\mathcal{E}(X)$ that induce the identity homomorphism on homotopy groups $\pi_{t}(X)$ for $t=0,1,2, \ldots, k$. In our previous work [4], the first and second authors used homotopy techniques to calculate these subgroups for the wedge products of Moore spaces.

In [6], we introduced $\mathcal{E}_{k}^{\sharp}(X)$, which consists of the elements of $\mathcal{E}(X)$ that induce the identity homomorphism on cohomotopy groups $\pi^{t}(X)$ for $t \geq k$. Equivalently, it can be defined as follows: For a non-negative integer i, consider the self-map $f: X \rightarrow X$ such that $g \circ f$ is homotopic to g for each $g: X \rightarrow S^{t}$

Received October 12, 2018; Accepted January 24, 2019.
2010 Mathematics Subject Classification. Primary 55P10, 55Q05, 55Q55.
Key words and phrases. self-homotopy equivalence, cohomotopy group, Moore space, coMoore space.

The first-named author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of education(NRF2015R1C1A1A01055455).

The second-named author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF2018R1D1A1B07045599).
and for each $t \geq k$. The set of all homotopy classes of such self-maps of X is denoted by $[X, X]_{k}^{\sharp}$, that is,

$$
[X, X]_{k}^{\sharp}=\left\{f \in[X, X] \mid g \circ f \sim g \text { for each } g: X \rightarrow S^{t} \text { for all } t \geq k\right\} .
$$

Then

$$
\mathcal{E}_{k}^{\sharp}(X)=\mathcal{E}(X) \cap[X, X]_{k}^{\sharp} .
$$

In [6], we proved that $\mathcal{E}_{k}^{\sharp}(X)$ is a subgroup of $\mathcal{E}(X)$ and, if X is a finite CWcomplex, then $\mathcal{E}_{k}^{\sharp}(X)$ has a lower bound whereas $\mathcal{E}_{\sharp}^{k}(X)$ has an upper bound. Moreover, we calculated $\mathcal{E}_{k}^{\sharp}(X)$ for special Moore space $X=M\left(\mathbb{Z}_{p}, n\right)$ and co-Moore space $X=C\left(\mathbb{Z}_{p}, n\right)$.

In this paper, we determine $\mathcal{E}_{k}^{\sharp}(M(G, n))$ completely for $k \geq n$, where $M(G, n)$ is a Moore space type of (G, n) with G a finitely generated abelian group and $n \geq 3$. To solve this problem, we first study a subset $\mathcal{Z}_{k}^{\sharp}(Y, Z)$ of $[Y, Z]$ for spaces Y and Z. The subset $\mathcal{Z}_{k}^{\sharp}(Y, Z)$ is defined by the set of all $h \in[Y, Z]$ whose induced homomorphism $h^{\sharp t}: \pi^{t}(Z) \rightarrow \pi^{t}(Y)$ is the trivial homomorphism for $t \geq k$. Furthermore, we investigate the properties of $\mathcal{E}_{k}^{\sharp}(X)$ for given wedge product space X to prove the following theorem in Section 4:

Theorem 4.3. Let $M(G, n)$ be a Moore space type of (G, n) and $G=F \oplus T$ be a finitely generated abelian group G with free part F and torsion part T. Then $\mathcal{E}_{k}^{\sharp}(M(G, n))$ is isomorphic to
$\mathcal{E}_{k}^{\sharp}(M(F, n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(F, n), M(T, n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(T, n), M(F, n)) \oplus \mathcal{E}_{k}^{\sharp}(M(T, n))$.

From Theorem 4.3, the problem of computing $\mathcal{E}_{k}^{\sharp}(M(G, n))$ reduces to that of computing the \mathcal{E}_{k}^{\sharp}-groups and \mathcal{Z}_{k}^{\sharp}-groups for Moore spaces for (possibly infinite) cyclic groups. In Section 5 , we compute explicitly \mathcal{Z}_{k}^{\sharp}-groups for Moore spaces for (possibly infinite) cyclic groups and combine the relevant \mathcal{E}_{k}^{\sharp}-groups computed in our previous paper and are recorded as Theorem 2.4 to obtain the following main result:
Corollary 5.13. Let $G=\left(\bigoplus_{i=1}^{m} \mathbb{Z}\right) \bigoplus\left(\bigoplus_{j=1}^{s} \mathbb{Z}_{q_{j}}\right)$. Then, we have

$$
\mathcal{E}_{k}^{\sharp}(M(G, n)) \cong \begin{cases}G L(m, \mathbb{Z}) \bigoplus^{m \times t} \mathbb{Z}_{2} \bigoplus_{j=1}^{s}\left(\bigoplus^{m} \mathbb{Z}_{q_{j}}\right) \bigoplus \mathcal{E}(M(T, n)) & \text { if } k \geq n+2, \\ G L(m, \mathbb{Z}) \stackrel{m \times t+t+\ell}{\bigoplus} \mathbb{Z}_{2} \oplus\left(\bigoplus_{j=1}^{s}\left(\bigoplus_{\bigoplus}^{m} \mathbb{Z}_{q_{j}}\right)\right) & \text { if } k=n+1, \\ G L(m, \mathbb{Z}) \stackrel{t+\ell}{\bigoplus} \mathbb{Z}_{2} \bigoplus\left(\bigoplus_{j=1}^{s}\left(\bigoplus^{m} \mathbb{Z}_{q_{j}}\right)\right) & \text { if } k=n,\end{cases}
$$

where $G L(m, \mathbb{Z})$ is the general linear group of degree m, t is the number of even q_{j} and ℓ is the number of pairs $\{i, j\} \subset\{1, \ldots, s\}$ such that both q_{i} and q_{j} are even and $i \neq j$.

Throughout this paper, all topological spaces are based and have the based homotopy type of a CW-complex, and all maps and homotopies preserve base points. For the spaces X and Y, we denote by $[X, Y]$ the set of all homotopy classes of maps from X to Y. No distinction is made between the notation of a map $X \rightarrow Y$ and that of its homotopy class in $[X, Y]$. When a group G is generated by a set $\left\{a_{1}, \ldots, a_{n}\right\}$, then we denote it by $G\left\{a_{1}, \ldots, a_{n}\right\}$. Moreover, when $f: X \rightarrow Y$ is a map, $f^{\sharp k}: \pi^{k}(Y) \rightarrow \pi^{k}(X)$ denote the induced homomorphisms on the k-th cohomotopy group.

2. Preliminaries

In this section, we review some results provided in [3,6], knowledge of which would be useful when reading this paper. First, we introduce the following proposition from [3] that is a basic concept in developing this paper.

Proposition 2.1 (Arkowitz and Maruyama [3]). If X is $(k-1)$-connected, Y is $(\ell-1)$-connected and, further, if $k, \ell \geq 2$ and $\operatorname{dim} P \leq k+\ell-1$, then the projections $X \vee Y \rightarrow X$ and $X \vee Y \rightarrow Y$ induce a bijection:

$$
[P, X \vee Y] \rightarrow[P, X] \oplus[P, Y]
$$

Consider abelian groups G_{1} and G_{2} and Moore spaces $M_{1}=M\left(G_{1}, n_{1}\right)$ and $M_{2}=M\left(G_{2}, n_{2}\right)$. When $X=M_{1} \vee M_{2}$, we denote by $i_{j}: M_{j} \rightarrow X$ the inclusion and by $p_{j}: X \rightarrow M_{j}$ the projection, where $j=1,2$. If $f: X \rightarrow X$, then we define $f_{j k}=M_{k} \rightarrow M_{j}$ by $f_{j k}=p_{j} \circ f \circ i_{k}$ for $j, k=1,2$. Then, by Proposition 2.1, we have

$$
[X, X] \cong\left[M_{1}, M_{1}\right] \oplus\left[M_{1}, M_{2}\right] \oplus\left[M_{2}, M_{1}\right] \oplus\left[M_{2}, M_{2}\right]
$$

and, from [3, Proposition 2.6], there exists a bijective function θ that assigns to each $f \in[X, X]$ a 2×2 matrix

$$
\theta(f)=\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)
$$

where $f_{j k} \in\left[M_{k}, M_{j}\right]$. In addition, we have the following:
(1) $\theta(f+g)=\theta(f)+\theta(g)$, so θ is an isomorphism $[X, X] \rightarrow \bigoplus_{j, k=1,2}\left[M_{k}, M_{j}\right]$;
(2) $\theta(f \circ g)=\theta(f) \theta(g)$, where $f \circ g$ denotes composition in $[X, X]$ and $\theta(f) \theta(g)$ denotes matrix multiplication.
Moreover, for each $f \in[X, X]$, the induced homomorphism $f^{\sharp k}$ on the cohomotopy groups $\pi^{k}(X)$ is determined as in the following propositions:
Proposition 2.2 (Proposition 3.4 in [6]). For any $f \in\left[M_{1} \vee M_{2}, M_{1} \vee M_{2}\right]$, we have

$$
f^{\sharp k}\left(\gamma_{1}, \gamma_{2}\right)=\left(f_{11}^{\sharp k}\left(\gamma_{1}\right)+f_{21}^{\sharp k}\left(\gamma_{2}\right), f_{12}^{\sharp k}\left(\gamma_{1}\right)+f_{22}^{\sharp k}\left(\gamma_{2}\right)\right),
$$

where $\gamma_{1} \in \pi^{k}\left(M_{1}\right)$ and $\gamma_{2} \in \pi^{k}\left(M_{2}\right)$.
Proposition 2.3 (Proposition 3.5 in [6]). If $f \in \mathcal{E}_{k}^{\sharp}\left(M_{1} \vee M_{2}\right)$, then

$$
f^{\sharp k}=\left(\begin{array}{cc}
1_{\pi^{k}\left(M_{1}\right)} & 0 \\
0 & 1_{\pi^{k}\left(M_{2}\right)}
\end{array}\right) .
$$

In [6], we computed $\mathcal{E}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q}, n\right)\right)$ and obtained the following table:
Theorem 2.4 (Theorems 4.1, 4.2, 4.3, and 4.4 in [6]).

	$q:$ odd	$q \equiv 0(\bmod 4)$	$q \equiv 2(\bmod 4)$
$\mathcal{E}_{n+1}^{\sharp}\left(M\left(\mathbb{Z}_{q}, n\right)\right)$	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}
$\mathcal{E}_{n}^{\sharp}\left(M\left(\mathbb{Z}_{q}, n\right)\right)$	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}
$\mathcal{E}_{n-1}^{\sharp}\left(M\left(\mathbb{Z}_{q}, n\right)\right)$	1	1	1

3. Maps inducing a trivial homomorphism on cohomotopy groups

In [8], Maruyama studied the subset $\mathcal{Z}_{\sharp}^{k}(Y, Z)$ of $[Y, Z] . \mathcal{Z}_{\sharp}^{k}(Y, Z)$ is the subset of all homotopy classes from Y to Z that induce the trivial homomorphism $\pi_{t}(Y)$ to $\pi_{t}(Z)$ for $0 \leq t \leq k$. In this section, we introduce a subset $\mathcal{Z}_{k}^{\sharp}(Y, Z)$ of $[Y, Z]$ that is a dual concept of $\mathcal{Z}_{\sharp}^{k}(Y, Z)$ and, in particular, investigate some properties of $\mathcal{Z}_{k}^{\sharp}(Y, Z)$ for wedge spaces Y and Z.

Definition 3.1. Let Y and Z be topological spaces. Then the subset $\mathcal{Z}_{k}^{\sharp}(Y, Z)$ is defined by the set of all $h \in[Y, Z]$ whose induced homomorphism $h^{\sharp t}$: $\pi^{t}(Z) \rightarrow \pi^{t}(Y)$ is the trivial homomorphism for $t \geq k$. Equivalently,

$$
\mathcal{Z}_{k}^{\sharp}(Y, Z)=\left\{f \in[Y, Z] \mid \alpha \circ f \simeq 0 \text { for all } \alpha: Z \rightarrow S^{t}, t \geq k\right\} .
$$

If $Z=Y$, then $\mathcal{Z}_{k}^{\sharp}(Y, Y)$ is simply denoted by $\mathcal{Z}_{k}^{\sharp}(Y)$.
It is well known that there is a bijective map $\tau:[Y \vee Z, W] \rightarrow[Y, W] \oplus[Z, W]$ defined by $\tau(f)=\left(f \circ i_{Y}, f \circ i_{Z}\right)$, where $i_{I}: I \rightarrow Y \vee W$ is an inclusion map for $I=Y, W$. The inverse of τ is defined by $\rho:[Y, W] \oplus[Z, W] \rightarrow[Y \vee Z, W]$ defined by $\rho(g, h)=\nabla \circ(g \vee h)$, where ∇ is the folding map.

Proposition 3.1. Let Y, Z, and W be $C W$-complexes. Then there is a bijective map $\tau: \mathcal{Z}_{k}^{\sharp}(Y \vee Z, W) \rightarrow \mathcal{Z}_{k}^{\sharp}(Y, W) \oplus \mathcal{Z}_{k}^{\sharp}(Z, W)$ defined by $\tau(f)=$ $\left(f \circ i_{Y}, f \circ i_{Z}\right)$.

Proof. It is sufficient to show that $\tau\left(\mathcal{Z}_{k}^{\sharp}(Y \vee W)\right) \subset \mathcal{Z}_{k}^{\sharp}(Y, W) \oplus \mathcal{Z}_{k}^{\sharp}(Z, W)$ and $\rho\left(\mathcal{Z}_{k}^{\sharp}(Y, W) \oplus \mathcal{Z}_{k}^{\sharp}(Z, W)\right) \subset \mathcal{Z}_{k}^{\sharp}(Y \vee Z, W)$.

Let $f \in \mathcal{Z}_{k}^{\sharp}(Y \vee Z, W)$ and $t \geq k$. Since $f^{\sharp t}=0,\left(f \circ i_{I}\right)^{\sharp t}=i_{I}^{\sharp} \circ f^{\sharp t}=0$ for $I=Y, W$. Hence, $\tau(f)=\left(f \circ i_{Y}, f \circ i_{Z}\right) \in \mathcal{Z}_{k}^{\sharp}(Y, W) \oplus \mathcal{Z}_{k}^{\sharp}(Z, W)$.

Let $(g, h) \in \mathcal{Z}_{k}^{\sharp}(Y, W) \oplus \mathcal{Z}_{k}^{\sharp}(Z, W)$. Since $g^{\sharp t}=0$ and $h^{\sharp t}=0$ for $t \geq k$, $\rho(g, h)^{\sharp t}=(\nabla \circ(g \vee h))^{\sharp t}=(g \vee h)^{\sharp t} \circ \nabla^{\sharp t}=\left(g^{\sharp t} \vee h^{\sharp t}\right) \circ \nabla^{\sharp t}=(0 \vee 0) \circ \nabla^{\sharp t}=0$. Hence, $\rho(g, h)=\nabla \circ(g \vee h) \in \mathcal{Z}_{k}^{\sharp}(Y \vee Z, W)$.

Define a map

$$
\Phi:[Y, W \vee Z] \rightarrow[Y, W] \oplus[Y, Z]
$$

by $\Phi(f)=\left(p_{W} \circ f, p_{Z} \circ f\right)$, where $p_{I}=W \vee Z \rightarrow I$ is the projection map for $I=W, Z$. If Y is a suspension of a space, that is $Y=\Sigma Y^{\prime}$ for some Y^{\prime}, then there is a suspension co-multiplication C_{Y}. Using C_{Y}, we can obtain a map

$$
\Psi:[Y, W] \oplus[Y, Z] \rightarrow[Y, W \vee Z]
$$

given by $\Psi(g, h)=(g \vee h) \circ C_{Y}$. Then $\Phi \circ \Psi=i d_{[Y, W]} \oplus i d_{[Y, Z]}$. Hence Ψ is an injection and Φ is a surjection.
Proposition 3.2. Let Y, Z, and W be $C W$-complexes. Suppose that $Y=$ ΣY^{\prime} with $\operatorname{dim}(Y) \leq k+\ell-1, Z$ is $(k-1)$-connected, and W is $(\ell-1)$ connected for $k, \ell \geq 2$. Then there is a bijection map from $\mathcal{Z}_{k}^{\sharp}(Y, Z \vee W)$ to $\mathcal{Z}_{k}^{\sharp}(Y, Z) \oplus \mathcal{Z}_{k}^{\sharp}(Y, W)$.
Proof. By Proposition 2.1, $\Phi:[X, Y \vee Z] \rightarrow[X, Y] \oplus[X, Z]$ is bijective. Since $Y=\Sigma Y^{\prime}$, there is a suspension co-multiplication C_{Y} and the map $\Psi:[X, Y] \oplus$ $[X, Z] \rightarrow[X, Y \vee Z]$ is bijective. By a method similar to Proposition 3.1, we can complete the proof.

Let Y be a Moore space of type $\left(G_{1} \oplus G_{2}, n\right)$ for $n \geq 3$ and let Y_{1} and Y_{2} be Moore spaces of type $\left(G_{1}, n\right)$ and $\left(G_{2}, n\right)$, respectively. Then we have $Y \simeq Y_{1} \vee Y_{2}$.

Corollary 3.3. Let Y be a Moore space type of $\left(G_{1} \oplus G_{2}, n\right)$ for $n \geq 3$. Then we have

$$
\mathcal{Z}_{k}^{\sharp}(Y) \cong \mathcal{Z}_{k}^{\sharp}\left(Y_{1}\right) \oplus \mathcal{Z}_{k}^{\sharp}\left(Y_{1}, Y_{2}\right) \oplus \mathcal{Z}_{k}^{\sharp}\left(Y_{2}, Y_{1}\right) \oplus \mathcal{Z}_{k}^{\sharp}\left(Y_{2}\right),
$$

where $Y_{1}=M\left(G_{1}, n\right)$ and $Y_{2}=M\left(G_{2}, n\right)$.

4. Properties of $\mathcal{E}_{k}^{\sharp}(M(G, n))$

In [6], we investigated some properties and determined $\mathcal{E}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{p}, n\right)\right)$. In this section, we extend and apply these results to a Moore space $M(G, n)$, where G is a finitely generated abelian group and $n \geq 3$. Since G is a finitely generated abelian group, $G=\bigoplus_{i=1}^{s} G_{i}$, where G_{i} is a cyclic group. Then, we have $M(G, n) \simeq \bigvee_{i=1}^{s} M\left(G_{i}, n\right)$. Therefore, we have

$$
[M(G, n), M(G, n)] \cong \bigoplus_{i, j=1}^{s}\left[M\left(G_{i}, n\right), M\left(G_{j}, n\right)\right]
$$

and

$$
\pi^{k}(M(G, n)) \cong \bigoplus_{i=1}^{s} \pi^{k}\left(M\left(G_{i}, n\right)\right)
$$

by Proposition 2.1.
Let $i_{i}=M\left(G_{i}, n\right) \rightarrow M(G, n)$ be the inclusion and let $p_{j}: M(G, n) \rightarrow$ $M\left(G_{j}, n\right)$ be the projection. For a self-map $f: M(G, n) \rightarrow M(G, n)$, we define
$f_{j i}=M_{i} \rightarrow M_{j}$ by $f_{j i}=p_{j} \circ f \circ i_{i}$. Then there is a bijection θ that assigns each $f \in[M(G, n), M(G, n)]$ the $s \times s$ matrix

$$
\theta(f)=\left(\begin{array}{ccc}
f_{11} & \cdots & f_{1 s} \\
\vdots & \ddots & \vdots \\
f_{s 1} & \cdots & f_{s s}
\end{array}\right)
$$

Thus, there is a bijection θ^{\sharp} that assigns each

$$
f^{\sharp k} \in \operatorname{Hom}\left(\pi^{k}(M(G, n)), \pi^{k}(M(G, n))\right)
$$

the $s \times s$ matrix

$$
\theta^{\sharp}\left(f^{\sharp k}\right)=\left(\begin{array}{ccc}
f_{11}^{\sharp k} & \cdots & f_{1 s}^{\sharp k} \\
\vdots & \ddots & \vdots \\
f_{s 1}^{\sharp k} & \cdots & f_{s s}^{\sharp k}
\end{array}\right) .
$$

Throughout this paper, $\theta(f)$ and $\theta^{\sharp}\left(f^{\sharp k}\right)$ are identified with f and $f^{\sharp k}$ and are called the matrix representations of f and $f^{\sharp k}$, respectively. Furthermore, each $\gamma \in \pi^{k}(M(G, n))$ can be represented as $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s}\right)$, where $\gamma_{i}=\gamma \circ i_{i} \in$ $\pi^{k}\left(M\left(G_{i}, n\right)\right)$.

Proposition 4.1. For each $f \in[M(G, n), M(G, n)]$, we have

$$
f^{\sharp k}(\gamma)=\left(\sum_{i=1}^{s} f_{i 1}^{\sharp k}\left(\gamma_{i}\right), \ldots, \sum_{i=1}^{s} f_{i s}^{\sharp k}\left(\gamma_{i}\right)\right)
$$

for $\gamma \in \pi^{k}(M(G, n))$ and $\gamma_{i}=\gamma \circ i_{i}$.
Proof. This can be proved in a manner similar to Proposition 3.4 in [6].
The matrix representations of the identity map $1_{M(G, n)}$ and the induced map $1_{M(G, n)}^{\sharp t}$ are

$$
\theta\left(1_{M(G, n)}\right)=\left(\begin{array}{cccc}
1_{M_{1}} & 0 & \cdots & 0 \\
0 & 1_{M_{2}} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & 1_{M_{s}}
\end{array}\right)
$$

and

$$
\theta^{\sharp}\left(1_{M(G, n)}^{\sharp t}\right)=\left(\begin{array}{cccc}
1_{M_{1}}^{\sharp t} & 0 & \cdots & 0 \\
0 & 1_{M_{2}}^{\sharp t} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & 1_{M_{s}}^{\sharp t}
\end{array}\right),
$$

respectively, where $1_{M_{i}}$ is the identity map in $\left[M\left(G_{i}, n\right), M\left(G_{i}, n\right)\right]$ and $1_{M_{i}}^{\sharp t}$ is the induced map of $1_{M_{i}}$ on the t-th cohomotopy group. $\theta\left(1_{M(G, n)}\right)$ and $\theta^{\sharp}\left(1_{M(G, n)}^{\sharp t}\right)$ are simply denoted by I_{s} and $I_{s}^{\sharp t}$, respectively.

Proposition 4.2. Let $G=\bigoplus_{j=1}^{s} G_{j}$ be a finitely generated abelian group. If $f \in \mathcal{E}_{k}^{\sharp}(M(G, n))$, then

$$
f^{\sharp t}=I_{s}^{\sharp t}
$$

for $t \geq k$.
Proof. For any $f \in \mathcal{E}_{k}^{\sharp}(M(G, n)), f$ induces the identity homomorphism on $\pi^{t}(M(G, n))$ for $t \geq k$. Thus $f^{\sharp t}=i d_{\pi^{t}(M(G, n))}=1_{M(G, n)}^{\sharp t}$. Hence, $\theta^{\sharp}\left(f^{\sharp t}\right)=$ $\left.\theta^{\sharp}\left(1_{M(G, n)}\right)^{\sharp t}\right)=I_{s}^{\sharp t}$. Therefore,

$$
f^{\sharp t}=I_{s}^{\sharp t}
$$

for $t \geq k$.
We determine the set of self-homotopy equivalences that induce the identity map on cohomotopy groups for Moore space of type (G, n), where G is a finitely generated abelian group and n is a positive integer. G can be represented as follows:

$$
G \cong\left(\bigoplus_{i=1}^{m} \mathbb{Z}\right) \oplus\left(\bigoplus_{j=1}^{s} \mathbb{Z}_{q_{j}}\right)
$$

where $\mathbb{Z}_{q_{j}}$ is a primary cyclic group and q_{j} represents powers of prime numbers.
Let $G_{1}=\left(\bigoplus_{i=1}^{m} \mathbb{Z}\right) \oplus\left(\bigoplus_{j=1}^{s} \mathbb{Z}_{q_{j}}\right)$ and $G_{2}=\left(\bigoplus_{i=1}^{r} \mathbb{Z}\right) \oplus\left(\bigoplus_{j=1}^{t} \mathbb{Z}_{q_{j}^{\prime}}\right)$. Then,

$$
\begin{equation*}
G_{1} \oplus G_{2} \cong\left(\bigoplus_{i=1}^{m+r} \mathbb{Z}\right) \bigoplus\left(\bigoplus_{j=1}^{s+t} \mathbb{Z}_{q_{j}}\right) \tag{4.1}
\end{equation*}
$$

where $q_{j+s}=q_{j}^{\prime}$ for $1 \leq j \leq t$. Let $X=M\left(G_{1} \oplus G_{2}, n\right)$ be a Moore space. Since

$$
M\left(G_{1} \oplus G_{2}, n\right) \simeq M\left(G_{1}, n\right) \vee M\left(G_{2}, n\right)
$$

we have

$$
\begin{equation*}
X \simeq\left(\vee_{i=1}^{m} M(\mathbb{Z}, n)\right) \vee\left(\vee_{j=1}^{s} M\left(\mathbb{Z}_{q_{j}}, n\right)\right) \tag{4.2}
\end{equation*}
$$

From (4.2), we have

$$
\begin{aligned}
& {[X, X] } \\
\cong & {\left[\vee_{i=1}^{m} M(\mathbb{Z}, n), \vee_{i=1}^{m} M(\mathbb{Z}, n)\right] \bigoplus\left[\vee_{j=1}^{s} M\left(\mathbb{Z}_{q_{j}}, n\right), \vee_{i=1}^{m} M(\mathbb{Z}, n)\right] } \\
& \bigoplus\left[\vee_{i=1}^{m} M(\mathbb{Z}, n), \vee_{j=1}^{s} M\left(\mathbb{Z}_{q_{j}}, n\right)\right] \bigoplus\left[\vee_{j=1}^{s} M\left(\mathbb{Z}_{q_{j}}, n\right), \vee_{j=1}^{s} M\left(\mathbb{Z}_{q_{j}}, n\right)\right]
\end{aligned}
$$

For each $f \in[X, X]$, the matrix representation of f is

$$
\theta(f)=\left(\begin{array}{ccc}
p_{1} \circ f \circ i_{1} & \cdots & p_{m+s} \circ f \circ i_{1} \\
\vdots & \ddots & \vdots \\
p_{1} \circ f \circ i_{m+s} & \cdots & p_{m+s} \circ f \circ i_{m+s}
\end{array}\right)
$$

and we have

$$
f^{\sharp k}(\gamma)=\left(\sum_{i=1}^{m+s}\left(p_{i} \circ f \circ i_{1}\right)^{\sharp k}\left(\gamma_{i}\right), \ldots, \sum_{i=1}^{m+s}\left(p_{i} \circ f \circ i_{m+s}\right)^{\sharp k}\left(\gamma_{i}\right)\right),
$$

where $\gamma_{i}=\gamma \circ i_{i}$.
Now, we divide the matrix representation of f into

$$
\theta(f)=\left(\begin{array}{l|l}
M_{1}(f) & M_{2}(f) \\
\hline M_{3}(f) & M_{4}(f)
\end{array}\right)
$$

where $M_{1}(f)$ is the square matrix of degree n whose components are the maps in $[M(\mathbb{Z}, n), M(\mathbb{Z}, n)], M_{2}(f)$ is the $m \times s$ matrix whose components are the maps in $\left[M(\mathbb{Z}, n), M\left(\mathbb{Z}_{q_{j}}, n\right)\right], M_{3}(f)$ is the $s \times m$ matrix whose components are the maps in $\left[M\left(\mathbb{Z}_{q_{j}}, n\right), M(\mathbb{Z}, n)\right]$, and $M_{4}(f)$ is the square matrix of degree s matrix whose components are the maps in $\left[M\left(\mathbb{Z}_{q_{j}}, n\right), M\left(\mathbb{Z}_{q_{j}^{\prime}}, n\right)\right]$.

From the above matrix, we have the following induced matrix:

$$
\theta^{\sharp}\left(f^{\sharp t}\right)=\left(\begin{array}{l|l}
M_{1}(f)^{\sharp t} & M_{2}(f)^{\sharp t} \\
\hline M_{3}(f)^{\sharp t} & M_{4}(f)^{\sharp t}
\end{array}\right) .
$$

In [3], for given $X=M(F \oplus T, n)$,

$$
\begin{align*}
\mathcal{E}(X) \cong & \mathcal{E}(M(F, n)) \oplus[M(F, n), M(T, n)] \oplus[M(T, n), M(F, n)] \tag{4.3}\\
& \oplus \mathcal{E}(M(T, n))
\end{align*}
$$

where F and T are finitely generated abelian groups.
Theorem 4.3. Let $X=M(F \oplus T, n)$ be a Moore space with finitely generated abelian groups F and T and positive integer n. Then

$$
\begin{aligned}
\mathcal{E}_{k}^{\sharp}(X) \cong & \mathcal{E}_{k}^{\sharp}(M(F, n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(F, n), M(T, n)) \\
& \oplus \mathcal{Z}_{k}^{\sharp}(M(T, n), M(F, n)) \oplus \mathcal{E}_{k}^{\sharp}(M(T, n)) .
\end{aligned}
$$

Proof. From (4.3), for $f \in \mathcal{E}(X), f$ can be represented by $f=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ for some $f_{1} \in \mathcal{E}(M(F, n)), f_{2} \in[M(F, n), M(T, n)], f_{3} \in[M(T, n), M(F, n)]$, and $f_{4} \in \mathcal{E}(M(T, n))$. Then,

$$
M_{1}(f)=\theta\left(f_{1}\right), M_{2}(f)=\theta\left(f_{2}\right), M_{3}(f)=\theta\left(f_{3}\right), \text { and } M_{4}(f)=\theta\left(f_{4}\right)
$$

Since, for $t \geq k$,

$$
\theta^{\sharp}\left(f^{\sharp t}\right)=\left(\begin{array}{l|l}
M_{1}(f)^{\sharp t} & M_{2}(f)^{\sharp t} \\
\hline M_{3}(f)^{\sharp t} & M_{4}(f)^{\sharp t}
\end{array}\right)=I_{m \times s}^{\sharp t}
$$

by Proposition 4.2,

$$
M_{1}(f)^{\sharp t}=I_{m}^{\sharp t}, M_{2}(f)^{\sharp t}=O_{m \times s}^{\sharp t}, M_{3}(f)^{\sharp t}=O_{s \times m}^{\sharp t}, M_{4}(f)^{\sharp t}=I_{s}^{\sharp t}
$$

for $t \geq k$, where $O_{m \times s}^{\sharp t}$ and $O_{s \times m}^{\sharp t}$ are an $m \times s$ zero matrix and an $s \times m$ zero matrix, respectively. Thus, if $f=\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \in \mathcal{E}_{k}^{\sharp}(X)$, then $f_{1} \in$
$\mathcal{E}_{k}^{\sharp}(M(F, n)), f_{2} \in \mathcal{Z}_{k}^{\sharp}(M(F, n)), f_{3} \in \mathcal{Z}_{k}^{\sharp}(M(F, n))$, and $f_{4} \in \mathcal{E}_{k}^{\sharp}(M(T, n))$.
Therefore, $\mathcal{E}_{k}^{\sharp}(X)$ is contained in
$\mathcal{E}_{k}^{\sharp}(M(F, n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(F, n), M(T, n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(T, n), M(F, n)) \oplus \mathcal{E}_{k}^{\sharp}(M(T, n))$.
Conversely, let $f=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ belong to
$\mathcal{E}_{k}^{\sharp}(M(F, n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(F, n), M(T, n)) \oplus \mathcal{Z}_{k}^{\sharp}(M(T, n), M(F, n)) \oplus \mathcal{E}_{k}^{\sharp}(M(T, n))$.
Then $f \in \mathcal{E}(X)$ from (4.3). Since $\theta^{\sharp}\left(f_{1}^{\sharp t}\right)=I_{m}^{\sharp t}, \theta^{\sharp}\left(f_{2}^{\sharp t}\right)=O_{s \times m}^{\sharp t}, \theta^{\sharp}\left(f_{3}^{\sharp t}\right)=$ $O_{m \times s}^{\sharp t}$, and $\theta^{\sharp}\left(f_{4}^{\sharp t}\right)=I_{s}^{\sharp t}, \theta^{\sharp}\left(f^{\sharp t}\right)=I_{s \times m}^{\sharp t}$ for each $t \geq k$. Therefore, $f \in$ $\mathcal{E}_{k}^{\sharp}(X)$.

5. Computations of $\mathcal{E}_{k}^{\sharp}(M(G, n))$

Let $X_{1}=M\left(\bigoplus_{i=1}^{m} \mathbb{Z}, n\right)$ and $X_{2}=M\left(\bigoplus_{j=1}^{s} \mathbb{Z}_{q_{j}}, n\right)$. For the wedge product space $X=X_{1} \vee X_{2}$, to determine $\mathcal{E}_{k}^{\sharp}(X)$ by Theorem 4.3, we need to calculate each $\mathcal{E}_{k}^{\sharp}\left(X_{1}\right), \mathcal{Z}_{k}^{\sharp}\left(X_{2}, X_{1}\right), \mathcal{Z}_{k}^{\sharp}\left(X_{1}, X_{2}\right)$, and $\mathcal{E}_{k}^{\sharp}\left(X_{2}\right)$.

We first compute $\mathcal{E}_{k}^{\sharp}\left(X_{1}\right)$. Since $X_{1} \simeq \vee_{i=1}^{m} M(\mathbb{Z}, n) \simeq \vee_{i=1}^{m} S_{i}^{n}$, where S_{i}^{n} is a copy of S^{n}, we have

$$
\left[X_{1}, X_{1}\right] \cong \bigoplus_{i, j=1}^{m}\left[S_{i}^{n}, S_{j}^{n}\right] \cong \bigoplus_{i=1}^{m \times m} \mathbb{Z}
$$

by Proposition 2.1 in [9]. Thus, $\mathcal{E}\left(X_{1}\right)=G L(m, \mathbb{Z})$, where $G L(m, \mathbb{Z})$ is the general linear group of degree m.

Let $i_{i}: S_{i}^{n} \rightarrow X_{1}$ be the inclusion and $p_{j}: X_{1} \rightarrow S_{j}^{n}$ be the projection. For a self-map $f: X_{1} \rightarrow X_{1}$, we define $f_{j i}: S_{i}^{n} \rightarrow S_{j}^{n}$ by $f_{j i}=p_{j} \circ f \circ i_{i}$. Since S_{i}^{n} and S_{j}^{n} are the copies of the n-dimensional sphere, we see that $\left[S_{i}^{n}, S_{j}^{n}\right]=\left[S^{n}, S^{n}\right]$. Let ι_{n} be the identity map on $\left[S^{n}, S^{n}\right]$; in particular, let $\left(\iota_{n}\right)_{j i}$ be the identity map on $\left[S_{i}^{n}, S_{j}^{n}\right]$. Then the matrix representation of f is given by

$$
\theta(f)=\left(\begin{array}{ccc}
t_{11}\left(\iota_{n}\right)_{11} & \cdots & t_{1 m}\left(\iota_{n}\right)_{1 m} \\
\vdots & \ddots & \vdots \\
t_{m 1}\left(\iota_{n}\right)_{m 1} & \cdots & t_{m m}\left(\iota_{n}\right)_{m m}
\end{array}\right)
$$

where $t_{j i}$ is the degree of $f_{j i}$ for $j, i=1,2, \ldots, m$.
Lemma 5.1. For $n \geq 1$,

$$
\mathcal{Z}_{k}^{\sharp}\left(S^{n}\right) \cong \begin{cases}\mathbb{Z} & \text { if } k>n, \\ 0 & \text { if } k \leq n .\end{cases}
$$

Proof. If $k>n$, then $\left[S^{n}, S^{k}\right]=0$. Thus, each $f \in\left[S^{n}, S^{n}\right]$ induces the trivial homomorphism on $\pi^{t}\left(S^{n}\right)$ for $t \geq k$. Hence, $\mathcal{Z}_{k}^{\sharp}\left(S^{n}\right) \cong \mathbb{Z}$. If $k=n$, then $\left[S^{n}, S^{n}\right] \cong \mathbb{Z}\left\{\iota_{n}\right\}$. Since $f=(\operatorname{deg} f) \iota_{n}$ for each $f \in\left[S^{n}, S^{n}\right], f^{\sharp n}\left(\iota_{n}\right)=$ $\left((\operatorname{deg} f) \iota_{n}\right)^{\sharp n}\left(\iota_{n}\right)=(\operatorname{deg} f) \iota_{n}$. Thus, if $f \in \mathcal{Z}_{k}^{\sharp}\left(S^{n}\right)$, then $\operatorname{deg} f$ must be 0 . Hence, $\mathcal{Z}_{n}^{\sharp}\left(S^{n}\right)=0$. From the definition, we have $\mathcal{Z}_{k}^{\sharp}\left(S^{n}\right)=0$ for $k<n$.

Theorem 5.2. For $n \geq 2$,

$$
\mathcal{E}_{k}^{\sharp}\left(X_{1}\right) \cong \begin{cases}G L(m, \mathbb{Z}) & k>n, \\ 1 & k \leq n .\end{cases}
$$

Proof. Since $\pi^{k}\left(X_{1}\right)=0$ for $k>n, \mathcal{E}_{k}^{\sharp}\left(X_{1}\right)=\mathcal{E}\left(X_{1}\right)$ for $k>n$. Suppose that $k \leq n$. Then, for each $f \in \mathcal{E}_{k}^{\sharp}\left(X_{1}\right), \theta^{\sharp}\left(f^{\sharp t}\right)=I_{s}^{\sharp t}$ for $t \geq k$. Thus

$$
f_{j i}^{\sharp t}= \begin{cases}\left(\iota_{n}\right)_{j i}^{\sharp t} & \text { if } i=j, \\ 0 & \text { if } i \neq j .\end{cases}
$$

Hence, if $i=j$, then $f_{j i} \in \mathcal{E}_{k}^{\sharp}\left(S^{n}\right)$ and if $i \neq j$, then $f_{j i} \in \mathcal{Z}_{k}^{\sharp}\left(S^{n}\right)$. By Lemma 5.1, $\theta^{\sharp}\left(f^{\sharp t}\right)=i d_{X_{1}}^{\sharp t}$ for $t \geq k$.

Now, we investigate $\mathcal{Z}_{k}^{\sharp}\left(X_{2}, X_{1}\right)$ and $\mathcal{Z}_{k}^{\sharp}\left(X_{1}, X_{2}\right)$. We review briefly the following lemmas in [1] and [4].
Lemma 5.3. Let $M\left(\mathbb{Z}_{q}, n\right)$ be a Moore space type of $\left(\mathbb{Z}_{q}, n\right)$. Then the k-th cohomotopy groups $\pi^{k}\left(M\left(\mathbb{Z}_{q}, n\right)\right)$ are isomorphic to

	$k \geq n+2$	$k=n+1$	$k=n$
$q \equiv 1(\bmod 2)$	0	\mathbb{Z}_{q}	0
$q \equiv 0(\bmod 2)$	0	\mathbb{Z}_{q}	\mathbb{Z}_{2}
Generator	-	$\iota_{n+1} \circ \pi_{q}$	$\eta_{n} \circ \pi_{q}$

Lemma 5.4. Let $M\left(\mathbb{Z}_{q}, n\right)$ be a Moore space type of $\left(\mathbb{Z}_{q}, n\right)$. Then the k-th homotopy groups $\pi_{k}\left(M\left(\mathbb{Z}_{q}, n\right)\right)$ are isomorphic to

	$k=n+2$	$k=n+1$	$k=n$	$k \leq n-1$
$q \equiv 1(\bmod 2)$	0	0	\mathbb{Z}_{q}	0
$q \equiv 0(\bmod 4)$	$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$	\mathbb{Z}_{2}	\mathbb{Z}_{q}	0
$q \equiv 2(\bmod 4)$	\mathbb{Z}_{4}	\mathbb{Z}_{2}	\mathbb{Z}_{q}	0
Generator	-	$i_{q} \circ \eta_{n}$	$i_{q} \circ \iota_{n}$	-

Proposition 5.5. For $k>0$,

$$
\mathcal{Z}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q}, n\right), M(\mathbb{Z}, n)\right) \cong \begin{cases}0 & \text { if } q \equiv 1(\bmod 2), \\ \mathbb{Z}_{2}\left\{\eta_{n} \circ \pi_{q}\right\} & \text { if } k \geq n+1 \text { and } q \equiv 0(\bmod 2), \\ 0 & \text { if } k \leq n \text { and } q \equiv 0(\bmod 2)\end{cases}
$$

Proof. By Lemma 5.3,

$$
\left[M\left(\mathbb{Z}_{q}, n\right), M(\mathbb{Z}, n)\right]=\pi^{n}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \cong \begin{cases}0 & \text { if } q \equiv 1(\bmod 2) \\ \mathbb{Z}_{2}\left\{\eta_{n} \circ \pi_{q}\right\} & \text { if } q \equiv 0(\bmod 2)\end{cases}
$$

If q is odd, then $\mathcal{Z}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q}, n\right), M(\mathbb{Z}, n)\right)=0$. Let q be even. If $k \geq n+1$, then $\pi^{k}(M(\mathbb{Z}, n))=0$. Thus $\mathcal{Z}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q}, n\right), M(\mathbb{Z}, n)\right)=\left[M\left(\mathbb{Z}_{q}, n\right), M(\mathbb{Z}, n)\right]=$

SELF-HOMOTOPY EQUIVALENCES DEPENDING ON COHOMOTOPY GROUPS 1381
$\pi^{n}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \cong \mathbb{Z}_{2}$. If $k=n$, then $\pi^{n}(M(\mathbb{Z}, n)) \cong \mathbb{Z}\left\{\iota_{n}\right\}$ and $\pi^{n}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \cong$ $\mathbb{Z}_{2}\left\{\eta_{n} \circ \pi_{q}\right\}$ and so

$$
\left(\eta_{n} \circ \pi_{q}\right)^{\sharp n}\left(\iota_{n}\right)=\iota_{n} \circ \eta_{n} \circ \pi_{q}=\eta_{n} \circ \pi_{q} \neq 0 .
$$

Therefore, $\mathcal{Z}_{n}^{\sharp}\left(M\left(\mathbb{Z}_{q}, n\right), M(\mathbb{Z}, n)\right)=0$.
Proposition 5.6. For $k \geq n$,

$$
\mathcal{Z}_{k}^{\sharp}\left(M(\mathbb{Z}, n), M\left(\mathbb{Z}_{q}, n\right)\right) \cong \mathbb{Z}_{q}\left\{i_{q} \circ \iota_{n}\right\} .
$$

Proof. By Lemma 5.4, $\left[M(\mathbb{Z}, n), M\left(\mathbb{Z}_{q}, n\right)\right]=\pi_{n}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \cong \mathbb{Z}_{q}\left\{i_{q} \circ \iota_{n}\right\}$. Since $\pi^{k}\left(S^{n}\right)=0$ for $k \geq n+1, \mathcal{Z}_{k}^{\sharp}\left(M(\mathbb{Z}, n), M\left(\mathbb{Z}_{q}, n\right)\right) \cong \mathbb{Z}_{q}$. If $k=n$, then $\pi^{n}\left(S^{n}\right) \cong \mathbb{Z}\left\{\iota_{n}\right\}$ and

$$
\pi^{n}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \cong \begin{cases}0 & \text { if } q \equiv 1(\bmod 2) \\ \mathbb{Z}_{2}\left\{\eta_{n} \circ \pi_{q}\right\} & \text { if } q \equiv 0(\bmod 2)\end{cases}
$$

If $q \equiv 1(\bmod 2)$, then $\mathcal{Z}_{n}^{\sharp}\left(M(\mathbb{Z}, n), M\left(\mathbb{Z}_{q}, n\right)\right) \cong \mathbb{Z}_{q}$. If $q \equiv 0(\bmod 2)$, then $\left(i_{q} \circ \iota_{n}\right)^{\sharp n}\left(\eta_{n} \circ \pi_{q}\right)=\eta_{n} \circ \pi_{q} \circ i_{q} \circ \iota_{n}=0$ because $\pi_{q} \circ i_{q} \simeq 0$. Thus, $\mathcal{Z}_{n}^{\sharp}\left(M(\mathbb{Z}, n), M\left(\mathbb{Z}_{q}, n\right)\right) \cong \mathbb{Z}_{q}$.

Theorem 5.7. For $k>0$,

$$
\mathcal{Z}_{k}^{\sharp}\left(X_{2}, X_{1}\right) \cong \begin{cases}\bigoplus^{m \times t} \mathbb{Z}_{2} & \text { if } k \geq n+1, \\ 0 & \text { if } k \leq n,\end{cases}
$$

where t is the number of even q_{j}.
Proof. By Corollary 3.3,

$$
\mathcal{Z}_{k}^{\sharp}\left(X_{2}, X_{1}\right) \cong \bigoplus^{m}\left(\bigoplus_{i=1}^{s} \mathcal{Z}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{j}}, n\right), M(\mathbb{Z}, n)\right)\right)
$$

By Proposition 5.5, we have $\mathcal{Z}_{k}^{\sharp}\left(X_{2}, X_{1}\right) \cong \stackrel{m \times t}{\bigoplus} \mathbb{Z}_{2}$ for $k \geq n+1$, where t is the number of even q_{j}. If $k \leq n$, then $\mathcal{Z}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{j}}, n\right), M(\mathbb{Z}, n)\right)=0$. Therefore, $\mathcal{Z}_{k}^{\sharp}\left(X_{2}, X_{1}\right)=0$.

Theorem 5.8. For $k \geq n$,

$$
\mathcal{Z}_{k}^{\sharp}\left(X_{1}, X_{2}\right) \cong \bigoplus_{j=1}^{s}\left(\bigoplus^{m} \mathbb{Z}_{q_{j}}\right)
$$

Proof. This follows immediately from Corollary 3.3 and Proposition 5.6.
Finally, we determine $\mathcal{E}_{k}^{\sharp}\left(X_{2}\right)$. Since $X_{2} \cong \vee_{i=1}^{s} M\left(\mathbb{Z}_{q_{i}}, n\right)$, we have

$$
\left[X_{2}, X_{2}\right] \cong \bigoplus_{j=1}^{s}\left(\bigoplus_{i=1}^{s}\left[M\left(\mathbb{Z}_{q_{i}}, n\right), M\left(\mathbb{Z}_{q_{j}}, n\right)\right]\right)
$$

by Proposition 2.1. In [3], it was shown that

$$
\mathcal{E}\left(X_{2}\right) \cong\left(\bigoplus_{i=1}^{s} \mathcal{E}\left(M\left(\mathbb{Z}_{q_{i}}, n\right)\right)\right) \bigoplus\left(\bigoplus_{i \neq j}\left[M\left(\mathbb{Z}_{q_{i}}, n\right), M\left(\mathbb{Z}_{q_{j}}, n\right)\right]\right)
$$

Theorem 5.9. For $k>0$,

$$
\mathcal{E}_{k}^{\sharp}\left(X_{2}\right) \cong\left(\bigoplus_{i=1}^{s} \mathcal{E}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{i}}, n\right)\right)\right) \bigoplus\left(\bigoplus_{i \neq j} \mathcal{Z}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{j}}, n\right), M\left(\mathbb{Z}_{q_{i}}, n\right)\right)\right)
$$

Proof. Let $f \in \mathcal{E}_{k}^{\sharp}\left(X_{2}\right)$. Then $\theta^{\sharp}\left(f^{\sharp t}\right)=I_{s}^{\sharp t}$ for $t \geq k$. This means that $f_{i i}^{\sharp t}=1_{\pi^{t}\left(M\left(\mathbb{Z}_{q_{i}}, n\right)\right)}$ for all $1 \leq i \leq s$ and $\theta^{\sharp}\left(f_{j i}^{\sharp t}\right)=0$ for $i \neq j$. Thus, $f_{i i} \in$ $\mathcal{E}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{i}}, n\right)\right)$ and $f_{j i} \in \mathcal{Z}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{i}}, n\right), M\left(\mathbb{Z}_{q_{j}}, n\right)\right)$. Therefore,

$$
f \in\left(\mathcal{E}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{i}}, n\right)\right)\right) \bigoplus\left(\bigoplus_{i \neq j} \mathcal{Z}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{j}}, n\right), M\left(\mathbb{Z}_{q_{i}}, n\right)\right)\right)
$$

Conversely, let $f \in\left(\mathcal{E}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{i}}, n\right)\right)\right) \bigoplus\left(\bigoplus_{i \neq j} \mathcal{Z}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{j}}, n\right), M\left(\mathbb{Z}_{q_{i}}, n\right)\right)\right)$. Then,

$$
f_{j i}^{\sharp t}= \begin{cases}1_{\pi^{t}\left(M\left(\mathbb{Z}_{q_{i}}, n\right)\right)} & \text { if } i=j, \\ 0 & \text { if } i \neq j,\end{cases}
$$

for all $t \geq k$. By Proposition 4.2 and the definition of $\mathcal{E}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{i}}, n\right)\right)$, the matrix representation of $f^{\sharp t}$ is equal to $I_{s}^{\sharp t}$ for all $t \geq k$. Hence, $f \in \mathcal{E}_{k}^{\sharp}\left(X_{2}\right)$.

From [3], we have the following lemma:
Lemma 5.10. Let $M_{j}=M\left(\mathbb{Z}_{q_{j}}, n\right)$ and $M_{i}=M\left(\mathbb{Z}_{q_{i}}, n\right)$. Then we have

	either q_{j} or $q_{i}:$ odd	$q_{j} \equiv q_{i} \equiv 2(\bmod 4)$	$q_{j} \equiv q_{i} \equiv 0(\bmod 4)$
$\left[M_{j}, M_{i}\right]$	\mathbb{Z}_{d}	$\mathbb{Z}_{2 d}$	$\mathbb{Z}_{d} \oplus \mathbb{Z}_{2}$
Generator	α_{j}	α_{j}	$\alpha_{j}, i_{q} \circ \eta_{n} \circ \pi_{q_{j}}$

where $\pi_{q_{i}} \circ \alpha_{j}=\bar{j} \iota_{n+1} \circ \pi_{q_{j}}, \bar{j}$ is an integer such that $q_{j}=\bar{j} d$, and $d=\left(q_{i}, q_{j}\right)$ is the greatest common divisor.

Proposition 5.11. Let $M_{i}=M\left(\mathbb{Z}_{q_{i}}, n\right)$ and $M_{j}=M\left(\mathbb{Z}_{q_{j}}, n\right)$. Then we have

$$
\mathcal{Z}_{k}\left(M_{j}, M_{i}\right) \cong \begin{cases}{\left[M_{j}, M_{i}\right]} & \text { if } k \geq n+2, \\ 0 & \text { if } q_{j} \text { or } q_{i}: \text { odd and } k=n \text { or } n+1, \\ \mathbb{Z}_{2} & \text { if } q_{j} \equiv q_{i} \equiv 0(\bmod 2) \text { and } k=n \text { or } n+1\end{cases}
$$

Proof. If $k \geq n+2$, then $\pi^{k}\left(M_{j}\right)=\pi^{k}\left(M_{i}\right)=0$. Thus, $\mathcal{Z}_{k}^{\sharp}\left(M_{j}, M_{i}\right)=\left[M_{j}, M_{i}\right]$ for $k \geq n+2$. By Lemma 5.3, we have $\pi^{n+1}\left(M_{\ell}\right) \cong \mathbb{Z}_{q_{\ell}}\left\{\iota_{n+1} \circ \pi_{q_{\ell}}\right\}$ and

$$
\pi^{n}\left(M_{\ell}\right) \cong \begin{cases}0 & \text { if } q_{\ell} \equiv 1(\bmod 2) \\ \mathbb{Z}_{2}\left\{\eta_{n} \circ \pi_{q_{\ell}}\right\} & \text { if } q_{\ell} \equiv 0(\bmod 2)\end{cases}
$$

where $\ell=i, j$. By Lemma 5.10, we have

$$
\left[M_{j}, M_{i}\right] \cong \begin{cases}\mathbb{Z}_{d}\left\{\alpha_{j}\right\} & \text { if } q_{j} \text { or } q_{i}: \text { odd } \\ \mathbb{Z}_{2 d}\left\{\alpha_{j}\right\} & \text { if } q_{j} \equiv q_{i} \equiv 2(\bmod 4), \\ \mathbb{Z}_{d} \oplus \mathbb{Z}_{2}\left\{\alpha_{j}, i_{q_{i}} \circ \eta_{n} \circ \pi_{q_{j}}\right\} & \text { if } q_{j} \equiv q_{i} \equiv 0(\bmod 4),\end{cases}
$$

where $d=\left(q_{j}, q_{i}\right)$.
Case 1. Let q_{j} or q_{i} be odd.
Let $g \in\left[M_{j}, M_{i}\right]$. Then, $g=s \alpha_{j}$ for some $0 \leq s \leq d$. Thus, we have

$$
\begin{aligned}
g^{\sharp n+1}\left(\iota_{n+1} \circ \pi_{q_{i}}\right) & =\iota_{n+1} \circ \pi_{q_{i}} \circ s \alpha_{j} \\
& =s \iota_{n+1} \circ \pi_{q_{i}} \circ \alpha_{j} \\
& =s \iota_{n+1} \circ \bar{j} \iota_{n} \circ \pi_{q_{j}} \\
& =s \bar{j} \iota_{n} \circ \pi_{q_{j}} .
\end{aligned}
$$

Since $0 \leq s \bar{j} \leq q_{j}, g^{\sharp n+1}$ is trivial if and only if $s=0$. Hence, $\mathcal{Z}_{n+1}^{\sharp}\left(M_{j}, M_{i}\right)=$ 0 . Moreover, $\mathcal{Z}_{n}^{\sharp}\left(M_{j}, M_{i}\right)=0$ by the definition.

Case 2. Let $q_{j} \equiv q_{i} \equiv 2(\bmod 4)$.
Let $g \in\left[M_{j}, M_{i}\right]$. Then $g=s \alpha_{j}$ for some $0 \leq s \leq 2 d$. Thus, if $s=d$, then

$$
g^{\sharp n+1}\left(\iota_{n+1} \circ \pi_{q_{i}}\right)=\iota_{n+1} \circ \pi_{q_{i}} \circ i_{q_{i}} \circ \eta_{n} \circ \pi_{q_{j}}=0
$$

because $\pi_{q_{i}} \circ i_{q_{i}} \simeq 0$. If $s \neq d$, then

$$
g^{\sharp n+1}\left(\iota_{n+1} \pi_{q_{i}}\right)=s \iota_{n+1} \pi_{q_{i}} \circ \alpha_{j}=s \bar{j} \iota_{n+1} \circ \pi_{q_{j}} .
$$

Hence, $s=0$ or d. Therefore $\mathcal{Z}_{n+1}^{\sharp}\left(M_{j}, M_{i}\right) \cong \mathbb{Z}_{2}\left\{d \alpha_{j}\right\}$. Then, for $g \in$ $\mathcal{Z}_{n+1}^{\sharp}\left(M_{j}, M_{i}\right)$,

$$
g^{\sharp n+1}\left(\eta_{n} \circ \pi_{q_{i}}\right)=d \eta_{n} \circ \pi_{q_{i}} \circ \alpha_{j}=d \bar{j} \eta_{n+1} \circ \pi_{q_{j}}=q_{j} \eta_{n+1} \circ \pi_{q_{j}}=0
$$

because q_{j} is even. Therefore, $\mathcal{Z}_{n}^{\sharp}\left(M_{j}, M_{i}\right) \cong \mathbb{Z}_{2}\left\{d \alpha_{j}\right\}$.
Case 3. Let $q_{j} \equiv q_{i} \equiv 0(\bmod 4)$.
Let $g \in\left[M_{j}, M_{i}\right]$. Then, $g=s \alpha_{j} \oplus t i_{q_{i}} \circ \eta_{n} \circ \pi_{q_{j}}$ for some $0 \leq s<d$ and $t=0,1$. Then,
$g^{\sharp n+1}\left(\iota_{n+1} \circ \pi_{q_{i}}\right)=s \bar{j} \iota_{n+1} \circ \pi_{q_{j}} \oplus t \iota_{n+1} \circ \pi_{q_{i}} \circ i_{q_{i}} \circ \eta_{n} \circ \pi_{q_{j}}=s \bar{j} \iota_{n+1} \circ \pi_{q_{j}} \oplus 0$ because $\pi_{q_{i}} \circ i_{q_{i}} \simeq 0$. Thus, $s=0$ and $t=0,1$. Hence, $\mathcal{Z}_{n+1}^{\sharp}\left(M_{j}, M_{i}\right) \cong$ $\mathbb{Z}_{2}\left\{0 \oplus i_{q_{i}} \circ \eta_{n} \circ \pi_{q_{j}}\right\}$. Then, for $g \in \mathcal{Z}_{n+1}^{\sharp}\left(M_{j}, M_{i}\right)$,

$$
g^{\sharp n}\left(\eta_{n} \circ \pi_{q_{i}}\right)=0 \oplus \eta_{n} \circ \pi_{q_{i}} \circ i_{q_{i}} \circ \eta_{n} \circ \pi_{q_{j}}=0 .
$$

Hence, $\mathcal{Z}_{n}^{\sharp}\left(M_{j}, M_{i}\right) \cong \mathbb{Z}_{2}\left\{0 \oplus i_{q_{i}} \circ \eta_{n} \circ \pi_{q_{j}}\right\}$.
Theorem 5.12. For $n \geq 3$,
$\mathcal{E}_{k}^{\sharp}\left(X_{2}\right) \cong \begin{cases}\left(\bigoplus_{i=1}^{s} \mathcal{E}\left(M\left(\mathbb{Z}_{q_{i}}, n\right)\right)\right) \oplus\left(\underset{i \neq j}{\oplus}\left[M\left(\mathbb{Z}_{q_{j}}, n\right), M\left(\mathbb{Z}_{q_{i}}, n\right)\right]\right) & \text { if } k \geq n+2, \\ \bigoplus_{+\ell} \mathbb{Z}_{2} & \text { if } k=n \text { or } n+1,\end{cases}$
where t is the number of even q_{j} and ℓ is the number of pairs $\{i, j\} \subset\{1, \ldots, s\}$ such that both q_{i} and q_{j} are even and $i \neq j$.

Proof. If $k \geq n+2$, then $\pi^{k}\left(X_{2}\right)=0$. Thus, $\mathcal{E}_{k}^{\sharp}\left(X_{2}\right)=\mathcal{E}\left(X_{2}\right)$. If $k=n$ or $n+1$, then by $\left[6\right.$, Theorems 4.1 and 4.2], $\mathcal{E}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{i}}, n\right)\right) \cong \bigoplus^{t} \mathbb{Z}_{2}$, where t is the number of even q_{i}. By Proposition 5.11, $\bigoplus_{i \neq j} \mathcal{Z}_{k}^{\sharp}\left(M\left(\mathbb{Z}_{q_{j}}, n\right), M\left(\mathbb{Z}_{q_{i}}, n\right)\right) \cong \bigoplus^{\ell} \mathbb{Z}_{2}$, where ℓ is the number of pairs $\{i, j\} \subset\{1, \ldots, s\}$ such that both q_{i} and q_{j} are even and $i \neq j$. Therefore,

$$
\mathcal{E}_{k}^{\sharp}\left(X_{2}\right) \cong \bigoplus^{t+\ell} \mathbb{Z}_{2} .
$$

If we combine Theorems $5.2,5.7,5.8$, and 5.12 , we obtain the following main result:
Corollary 5.13. Let $G=\left(\bigoplus_{i=1}^{m} \mathbb{Z}\right) \bigoplus\left(\bigoplus_{j=1}^{s} \mathbb{Z}_{q_{j}}\right)$. Then, we have

$$
\mathcal{E}_{k}^{\sharp}(M(G, n)) \cong \begin{cases}G L(m, \mathbb{Z}) \bigoplus_{\bigoplus}^{m \times t} \mathbb{Z}_{2} \bigoplus_{j=1}^{s}\left(\bigoplus^{m} \mathbb{Z}_{q_{j}}\right) \bigoplus \mathcal{E}(M(T, n)) & \text { if } k \geq n+2, \\ G L(m, \mathbb{Z}) \stackrel{m \times t+t+\ell}{\oplus} \mathbb{Z}_{2} \oplus\left(\bigoplus_{j=1}^{s}\left(\stackrel{m}{\oplus} \mathbb{Z}_{q_{j}}\right)\right) & \text { if } k=n+1, \\ G L(m, \mathbb{Z}) \stackrel{t+\ell}{\oplus} \mathbb{Z}_{2} \oplus\left(\bigoplus_{j=1}^{s}\left(\bigoplus_{\bigoplus}^{m} \mathbb{Z}_{q_{j}}\right)\right) & \text { if } k=n,\end{cases}
$$

where $G L(m, \mathbb{Z})$ is the general linear group of degree m, t is the number of even q_{j} and ℓ is the number of pairs $\{i, j\} \subset\{1, \ldots, s\}$ such that both q_{i} and q_{j} are even and $i \neq j$.

References

[1] S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories. I, Osaka J. Math. 2 (1965), 71-115. http://projecteuclid.org/euclid.ojm/1200691225
[2] M. Arkowitz, The group of self-homotopy equivalences - a survey, in Groups of selfequivalences and related topics (Montreal, PQ, 1988), 170-203, Lecture Notes in Math., 1425, Springer, Berlin, 1990. https://doi.org/10.1007/BFb0083840
[3] M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology Appl. 87 (1998), no. 2, 133-154. https://doi.org/10.1016/S0166-8641(97)00162-4
[4] H. W. Choi and K. Y. Lee, Certain self-homotopy equivalences on wedge products of Moore spaces, Pacific J. Math. 272 (2014), no. 1, 35-57. https://doi.org/10.2140/ pjm. 2014.272 .35
[5] , Certain numbers on the groups of self-homotopy equivalences, Topology Appl. 181 (2015), 104-111. https://doi.org/10.1016/j.topol.2014.12.004
[6] H. W. Choi, K. Y. Lee, and H. S. Oh, Self-homotopy equivalences related to cohomotopy groups, J. Korean Math. Soc. 54 (2017), no. 2, 399-415. https://doi.org/10.4134/ JKMS.j150765

SELF-HOMOTOPY EQUIVALENCES DEPENDING ON COHOMOTOPY GROUPS 1385
[7] K.-Y. Lee, The groups of self pair homotopy equivalences, J. Korean Math. Soc. 43 (2006), no. 3, 491-506. https://doi.org/10.4134/JKMS.2006.43.3.491
[8] K. Maruyama, π_{*}-kernels of Lie groups, Trans. Amer. Math. Soc. 358 (2006), no. 6, 2335-2351. https://doi.org/10.1090/S0002-9947-06-04199-7
[9] J. W. Rutter, The group of homotopy self-equivalence classes of $C W$ complexes, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 2, 275-293. https://doi.org/10.1017/ S0305004100060576
[10] N. Sawashita, On the group of self-equivalences of the product of spheres, Hiroshima Math. J. 5 (1975), 69-86. http://projecteuclid.org/euclid.hmj/1206136785
[11] A. J. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789-802. http://projecteuclid.org/euclid.pjm/1102971956

Ho Won Choi
Institute of Natural Science
Korea University
Sejong 339-700, Korea
Email address: howon@korea.ac.kr
Kee Young Lee
Division of Applied Mathematical Sciences
Korea University
Sejong 339-700, Korea
Email address: keyolee@korea.ac.kr
Hyung Seok Oh
Department of Mathematics
Korea University
Seoul 702-701, Korea
Email address: hyungseok@korea.ac.kr

