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SELF-HOMOTOPY EQUIVALENCES OF MOORE SPACES
DEPENDING ON COHOMOTOPY GROUPS

Ho WonN CHol, KEE YOUNG LEE, AND HYUNG SEOK OH

ABSTRACT. Given a topological space X and a non-negative integer k,
Elg (X)) is the set of all self-homotopy equivalences of X that do not change
maps from X to an t-sphere S* homotopically by the composition for all
t > k. This set is a subgroup of the self-homotopy equivalence group
E(X). We find certain homotopic tools for computations of Sg(X). Using

these results, we determine E}i(M(G,n)) for k > n, where M(G,n) is a
Moore space type of (G, n) for a finitely generated abelian group G.

1. Introduction

For a topological space X, we denote £(X) as the set of all homotopy classes
of self-homotopy equivalences of X. Then £(X) is a subset of [X, X] and has
a group structure given by the composition of homotopy classes. The subset
E(X) has been studied extensively by various authors, including Arkowitz [2],
Arkowitz and Maruyama [3], Lee [5,7], Rutter [9], Sawashita [10], and Sierad-
ski [11]. Moreover several subgroups of £(X) have also been studied, notably
the group Eﬁk (X), which consists of all elements of £(X) that induce the iden-
tity homomorphism on homotopy groups m(X) for ¢t = 0,1,2,..., k. In our
previous work [4], the first and second authors used homotopy techniques to
calculate these subgroups for the wedge products of Moore spaces.

In [6], we introduced S}i (X), which consists of the elements of £(X) that
induce the identity homomorphism on cohomotopy groups wt(X) for t > k.
Equivalently, it can be defined as follows: For a non-negative integer ¢, consider
the self-map f : X — X such that g o f is homotopic to g for each g : X — S*
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and for each ¢ > k. The set of all homotopy classes of such self-maps of X is
denoted by [X, X]?€7 that is,

[X,X] = {fe[X,X]|gof~gforeach g: X — S forallt >k}.

Then
ENX) =E(X)n[X, X]L.

In [6], we proved that E,g(X) is a subgroup of £(X) and, if X is a finite CW-
complex, then 5,5()( ) has a lower bound whereas Sé“(X ) has an upper bound.
Moreover, we calculated E,i(X ) for special Moore space X = M(Z,,n) and
co-Moore space X = C(Zyp,n).

In this paper, we determine Sg(M(G, n)) completely for k& > n, where
M(G,n) is a Moore space type of (G,n) with G a finitely generated abelian
group and n > 3. To solve this problem, we first study a subset Z,ﬁ (Y, Z) of
[Y, Z] for spaces Y and Z. The subset ZQ(Y7 Z) is defined by the set of all
h € [Y,Z] whose induced homomorphism h# : 7¢(Z) — 7*(Y) is the trivial
homomorphism for ¢ > k. Furthermore, we investigate the properties of 5,2 (X)
for given wedge product space X to prove the following theorem in Section 4:

Theorem 4.3. Let M (G, n) be a Moore space type of (G,n) and G = F®T be
a finitely generated abelian group G with free part F' and torsion part T. Then
EE(M(G, n)) is isomorphic to

ENM(F,n)) @ ZLH(M(F,n), M(T,n)) ® Z:(M(T,n), M(F,n)) ® E(M(T,n)).

From Theorem 4.3, the problem of computing 5,§(M(G, n)) reduces to that
of computing the 5£—groups and Zg—groups for Moore spaces for (possibly in-
finite) cyclic groups. In Section 5, we compute explicitly Z,ﬁ—groups for Moore
spaces for (possibly infinite) cyclic groups and combine the relevant Eg—groups
computed in our previous paper and are recorded as Theorem 2.4 to obtain the
following main result:

Corollary 5.13. Let G = <@ Z) >, (@ qu> . Then, we have
i=1 j=1

mXxt 5

61n2)® 2 @ (B2, ) @e0MT ) Frzn+2,

j=1
‘U)) ka:n+1a

mxt+t+l s
EL(M(G,n)) = { GL(m,Z) @ ZQEB<]Q_91< 7
t40 s m
GL(mﬂ)@Zz@( (@z%)) Tk—n.
Jj=1
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where GL(m,Z) is the general linear group of degree m, t is the number of even
q; and € is the number of pairs {i,7} C {1,...,s} such that both g; and q; are
even and i # j.

Throughout this paper, all topological spaces are based and have the based
homotopy type of a CW-complex, and all maps and homotopies preserve base
points. For the spaces X and Y, we denote by [X,Y] the set of all homotopy
classes of maps from X to Y. No distinction is made between the notation of
amap X — Y and that of its homotopy class in [X,Y]. When a group G is
generated by a set {ai,...,a,}, then we denote it by G{ay,...,a,}. More-
over, when f : X — Y is a map, f** : 7F(Y) — 7¥(X) denote the induced
homomorphisms on the k-th cohomotopy group.

2. Preliminaries

In this section, we review some results provided in [3,6], knowledge of which
would be useful when reading this paper. First, we introduce the following
proposition from [3] that is a basic concept in developing this paper.

Proposition 2.1 (Arkowitz and Maruyama [3]). If X is (k —1)-connected, Y
is (¢ — 1)-connected and, further, if k,¢ > 2 and dim P < k + £ — 1, then the
projections X VY — X and X VY — Y induce a bijection:

[P,XVY]— [P, X]|®[PY].

Consider abelian groups G; and Gs and Moore spaces My = M(G1,n1)
and My = M(G2,n2). When X = M; V M, we denote by i; : M; — X the
inclusion and by p; : X — M; the projection, where j = 1,2. If f: X — X,
then we define f; = My — M; by fjr = pjo foi for j,k =1,2. Then, by
Proposition 2.1, we have

(X, X] = [My, My] © [My, Ma] & [My, My] © [Ma, Mo]

and, from [3, Proposition 2.6], there exists a bijective function 0 that assigns
to each f € [X, X] a 2 x 2 matrix

_ (fin fi2
o) = <f21 f22>’

where f;; € [My, M;]. In addition, we have the following:
(1) 6(f+g) =06(f)+6(g), so 8 is an isomorphism [X, X] = @ [My, M;];
j k=1,2
(2) O(fog) = 6(f)0(g), where fog denotes composition in [X, 3(] and 0(£)6(g)
denotes matrix multiplication.
Moreover, for each f € [X, X], the induced homomorphism f* on the coho-
motopy groups m*(X) is determined as in the following propositions:

Proposition 2.2 (Proposition 3.4 in [6]). For any f € [M; V Ms, My V Ms],
we have
k k k k
fﬁk(’h,’h) = (ffl () + f§1 (72), fo (m) + f2ﬁ2 (72)),
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where vy, € T¢(My) and 2 € 7 (My).
Proposition 2.3 (Proposition 3.5 in [6]). If f € Sg(Ml V Ms), then

[k = (1“'“(1\/[1) 0 ) )
O 1771“(]\/12)

In [6], we computed 5£(M(Zq, n)) and obtained the following table:

Theorem 2.4 (Theorems 4.1, 4.2, 4.3, and 4.4 in [6]).
g:odd ¢=0(mod4) ¢=2 (mod4)

& (M(Zg,n) 1 Z, Zs
53 (M(an n)) 1 Zo Zo
& _(M(Zgyn) 1 1 1

3. Maps inducing a trivial homomorphism on cohomotopy groups

In [8], Maruyama studied the subset Zﬁk(Y7 Z) ot [Y, Z]. Zf (Y, Z) is the sub-
set of all homotopy classes from Y to Z that induce the trivial homomorphism
m(Y) to m(Z) for 0 <t < k. In this section, we introduce a subset ZQ(K 7Z)
of [Y, Z] that is a dual concept of Zﬁ“(Y} Z) and, in particular, investigate some

properties of Z,g (Y, Z) for wedge spaces Y and Z.

Definition 3.1. Let Y and Z be topological spaces. Then the subset Z,g Y, 2)
is defined by the set of all h € [Y,Z] whose induced homomorphism h# :
7t(Z) — 7*(Y) is the trivial homomorphism for ¢ > k. Equivalently,

ZHY,Z)={felY,Z]|acf~0foralla:Z — S, t>k}.
If Z =Y, then ZX(Y,Y) is simply denoted by Z:(Y).

It is well known that there is a bijective map 7 : [YVZ, W] — [V, W|®[Z, W]
defined by 7(f) = (f o iy, foiz), where iy : I — Y VW is an inclusion map
for I =Y, W. The inverse of 7 is defined by p: [Y,W] & [Z,W] = [Y V Z, W]
defined by p(g,h) = Vo (gV h), where V is the folding map.

Proposition 3.1. Let Y, Z, and W be CW-complexes. Then there is a bi-
jective map T : Zg(Y VZW) — Z,ji(Y, W) @ Z,ji(Z, W) defined by 7(f) =
(foiy,foiz).

Proof. Tt is sufficient to show that 7(ZX(Y VW) C ZL(Y, W)@ ZX(Z, W) and
p(ZL(Y, W) @ Z}(2,W)) C ZL(Y v Z,W).

Let f € Zg(Y vV Z,W) and t > k. Since f¥ =0, (foi)! = zﬁl o ff =0 for
I =Y,W. Hence, 7(f) = (f oiy, foiz) € ZL(Y,W)® Z:(Z,W).

Let (g,h) € Z}i(Y, W) @ ZQ(Z, W). Since g = 0 and A% = 0 for t > k,
p(g,h)¥ = (Vo(gVh)t = (gVh)#oVH = (¢# Vi) o VFH = (0V0) o VF = 0.
Hence, p(g,h) =V o (gVh) € ZLY V Z,W). 0
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Define a map
O [Y,WVZ] -V, WelY,Z]
by ®(f) = (pw o f,pz o f), where py = WV Z — I is the projection map for
I=W,Z. IfY is a suspension of a space, that is Y = XYY" for some Y’, then
there is a suspension co-multiplication Cy. Using Cy, we can obtain a map

VY, W] elY,Z] - [Y,WV Z

given by ¥(g,h) = (g h)oCy. Then ® o ¥ = idjy | D id}y,z. Hence ¥ is an
injection and @ is a surjection.

Proposition 3.2. Let Y, Z, and W be CW-complexes. Suppose that' Y =
YY" with dim(Y) < k+ € — 1, Z is (k — 1)-connected, and W is (£ — 1)-
connected for k,£ > 2. Then there is a bijection map from Z}i(Y,Z VW) to
ZiY, 2) e ZE(Y,W).

Proof. By Proposition 2.1, ®: [X,Y V Z] — [X,Y] @ [X, Z] is bijective. Since
Y = XY”, there is a suspension co-multiplication Cy and the map ¥ : [X,Y]®
[X,Z] — [X,Y V Z] is bijective. By a method similar to Proposition 3.1, we
can complete the proof. O

Let Y be a Moore space of type (G1 @ Ga,n) for n > 3 and let Y; and
Y2 be Moore spaces of type (G1,n) and (Ga,n), respectively. Then we have
Y ~ Y,V Ys

Corollary 3.3. Let Y be a Moore space type of (G1 ® Ga,n) for n > 3. Then
we have

ZHY) = Z{(V1) @ Z{(1, Ya) @ Z(Ya, Y1) @ Z{(Y2),
where Y1 = M(G1,n) and Yo = M(Ga,n).

4. Properties of Eg(M(G, n))

In [6], we investigated some properties and determined E}i(M (Zp,n)). In
this section, we extend and apply these results to a Moore space M(G,n),
where G is a finitely generated abelian group and n > 3. Since G is a finitely
generated abelian group, G = @;_, G;, where G, is a cyclic group. Then, we
have M(G,n) ~\/;_, M(G;,n). Therefore, we have

S
[M(G,n), M(G,n)] = @ [M(G;,n), M(Gj,n)]
ij=1

and
=M (G,n) = @D (M (Gim)

by Proposition 2.1.
Let i, = M(G;,n) — M(G,n) be the inclusion and let p; : M(G,n) —
M (Gj, n) be the projection. For a self-map f : M(G,n) — M(G,n), we define
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fji = My — M; by fji = pj o foi;. Then there is a bijection 6 that assigns
each f € [M(G,n), M(G,n)] the s X s matrix

Ju o fis
on=|:
fsi 0 fes
Thus, there is a bijection #* that assigns each

f#* € Hom(n* (M (G, n)), 7" (M (G, n)))

the s X s matrix

tk tk

11 1s

Oy =1 ¢ .
JE g

Throughout this paper, 8(f) and 6% (f**) are identified with f and f* and are
called the matriz representations of f and f% respectively. Furthermore, each
v € 78(M(G,n)) can be represented as v = (1,72, .,7s), where 7; = yoi; €
Wk(M(Gi,n)).

Proposition 4.1. For each f € [M(G,n), M(G,n)], we have

S S

PR = O (), ()

i=1 i=1
for v € 7*(M(G,n)) and ~; = 7 oi;.
Proof. This can be proved in a manner similar to Proposition 3.4 in [6]. O

The matrix representations of the identity map 15/(g,,) and the induced
it

map lM(G,n) are
1y 0 0
0 1
9(1M(G,n)) - Mo .
0 0 1
and " 0
My
#t
#t o 0 1
oﬁ(lM(G,n)) = : Mo ) ; ;
0 - 0 13\25

respectively, where 1y, is the identity map in [M(G;,n), M(G;,n)] and 1%&1_
is the induced map of 157, on the ¢-th cohomotopy group. 6(1a(q,n)) and
Gﬂ(lg@(an)) are simply denoted by I, and I%!, respectively.
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Proposition 4.2. Let G = @;:1 G; be a finitely generated abelian group. If
f e ENM(G,n)), then

f=r
fort > k.
Proof. For any f € Eg(M(G, n)), f induces the identity homomorphism on
7' (M(G,n)) for t > k. Thus f* = id (a(cn) = 1%{(G,n)' Hence, 6*(f*) =
9”(1M(G$n))ﬁt) = I**. Therefore,

fr=1
for t > k. O

We determine the set of self-homotopy equivalences that induce the identity
map on cohomotopy groups for Moore space of type (G, n), where G is a finitely
generated abelian group and n is a positive integer. G can be represented as
follows:

o= ()« (D )
i=1 j=1
where Z; is a primary cyclic group and g; represents powers of prime numbers.
Let Gy = (@7, Z)® (@j:1 qu) and Gy = (@)_, 2)&® (@321 Zq}). Then,

m—r s+t

(4.1) G1® Go = (@ Z) PPz, |,

where gjis = ¢; for 1 < j <t. Let X = M(G1 @ G2,n) be a Moore space.
Since
M(Gl @ Go, TL) ~ M(Gl, n) V M(Gg, n),
we have
(4.2) X~V M(Z,n))V (\/;ZlM(qu,n)) .
From (4.2), we have
[X, X]
= [V M(Z,n), Vit M(Z,n)] @D [Vi=1 M (Zg; 1), Vit M(Z, )]

P [Viz, M(Z,n), Vi, M (Zg,, n)) @D [Vi=1 M (Zg,, 1), Vi, M (Zg,, )] .
For each f € [X, X], the matrix representation of f is
profoir -+ pmisofoir
0(f) = : :

plofoiers persofoiers
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and we have

m+s m-+s
) = <Z(Pz o foi) (), - Z(pz Ofoim+s)ﬁk(’7i)> ;

i=1 =1
where ~v; = v 0 4;.
Now, we divide the matrix representation of f into

(M) | Ma(f)
o(f) = ( Ms(F) [ Ma(f) )

where M;(f) is the square matrix of degree n whose components are the maps
in [M(Z,n), M(Z,n)], Ma(f) is the m x s matrix whose components are the
maps in [M(Z,n), M(Z,,;,n)], M3(f) is the s x m matrix whose components
are the maps in [M(Zg,,n), M(Z,n)], and My(f) is the square matrix of degree
s matrix whose components are the maps in [M(Z,;,n), M(Zq; ,m)].

From the above matrix, we have the following induced matrix:

B (fit) — ( M, () | Ma(f)* >
Ms(f)F | My(f)*

In [3], for given X = M(F & T,n),

43)  &X)=EM(F,n)) & [M(F,n), M(T,n)] & [M(T,n), M(F,n)]
@ E(M(T,n)),

where F' and T are finitely generated abelian groups.

Theorem 4.3. Let X = M(F @& T,n) be a Moore space with finitely generated
abelian groups F' and T and positive integer n. Then

EL(X) = EF(M(F,n)) @ Z{(M(F,n), M(T,n))
@ ZH(M(T,n), M(F,n)) & EL(M (T, n)).

Proof. From (4.3), for f € £(X), f can be represented by f = (f1, fa, f3, f4)
for some fl € 5(M(F7n))7 f2 € [M(F,TL),M(T,’I’L)], f3 € [M(Tan)vM(F7n)]7
and fy € E(M(T,n)). Then,

My(f) = 0(f1), Ma(f) = 0(f2), M3(f) = 0(f3), and My(f) = 0(fa).

Since, for t > k,

o (M | Ma(f)H t
o) = ( (PP | Ma())F ) =15

by Proposition 4.2,
My ()% = IE, My(f)H = OF . M3 (f)¥ = O . My(f)* = I¥*

mxs?

t ¢ .
for t > k, where OB,LXS and ngm are an m X s zero matrix and an s X m

zero matrix, respectively. Thus, if f = (fi, fo, f3,f1) € S}i(X), then f; €
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EL(M(F,n)), fo € ZL(M(F,n)), fs € ZL(M(F,n)), and fy € E{(M(T,n)).
Therefore, 82 (X) is contained in
ENM(F,n)) @ ZLH(M(F,n), M(T,n)) ® Z:(M(T,n), M(F,n)) ® E(M(T,n)).

Conversely, let f = (f1, fo, f3, fa) belong to
ELM(F,n)) ® ZL(M(F,n), M(T,n)) & ZL(M(T,n), M(F,n)) ® EL(M(T, n)).
Then f € £(X) from (4.3). Since 0%(fi) = I# 0t(f5) = OF . 68(fi) =

O . and OF(fI) = It f(ftt) = I*, for each t > k. Therefore, f €
ENX). O

5. Computations of 8,2(M(G, n))

Let X1 = M(",Z,n) and X, = M(@;:l Zg,;,n). For the wedge product
space X = X7 V Xs, to determine EQ(X) by Theorem 4.3, we need to calculate
cach X(X}), Z} (X, X)), ZE(X1, X,), and EX(Xy).

We first compute Eg(Xl). Since X1 ~ V2 M (Z,n) ~ VI, S, where S!

a copy of S™, we have
m mXm
(X1, X;] EB 1S, 80 Pz
by Proposition 2.1 in [9]. Thus, 5( 1) = GL(m,Z), where GL(m,Z) is the
general linear group of degree m.

Let i; : S]' = Xj be the inclusion and p; : X1 — S} be the projection. For a
self-map f : X; — Xy, we define fj; : S = S} by fj; = pjofoi;. Since Sj" and
Si are the copies of the n-dimensional sphere, we see that [S7', ST = [S", S"].
Let ¢,, be the identity map on [S™, S™]; in particular, let (¢,,);; be the identity
map on ST, S]"] Then the matrix representation of f is given by

ti(tn)ir 0 tim(tn)im
0(f) = : : ;
1 (tn)m1  tmm(tn)mm
where t;; is the degree of f;; for 5,4 =1,2,...,m
Lemma 5.1. Forn > 1,

Zi(sm)

Z if k>n,
0 ifk<n.

Proof. If k > n, then [S™,S*¥] = 0. Thus, each f € [S",S"]| induces the
trivial homomorphism on 7*(S™) for ¢+ > k. Hence, Z,g(S") = 7. Ifk=n,
then [S™,S"] = Z{1,}. Since f = (deg f)i, for each f € [S™,S™], f" (1) =
((deg f)en)"(tn) = (deg f)en. Thus, if f € Z}(S™), then deg f must be 0.
Hence, Z%(S™) = 0. From the definition, we have ZQ(S”) =0fork<n 0O



1380 H. W. CHOI, K. Y. LEE, AND H. S. OH

Theorem 5.2. Forn > 2,

GL(m,Z) k> n,
1 k <n.

EH(X1) %’{

Proof. Since 7%(X1) = 0 for k > n, Sg(Xl) = &(X;) for k > n. Suppose that
k < n. Then, for each f € EX(X,), OF(f#) = I** for t > k. Thus

R,
Ji

0 if i # j.
Hence, if i = j, then f;; € £1(S™) and if i # j, then f;; € Z}(S™). By Lemma
5.1, 0%(f#) = id’ for t > k. 0

Now, we investigate Zg(Xg,Xl) and Zg(Xth). We review briefly the
following lemmas in [1] and [4].

Lemma 5.3. Let M(Z,,n) be a Moore space type of (Z4,n). Then the k-th
cohomotopy groups ©*(M(Zq,n)) are isomorphic to
k>n+2 k=n+1 k=n

g =1 (mod 2) 0 Z, 0
q¢ =0 (mod 2) 0 Zyg Zs
Generator - lpt1 O Tg Ty OTq

Lemma 5.4. Let M(Zy,n) be a Moore space type of (Zg,n). Then the k-th
homotopy groups mi(M(Z4,n)) are isomorphic to

k=n+2 k=n+1 k=n k<n-1

g=1 (mod 2) 0 0 Z, 0
q= 0 (mod 4) ZQ D ZQ Zg Zq 0
q =2 (mod 4) Z4 Zs Zyq 0

Generator - 1q O T 1q 0Ly -

Proposition 5.5. For k >0,

0 if g =1 (mod 2),
ZHM(Zg,n), M(Z,n)) 2 Zo{nnom,} ifk>n+1 andg=0 (mod 2),
0 if k <n and ¢ =0 (mod 2).
Proof. By Lemma 5.3,
n - ]0 if g =1 (mod 2),
(M (Zg, ), M(Z, )] = 7" (M(Zy, ) = Fa=1 moc?)
Zo{n, omg} if ¢ =0 (mod 2).

If ¢ is odd, then Z}(M(Z,,n), M(Z,n)) = 0. Let ¢ be even. If k > n + 1,
then 7*(M(Z,n)) = 0. Thus ZQ(M(Zq,n),M(Z,n)) = [M(Zq¢,n), M(Z,n)] =
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7 (M (Zg,n)) = Zs. If k =n, then 7"(M(Z,n)) = Z{v,} and 7"(M(Zy4,n)) =
Zo{ny, o my} and so

(1 © ﬂq)ﬂn([,n) = 1p 0Ny 0Ty =1y 07y # 0.

Therefore, Z%(M(Zy,n), M(Z,n)) = 0.

O

Proposition 5.6. For k > n,

ZE(M(Z,n), M(Zg,n)) = Zoiq © tn}.
Proof. By Lemma 5.4, [M(Z,n), M(Zq,n)] = 7 (M(Zq,n)) = Zg{iqg o tn}.
Since 7F(S™) = 0 for k > n+ 1, ZL(M(Z,n), M(Zy,n)) = Z,. If k = n, then
7 (S™) =2 Z{t,} and
0 if g =1 (mod 2),

T (M(Zg,n)) = {Zz{nn om,} if ¢ =0 (mod 2).

If ¢ = 1 (mod 2), then Z(M(Z,n), M(Zy4,n)) = Z,. 1If ¢ = 0 (mod 2),
then (i 0 1,)*(ny 0 Ty) = Ny 0 Ty 0 ig © Ly, = 0 because 7, 0 i, ~ 0. Thus,

ZE(M(Z,n), M(Zg,n)) = Z,. O
Theorem 5.7. For k > 0,
mxt )
ZH(Xa, X1) & D2 ykzn+l,
0 if k<mn,

where t is the number of even g;.

Proof. By Corollary 3.3,

Z!H( Xy, X1) EB (@z” Ly, m), M(Z, n))> :

mXxt

By Proposition 5.5, we have Z}i(XQ,Xl) >~ P Zs for k > n+ 1, where ¢t is
the number of even ¢;. If £ < n, then Zg(M(qu ,n), M(Z,n)) = 0. Therefore,
Z!H(Xa, X1) = 0. O

Theorem 5.8. For k > n,

ZHX,, Xo) = @ (@@) .

Proof. This follows immediately from Corollary 3.3 and Proposition 5.6. [

Finally, we determine 5,2 (X2). Since Xo =2 Vi_;M(Zg,,n), we have

[Xs, X) = D (@[M(qun),M(Zqﬂn)O

j=1 \i=1
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by Proposition 2.1. In [3], it was shown that

(@5 (Zg;m)) )@ @[M(Zqi,n),M(qu,n)]

i#j
Theorem 5.9. For k > 0,

E(Xy) (@sﬁ Zg s )EB P zi (M (Zg,, 1), M(Zy,, 7))

i#]

Proof. Let f € E'(X3). Then @4(f*) = I* for t > k. This means that
fg-t = 171"(M(Zqi,n)) forall 1 <7< s and Hu(f]ﬁf) = 0 for ¢ # j. Thus, f;; €
EHM (Zy,,n)) and fj; € ZE(M(Zqg,,n), M(Zq,,n)). Therefore,

fG(EQ(M(Zq“” )@ @Zﬂ Zq;,n), M(Zq,,n))

i#]

Conversely, let f e <5£(M(Zqi, n))) ) (@ Z}i(M(Z,;,J.,rL)7 M(Z,,, n))) Then,
ij

it 17rt(M(Zqi,n)) if i = 7
fji - 0

if i # j,
for all t > k. By Proposition 4.2 and the definition of 5£(M(Zqi ,m)), the matrix
representation of f* is equal to I for all ¢ > k. Hence, f € 82 (X2). O

From [3], we have the following lemma:
Lemma 5.10. Let M; = M(Z,;,n) and M; = M(Zq,,n). Then we have
‘ either g; or ¢; : odd ¢;=¢; =2 (mod 4) ¢; =¢; =0 (mod 4)
[M;, M;] Zq Zaq Lq D Lo
Generator a; a; Qj, g O 1 © Ty,

where mg, 0 iy = Jlni1 0 Ty, s j is an integer such that q; = jd, and d = (q;, )
is the greatest common divisor.

Proposition 5.11. Let M; = M(Zq,,n) and M; = M(Zgy,,n). Then we have
[M;, M;] ifk>n+2,
Z(M;, M;) = <0 if ¢ or ¢; : odd and k =mn orn+1,
Zs if g =¢ =0 (mod 2) and k=mn orn+1.

Proof. If k > n+2, then 7%(M;) = 7%(M;) = 0. Thus, Z}(M;, M;) = [M;, M;]
for k > n + 2. By Lemma 5.3, we have 7" (M;) 2 Z,,{tn11 0 7y, } and

n(M)N 0 ifqezl(mod 2)7
™ v) = .
ZQ{nn © qu} ifgp=0 (InOd 2),
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where ¢ = i, j. By Lemma 5.10, we have
Zaf{oy} if g; or ¢; : odd,
[M;, M;] =  Zog{a;} if ¢; = ¢; =2 (mod 4),
Zq ® Zo{ay,ig, ompomy b if ¢ = ¢ =0 (mod 4),
where d = (g;, ¢i)-
Case 1. Let ¢; or ¢; be odd.
Let g € [M;, M;]. Then, g = sa; for some 0 < s < d. Thus, we have

n+1 _
(11 0 Tg,) = Lng1 © g, © SOy

= Slp+1 Oﬂ—lh‘ Oaj

g

= Slp41 0 Jln O Ty,
= $Jln O Ty;-

Since 0 < sj < g;, g™ *! is trivial if and only if s = 0. Hence, Zﬁ+1(Mj, M;) =
0. Moreover, Z£ (M, M;) = 0 by the definition.

Case 2. Let ¢; = ¢; =2 (mod 4).

Let g € [Mj, M;]. Then g = scyj for some 0 < s < 2d. Thus, if s = d, then

ﬁn-‘rl(

9 Lnt1 O Tg;) = lpt1 0 Tg; O g, ©Nn omg; =0

because 7, 044, ~ 0. If s # d, then

G (tnt17q;) = Stua1Tg, © @ = Sftnt 0 g,
Hence, s = 0 or d. Therefore ZfLH(Mj, M;) = Zy{doj}. Then, for g €
Zrﬁzﬂ(Mja M;),
gﬂn+1(nn o 7‘-%) =dnyomg 00y = djnn-‘rl O Tg; = qjNn+1© Tg; = 0

because ¢; is even. Therefore, Zf(M;, M;) = Zo{da;}.

Case 3. Let ¢; = ¢; =0 (mod 4).

Let g € [Mj, M;]. Then, g = sa; @ tig, o1y 0 Ty, for some 0 < s < d and
t =0,1. Then,

ﬂn-ﬁ-l(

g lnt1 ©Tg;) = SJlnt1 © Tq; @ tlny1 © Ty, Olg; OMNp O Mg = Sjlny1 0T DO

because 7y, 0ig, ~ 0. Thus, s = 0 and ¢t = 0,1. Hence, ZgH(Mj,Mi) =
Z2{0 @ ig, 01y 0 7y, }. Then, for g € 25 (M;, M;),

9" (1 © Tg;) = 0@ 1 0 Ty, 0 1g, 0 M 0 Mg, = 0.
Hence, Z} (M, M;) = Z3{0 & ig, 0 my, 0 g, }- O

Theorem 5.12. For n > 3,

S

EH(X,) = (7
t+¢
P Z» ifk=norn+1,

15(M(Zqi7n))) Y <@[M(qu,n),M(Zqi,n)]> ifk=n+2,

i#]
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where t is the number of even q; and { is the number of pairs {i,j} C {1,...,s}
such that both q; and q; are even and i # j.

Proof. If k > n + 2, then 7%(X3) = 0. Thus, 5£(X2) =E&(Xq). Ifk=nor
¢
n+ 1, then by [6, Theorems 4.1 and 4.2], Eﬁ(M(Zq. ,n)) = @ Zs, where t is the
¢
number of even ¢;. By Proposition 5.11, @ Zn( M(Zyg;,n), M(Zg;,n)) = D Zo,
where £ is the number of pairs {i,j} C {1 .., s} such that both ¢; and ¢; are
even and i # j. Therefore,
46

EL(X2) = P Zo. 0

If we combine Theorems 5.2, 5.7, 5.8, and 5.12, we obtain the following main
result:

S

Corollary 5.13. Let G = (EB Z) PD| P Zy |- Then, we have
i=1 j

mxt

GL(m,Z) @ Z, @ (@qu> D EM(T,n)) ifk>n+2,

m ><t+t+€

Eﬁ( (G,n)) = GL(m,Z) @ ZP G_%(Enéij) ifk=n+1,

GLOM.Z) D 7o B @ (é zq].) ik =n,

Jj=1

where GL(m,Z) is the general linear group of degree m, t is the number of even
q; and ¢ is the number of pairs {i,j} C {1,...,s} such that both ¢; and gq; are
even and i # j.
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