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SOME CHARACTERIZATIONS OF COHEN-MACAULAY

MODULES IN DIMENSION > s

Nguyen Thi Dung

Abstract. Let (R,m) be a Noetherian local ring and M a finitely gener-
ated R-module. For an integer s > −1, we say that M is Cohen-Macaulay

in dimension > s if every system of parameters of M is an M -sequence
in dimension > s introduced by Brodmann-Nhan [1]. In this paper, we
give some characterizations for Cohen-Macaulay modules in dimension
> s in terms of the Noetherian dimension of the local cohomology mod-
ules Hi

m(M), the polynomial type of M introduced by Cuong [5] and the
multiplicity e(x;M) of M with respect to a system of parameters x.

1. Introduction

Throughout this paper, let (R,m) be a Noetherian local ring andM a finitely
generated R-module with dimM = d.

It is well known that the Cohen-Macaulay modules play an important role
in the theory of Noetherian rings and finitely generated modules. Recall that
M is called Cohen-Macaulay if every system of parameters (s.o.p. for short)
of M is an M -sequence. The structure of Cohen-Macaulay modules are well-
known in the multiplicity, local cohomology, m-adic completion, localization,
etc (see [3]). There are some extensions of the concepts of M -sequence and
Cohen-Macaulay modules, among which are the notions of M -sequence in di-
mension > s introduced by Brodmann-Nhan [1] and Cohen-Macaulay modules
in dimension > s defined by Zamani [21].

Definition. Let s > −1 be an integer. A sequence (x1, . . . , xr) of elements
in m is said to be an M -sequence in dimension > s if xi /∈ p for all p ∈
AssR(M/(x1, . . . , xi−1)M) satisfying dim(R/p) > s for all i = 1, . . . , r. We say
that M is a Cohen-Macaulay module in dimension > s if every s.o.p. of M is
an M -sequence in dimension > s.
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It is clear that M -sequences in dimension > s for s = −1, 0, 1 are exactly
M -sequences, f-sequences with respect to M in sense of Cuong-Schenzel-Trung
[9], and generalized regular sequences with respect to M in sense of Nhan
[17], respectively. Therefore Cohen-Macaulay modules in dimension > s for
s = −1, 0, 1 are, respectively, Cohen-Macaulay modules, f-modules defined in
[9] and generalized f-modules introduced in Nhan-Morales [18]. Moreover, for
each ideal I of R, all maximal f-sequences with respect to M in I have the
same length and the length of a maximal f-sequence of M in I is exactly the
least integer r such that the local cohomology module Hr

I (M) is not Artinian
(cf. [14]). Also, all maximal generalized regular sequences of M in an ideal I
have the same length and this common length is the least integer i such that
Supp(Hi

I(M)) is a finite set (see [17]).
Zamani [21] gave some properties of Cohen-Macaulay modules in dimension

> s concerning the m-adic completion, the localization, the catenarity, the
equidimension up to primary components of dimension 6 s of the support
of M . He also presented some results concerning the finiteness of associated
primes of local cohomology modules as extensions of previous results by Hellus
[11] and Nhan-Morales [18].

The purpose of this paper is to give some characterizations for Cohen-
Macaulay modules in dimension > s in terms of the multiplicity e(x;M) of
M , the Noetherian dimension N-dimRH

i
m(M) of local cohomology modules

Hi
m(M), and the polynomial type p(M) of M introduced by Cuong [5]. Note

that Hi
m(M) is an Artinian R-module and the Noetherian dimension for Ar-

tinian modules was introduced in [19] and [13]. It is clear that if s ≥ d, then
M is always Cohen-Macaulay in dimension > s. Moreover, the structure of
Cohen-Macaulay modules in dimension > −1 (i.e., Cohen-Macaulay modules)
can be described in terms of the theories of multiplicity and local cohomology.
Therefore we only consider the case 0 6 s < d.

The main result of this paper is the following theorem.

Main Theorem. Suppose that 0 6 s < d.
(i) The following statements are equivalent:

(a) N-dimR(H
i
m(M)) 6 s for all i < d.

(b) p(M) 6 s.
(c) There exist a s.o.p. x = (x1, . . . , xd) of M and k1, . . . , ks ∈ {1, . . . , d}

such that

I(y1, . . . , yd;M) = I(x1, . . . , xd;M),

where yj = x2j if j /∈ {k1, . . . , ks} and yj = xj if j ∈ {k1, . . . , ks}.
(d) There exist a s.o.p. x = (x1, . . . , xd) of M and a constant Cx (not

depending on n) such that for all integer n > 0,

I(xn1 , . . . , x
n
d ;M) 6 nsCx.
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(ii) If one of the conditions (a), (b), (c), (d) is satisfied, then M is Cohen-

Macaulay in dimension > s.
(iii) Assume that R is universally catenary and all whose formal fibers are

Cohen-Macaulay. Then M is Cohen-Macaulay in dimension > s if and only if

one of the conditions (a), (b), (c), (d) is satisfied.

The proof of Main Theorem will be given in Section 3. In the next section,
we recall some definitions and earlier results which will be used later.

2. Preliminaries

From the definition of M -sequence in dimension > s and Cohen-Macaulay
modules in dimension > s, we have following immediate properties.

Lemma 2.1. Let (x1, . . . , xr) be a sequence of elements in m.

(i) (x1, . . . , xr) is an M -sequence in dimension > s if and only if for all

i = 1, . . . , r we have dim
(
(x1, . . . , xi−1)M :M xi/(x1, . . . , xi−1)M

)
6 s.

(ii) (x1, . . . , xr) is an M -sequence in dimension > s if and only if x1/1, . . .,
xr/1 is a poor Mp-sequence for all p ∈ SpecR such that dimR/p > s.

Let x = (x1, . . . , xt) ⊆ m be a multiplicative system of M , i.e., it satisfies
the condition ℓ(M/(x1, . . . , xt)M) <∞. Denote by e(x;M) the multiplicity of
M with respect to x. Then e(x;M) ≥ 0 and e(x;M) = 0 if and only if x is a
s.o.p. of M , i.e., t = d. For some other basic properties of multiplicity that will
be used in the sequel, we refer to the book by H. Matsumura [16].

Recall that if ℓR(H
i
m(M)) < ∞ for all i < d, then M is called generalized

Cohen-Macaulay (see [9]). Now we recall some characterizations of generalized
Cohen-Macaulay modules introduced by [9] and [20]. From now on, for a s.o.p.
x = (x1, . . . , xd) of M , we set

I(x;M) = ℓR(M/(x1, . . . , xd)M)− e(x;M).

Lemma 2.2. The following statements are equivalent:
(i) M is generalized Cohen-Macaulay.

(ii) There exists a constant I(M) such that I(x;M) 6 I(M) for all s.o.p. x
of M.

(iii) There exist a s.o.p. x ofM and a constant Cx such that I(xn1 , . . . , x
n
d ;M)

6 Cx for all integers n.
(iv) There exists a s.o.p. x of M such that I(x21, . . . , x

2
d;M) = I(x;M).

A s.o.p. x of M satisfies Lemma 2.2, (iv) is called a standard s.o.p. of M .
Note that if a s.o.p. x of M is standard, then I(xn1

1 , . . . , xnd

d ;M) = I(x;M) for
all n1, . . . , nd > 1 (see [20, Theorem 2.1]).

Recall that the Noetherian dimension N-dimRA of an Artinian R-module A
is defined inductively as follows (cf. Kirby [13], Roberts [19]). If A = 0, we put
N-dimA = −1. For an integer d ≥ 0, we put N-dimRA = d if N-dimR A < d
is false, and for every ascending sequence A0 ⊆ A1 ⊆ · · · of submodules of A,
there exists n0 such that N-dimR(An/An+1) < d for all n > n0.
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Lemma 2.3 ([7]). (i) Let A be Artinian R-module. Then A has a natural

structure R̂-module and

N-dimRA = N-dim
R̂
A = dim

R̂
(R̂/Ann

R̂
A) 6 dim(R/AnnRA).

(ii) N-dimA = 0 if and only if dimRA = 0. In this case, the length of A is

finite and the ring R/AnnRA is Artinian.

(iii) Let I be an ideal of R and M a non zero f.g. R-module. Then

N-dim(Hi
m(M)) 6 i

and in particular, N-dim(Hd
m(M)) = d.

The theory of secondary representation introduced by I. G. Macdonald [15] is
in some sense dual to the more known theory of primary decomposition. It has
shown in [15] that every Artinian R-module A has a secondary representation
A = A1 + · · · + An of pi-secondary submodules Ai. The set {p1, . . . , pn} is
independent of the minimal secondary representation of A and it is denoted by
AttR A.

Lemma 2.4. (i) A 6= 0 if and only if AttRA 6= ∅. In this case, the minimal

elements in AttRA are exactly the minimal prime ideals containing AnnRA.
(ii) N-dimA 6 dim

(
R/AnnRA

)
= max{dimR/p : p ∈ AttRA}.

Now we recall the notion of polynomial type introduced by Cuong [5]. Let
x = (x1, . . . , xd) be a s.o.p. of M and n1, . . . , nd be integers. Consider

I(xn1

1 , . . . , xnd

d ;M) = ℓ(M/(xn1

1 , . . . , xnd

d )M − n1 · · ·nde(x;M)

as a function in n1, . . . , nd. Then this function always takes non-negative values
and bounded above by polynomials, but it is not a polynomial for n1, . . . , nd

large enough. However, the least degree of all polynomials in n1, . . . , nd bound-
ing above the function I(xn1

1 , . . . , xnd

d ;M) is independent of the choice of x.
This least degree is called the polynomial type of M and denoted by p(M)
(see [5]). If we stipulate that the degree of polynomial zero is −∞, then M
is Cohen-Macaulay if and only if p(M) = −∞. Moreover, M is generalized
Cohen-Macaulay if and only if p(M) 6 0 (see [9]).

When p(M) > 0, we can compute p(M) in terms of the Noetherian dimen-
sion of Artinian local cohomology modules Hi

m(M).

Lemma 2.5 ([6, Lemma 3.1]). Let p(M) > 0. Then we have

(i) p(M) = max
i<d

N-dim(Hi
m(M)).

(ii) If x ∈ m such that x /∈ p for all p ∈
d⋃

i=1

Att(Hi
m(M)) \ {m}, then

p(M/xM) = p(M)− 1.
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3. Proof of Main Theorem

Proof of Main Theorem (i). (a)⇔(b) follows from Lemma 2.5(i).
(a)⇒(c). Let d = 1. Then s = 0 and M is generalized Cohen-Macaulay.

By Lemma 2.2(iv), there exists a standard s.o.p. x1 of M , i.e., I(x21;M) =
I(x1;M). Therefore (c) is true.

Let d > 1. We prove the result by induction on s, where 0 6 s < d. Let s =
0. Then N-dimRH

i
m(M) 6 0 for all i < d. By Lemma 2.3(ii), ℓR(H

i
m(M)) <∞

for all i < d, i.e., M is generalized Cohen-Macaulay. Therefore there exists
by Lemma 2.2(iv) a s.o.p. (x1, . . . , xd) of M such that I(x21, . . . , x

2
d;M) =

I(x1, . . . , xd;M). It means that condition (c) is true for s = 0. Let 1 6 s < d
and assume that the result is true for the case s − 1. If p(M) 6 0, then M
is generalized Cohen-Macaulay. Therefore there exists a standard s.o.p. x =
(x1, . . . , xd) of M . Therefore by [20, Theorem 2.1] we have

I(x;M) 6 I(y1, . . . , yd;M) 6 I(x21, . . . , x
2
d;M) = I(x;M),

where yj = x2j if j /∈ {k1, . . . , ks} and yj = xj if j ∈ {k1, . . . , ks} for all
j = 1, . . . , d. Hence I(x;M) = I(y1, . . . , yd;M) and the result is true in this

case. Let p(M) > 0. Let x1 ∈ m such that x1 /∈ p for all p ∈ (
d⋃

i=1

Att(Hi
m(M)))\

{m}. Note that p(M) 6 s by Lemma 2.5(i), we get by Lemma 2.5(ii) that
p(M/x1M) = p(M) − 1 6 s − 1. Hence N-dim(Hi

m(M/x1M) 6 s − 1 for all
i < d − 1 by Lemma 2.5(i). Applying the induction hypothesis for M/x1M ,
there exist a s.o.p. (x2, . . . , xd) of M and integers k2, . . . , ks ∈ {2, . . . , d} such
that

I(y2, . . . , yd;M) = I(x2, . . . , xd;M),

where yj = x2j if j /∈ {k2, . . . , ks} and yj = xj if j ∈ {k2, . . . , ks}, for all
j = 2, . . . , d. Without loss of generality we can assume that k2 = 2, . . . , ks = s,
i.e.,

(1) I(x2, . . . , xs, x
2
s+1, . . . , x

2
d;M/x1M) = I(x2, . . . , xd;M/x1M).

By the choice of x1, we have dim(0 :M x1) 6 0. Since d > 1, we have

e(x2, . . . , xs, x
2
s+1, . . . , x

2
d; 0 :M x1) = 0 = e(x2, . . . , xs, xs+1, . . . , xd; 0 :M x1).

Therefore, we have

I(x2, . . . , xs, x
2
s+1, . . . , x

2
d;M/x1M)

= ℓR(M/(x1, . . . , xs, x
2
s+1, . . . , x

2
d)M)− e(x1, . . . , xs, x

2
s+1, . . . , x

2
d;M)

+ e(x2, . . . , xs, x
2
s+1, . . . , x

2
d; 0 :M x1)

= I(x1, . . . , xs, x
2
s+1, . . . , x

2
d;M), and

I(x2, . . . , xd;M/x1M)

= ℓR(M/(x1, x2, . . . , xd)M)− e(x1, x2, . . . , xd;M) + e(x2, . . . , xd; 0 :M x1)

= I(x1, . . . , xd;M).
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So, it follows from (1) that

I(x1, . . . , xs, x
2
s+1, . . . , x

2
d;M) = I(x1, . . . , xd;M),

and (c) is proved.
(c)⇒(d). Let d = 1. Then s = 0 and M is generalized Cohen-Macaulay.

So, there exists a standard s.o.p. x1 of M and by [20, Theorem 2.1], we have
I(x1;M) = I(x21;M) = I(xn1 ;M) for all n ∈ N. Set Cx = I(x1;M). Then
I(xn1 ;M) = Cx = n0Cx for all n > 1. Hence (d) is true.

Let d > 1. We prove the result by induction on s, where 0 6 s < d. Let
s = 0. From the hypothesis (c), there exists a s.o.p. x = (x1, . . . , xd) of M
such that

I(x21, . . . , x
2
d;M) = I(x1, . . . , xd;M).

It means that M is generalized Cohen-Macaulay and x is a standard s.o.p. of
M . Set Cx = I(x1, . . . , xd;M). Then

I(xn1 , . . . , x
n
d ;M) = n0Cx

for all n > 1 and (d) is true for the case s = 0. Let s > 0 and assume that the
result is true for s− 1. Let x = (x1, . . . , xd) be a s.o.p. ofM which satisfies (c).
Without loss of generality we can assume that k1 = d− s+ 1, . . . , ks = d, i.e.,

(2) I(x21, . . . , . . . , x
2
d−s, xd−s+1, . . . , xd;M) = I(x1, . . . , xd;M).

We have by the property of multiplicity that

I(x21, . . . , x
2
d−s, xd−s+1, . . . , xd;M)

= I(x21, . . . , x
2
d−s, xd−s+1, . . . , xd−1;M/xdM) + 2d−se(x1, . . . , xd−1; 0 :M xd)

and

I(x1, . . . , xd;M) = I(x1, . . . , xd−1;M/xdM) + e(x1, . . . , xd−1; 0 :M xd).

Note that I(x21, . . . , x
2
d−s, xd−s+1, . . . , xd−1 > I(x1, . . . , xd−1;M/xdM). Since

s < d, we have

2d−se(x1, . . . , xd−1; 0 :M xd) > e(x1, . . . , xd−1; 0 :M xd).

Therefore it follows from (2) that e(x1, . . . , xd−1; 0 :M xd) = 0 and

I(x1, . . . , xd−s, xd−s+1, . . . , xd−1;M/xdM)

= I(x21, . . . , x
2
d−s, xd−s+1, . . . , xd−1;M/xdM).

Hence, dim(0 :M xd) 6 d − 2 and hence e(xn1 , . . . , x
n
d−1; 0 :M xd) = 0 for all

n > 0. Therefore, using the induction hypothesis for M/xdM , there exists a
constant Cx such that

I(xn1 , . . . , x
n
d ;M) 6 nI(xn1 , . . . , x

n
d−1, xd;M)

= n
(
I(xn1 , . . . , x

n
d−1;M/xdM) + e(xn1 , . . . , x

n
d−1; 0 :M xd)

)

6 nns−1Cx = nsCx

for all integers n > 0. Thus (d) is proved.
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(d)⇒(b). Since I(xn1 , . . . , x
n
d ;M) 6 nsI(x;M) for all integers n, by the

definition of the polynomial type p(M) we have p(M) 6 s. �

Proof of Main Theorem (ii). Suppose that (a) is true. Set m̂ = mR̂. Since there

is an isomorphism Hi
m̂
(M̂) ∼= Hi

m(M) of R̂-modules, we have by Lemma 2.3(i)

and assumption (a) that N-dim
R̂
(Hi

m̂
(M̂)) 6 s for all i < d.We first claim that

M̂ is a Cohen-Macaulay module in dimension > s. We prove this by induction

on d. Let d = 1. Then s = 0 and M̂ is generalized Cohen-Macaulay. By [9], each

s.o.p. of M̂ is an M̂ -sequence in dimension > 0. Let d > 1 and assume that the

claim is true for d− 1. Let x = (x1, . . . , xd) be a s.o.p. of M̂ . Let p̂ ∈ Ass
R̂
M̂

such that dim(R̂/p̂) := k > s. If k = d, then x1 /∈ p̂ as x1 is a parameter

element of M̂ . So, we assume that k < d. Note that p̂ ∈ Att
R̂
(Hk

m̂
(M̂)) by

[2, Corollary 11.3.3]. Hence p̂ ⊇ Ann
R̂
(Hk

m̂
(M̂)) by Lemma 2.4. So we get by

Lemma 2.3(i) that

N-dim
R̂
(Hk

m̂
(M̂)) = dim(R̂/Ann

R̂
(Hk

m̂
(M̂)) > dim(R̂/p̂) = k > s.

On the other hand, N-dim
R̂
(Hk

m̂
(M̂)) 6 s by the above fact. This is impossible.

Therefore x1 is M̂ -regular in dimension > s. Thus dim(0 :
M̂
x1) 6 s by Lemma

2.1(i). Hence Hi
m̂
(0 :

M̂
x1) = 0 for all > s. From the exact sequence

0 −→ 0 :
M̂
x1 −→ M̂ −→ M̂/(0 :

M̂
x1) −→ 0

we have an isomorphism Hi
m̂
(M̂) ∼= Hi

m̂
(M̂/(0 :

M̂
x1))) for all i > s. Therefore

from the exact sequence

0 −→ M̂/(0 :
M̂
x1)

x1−→ M̂ −→ M̂/x1M̂ −→ 0,

we get the exact sequence Hi
m̂
(M̂) −→ Hi

m̂
(M̂/x1M̂) −→ Hi+1

m̂
(M̂) for all

i > s. Since N-dim
R̂
(Hi

m̂
(M̂)) 6 s for all i < d, N-dim

R̂
(Hi

m̂
(M̂/x1M̂)) 6 s for

all i < d − 1. So, by the induction hypothesis applying to M̂/x1M̂ , we have

(x2, . . . , xd) is an M̂/x1M̂ -sequence in dimension > s. Therefore, (x1, . . . , xd)

is an M̂ -sequence in dimension > s, i.e., M̂ is Cohen-Macaulay in dimension
> s. Thus,M is Cohen-Macaulay in dimension> s by [21, Proposition 2.6]. �

Proof of Main Theorem (iii). By Lemma 2.3(i) we need to show that

dim
R̂
(R̂/Ann

R̂
(Hi

m̂
(M̂))) 6 s

for all i < d. Let i < d and p̂ ∈ Att
R̂
(Hi

m̂
(M̂)). Then dim(R̂/p̂) := k 6 i < d by

[2, 11.3.5] and p̂ ∈ Ass
R̂
M̂ by [2, 11.3.3]. Since R is universally catenary and

all whose formal fibers are Cohen-Macaulay, we have by [12, Corollary 1.2] that
R is a quotient ring of a Cohen-Macaulay ring. So we have by [21, Proposition

2.6] that M̂ is Cohen-Macaulay in dimension > s. Suppose k > s. Since k < d,
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there exists a s.o.p. (x1, . . . , xd) of M̂ such that x1 ∈ p̂. Therefore (x1, . . . , xd)

is not a M̂ -sequence in dimension > s. This is impossible. Hence k 6 s. Thus

dim
R̂
(R̂/Ann

R̂
(Hi

m̂
(M̂))) = max

p̂∈Att
R̂
Hi

m̂
(M̂)

dim(R̂/p̂) 6 s.
�

As a consequence of Main Theorem, we have the following characterization
for the Cohen-Macaulayness in dimension > s in term of the dimension of the
non-Cohen-Macaulay locus.

Denote by NC(M) the non-Cohen-Macaulay locus of M , i.e.,

NC(M) = {p ∈ SpecR |Mp is not Cohen-Macaulay}.

If R is universally catenary and all its formal fibers are Cohen-Macaulay, then
NC(M) is closed in SpecR under the Zariski topology (cf. [8]). Therefore
dim(NC(M)) is well defined. Set a(M) = a0(M) · · · ad−1(M), where ai(M) =
AnnR(H

i
m(M)) for all i 6 d− 1.

Corollary 3.1. If R is universally catenary and all its formal fibers are Cohen-

Macaulay, then the following statements are equivalent:
(i) M is Cohen-Macaulay in dimension > s.
(ii) dim(R/a(M)) 6 s.
(iii) dimNC(M) 6 s and dim(R/p) = d for all p ∈ (min(SuppRM))>s.

Proof. (i)⇔(ii). By [4, Theorem 1.2] we have p(M) = dim(R/a(M)). Therefore
the assertion follows from Main Theorem.

(i)⇒(iii) follows from [21, Proposition 2.4 (i)⇒(iv)].
(iii)⇒(i). Let p ∈ (SuppRM)>s. Since dimNC(M) 6 s by hypothesis

(iii), Mp is Cohen-Macaulay. Let q ∈ min(SuppRM)>s such that q ⊆ p. Then
dim(R/q) = d by (iii). Since R is universally catenary, it is catenary. Therefore

d ≥ dim(R/p) + dimMp ≥ dim(R/p) + ht(p/q) = dim(R/q) = d.

HenceM is Cohen-Macaulay in dimension > s by [21, Proposition 2.4(iv)⇒(i)].
�

Corollary 3.2. Suppose that R is universally catenary and all its formal fibers

are Cohen-Macaulay. Then the following statements are true:
(i)M = ⊕n

i=1Mi is Cohen-Macaulay in dimension > s if and only if for every

i, Mi is of dimension at most s or is of dimension d and Cohen-Macaulay in

dimension > s.
(ii) Let x1, . . . , xd−s be a part of s.o.p of M . Then M is Cohen-Macaulay

in dimension > s if and only if so is (x1, . . . , xd−s)M .

Proof. (i) It follows from the assumption and from Main Theorem that M is

Cohen-Macaulay in dimension > s if and only if N-dim(Hj
m(M)) 6 s for all

j < d. Therefore M is Cohen-Macaulay in dimension > s if and only if either
dimMi = d and N-dim(Hj

m(Mi)) 6 s for all j < d or dimMi 6 s for all
i = 1, . . . , n. Now the assertion follows from Main Theorem.
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(ii) Set N = (x1, . . . , xd−s)M . From the exact sequence 0 → N → M →
M/N → 0 and the fact that (x1, . . . , xd−s) is a part of s.o.p of M , we can
deduce that dimM/N = s, and hence Hi

m(M/N) = 0 for all i > s. Therefore,
the long exact sequence

· · · → Hi
m(M/N) → Hi+1

m (N) → Hi+1
m (M) → Hi+1

m (M/N) → · · ·

gives us Hi
m(N) ∼= Hi

m(M) for all i > s. Now the assertion follows from Main
Theorem. �

Now we consider the Cohen-Macaulayness in dimension > s of the polyno-
mial rings and the formal power series rings.

Proposition 3.3. Let S = R[[x1, . . . , xt]] be the ring of all formal power series

in t variables x1, . . . , xt with coefficients in R. Then p(S) = p(R) + t.

Proof. By induction, we only need to prove the case n = 1. It is clear that
n = (m, x1, . . . , xt) is the unique maximal ideal of S and dimS = dimR + t.
Set x1 = x and let (a1, . . . , ad) be a s.o.p. of R. Then we have the canonical
epimorphism of local rings ϕ : S −→ R given by ϕ(

∑
cix

i) = c0. Hence, we
can consider each R-module as a S-module by mean of ϕ. It is clear that
Kerϕ = xS. Therefore, there is an isomorphism of S-modules

S/(a1, . . . , ad, x)S ∼= R/(a1, . . . , ad)R.

It follows that S/(a1, . . . , ad, x)S is of finite length, i.e., (a1, . . . , ad, x) is a
s.o.p. of S. Let n1, . . . , nd, n be a tuple of (d+ 1) positive integers. Since x is
S-regular, so is xn and hence (0 :S x

n) = 0. Thus, we have

e(an1

1 , . . . , and

d , xn;S) = e(an1

1 , . . . , and

d ;S/xnS)− e(an1

1 , . . . , and

d ; 0 :S x
n)

= e(an1

1 , . . . , and

d ;S/xnS).

It is clear that ψ : S −→ Rn defined by ψ(
∑
cix

i) = (c0, . . . , cn−1) is a surjec-
tion with Kerψ = xnS. Hence S/xnS ∼= Rn. Thus

e(an1

1 , . . . , and

d ;S/xnS) = e(an1

1 , . . . , and

d ;Rn) = ne(an1

1 , . . . , and

d ;R).

On the other hand, by the above isomorphism S/xnS ∼= Rn, we have

ℓS

(
S/(an1

1 , . . . , and

d , xn)S
)
= ℓS

(
S/xnS/(an1

1 , . . . , and

d )S/xnS
)

= nℓR

(
R/(an1

1 , . . . , and

d )R
)
.

Therefore we get

I(an1

1 , . . . , and

d , xn;S)

= ℓS

(
S/(an1

1 , . . . , and

d , xn)S
)
−e(an1

1 , . . . , and

d , xn;S)

= ℓS

(
S/xnS/(an1

1 , . . . , and

d )S/xnS
)
−e(an1

1 , . . . , and

d ;S/xnS)

= nℓR

(
R/(an1

1 , . . . , and

d )R
)
−ne(an1

1 , . . . , and

d ;R)
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= nI(an1

1 , . . . , and

d ;R).

Thus, by the definition of polynomial type, we get p(S) = p(R) + 1. �

Let S = R[[x1, . . . , xt]] be the ring of formal power series and S′ = R[x1, . . .,
xt] the polynomial ring in t variables over R. It is well known that R is Cohen-
Macaulay (i.e., Cohen-Macaulay in dimension > −1) if and only if so is S and
S′. Below we consider for the case s ≥ 0.

Corollary 3.4. Let s ≥ 0 be an integer. Assume that R is universally catenary

and all its formal fibers are Cohen-Macaulay. Let n = (m, x1, . . . , xt)S
′ be

the unique homogeneous maximal ideal of S′. The following statements are

equivalent:
(i) R is a Cohen-Macaulay ring in dimension > s.
(ii) S is Cohen-Macaulay in dimension > s+ t.
(iii) S′

n is a Cohen-Macaulay ring in dimension > s+ t.

Proof. (i)⇒(ii). Since R is a Cohen-Macaulay ring in dimension > s and R is
universally catenary and all whose formal fibers are Cohen-Macaulay, p(R) 6 s
by Main Theorem. Hence p(S) = p(R)+t 6 s+t by Proposition 3.3. Therefore
S is Cohen-Macaulay in dimension > s+ t by Main Theorem.

(ii)⇒(i). Since R is universally catenary and all whose formal fibers are
Cohen-Macaulay, we have by [12, Corollary 1.2] that R is a quotient ring A/I
of the Cohen-Macaulay ring A. From the isomorphism

R[[x]] ∼=
A

I
[[x]] ∼= A[[x]]/I[[x]],

where I[[x]] is an ideal of A[[x]] with coefficients in I, it follows that S = R[[x]]
is a quotient ring of the Cohen-Macaulay ring A[[x]]. Hence S is universally
catenary and all whose formal fibres are Cohen-Macaulay. Therefore, we have
by Main Theorem, (iii) that p(S) < s + t and hence p(R) < s by Proposition
3.3. Thus the assertion follows from Main Theorem, (ii). Similarly, we can
prove the case (i)⇔(iii). �

Similar to the cases of f-module and generalized f-module, the assumption
of R being a universally catenary and all whose formal fibers being Cohen-
Macaulay in Main Theorem is not redundant. The following example illustrates
this fact.

Example 3.5. There exists a Noetherian local domain (S, n) such that:
(i) dimS = 4, depthS = 3 and S is Cohen-Macaulay in dimension > 2.
(ii) N-dim(H3

n(S)) = 3, dim(S/AnnS(H
3
n(S)) = 4 and dimS/a(S) = 4.

(iii) p(S) = 3, dim(Ŝ/a(Ŝ)) = 3 and Ŝ is not Cohen-Macaulay in dimension

> 2, where Ŝ is the n-adic completion of S.

Proof. Let (R,m) be a Noetherian local domain of dimension 2 constructed by

D. Ferrand and M. Raynaud [10] for which the m-adic completion R̂ of R has



SOME CHARACTERIZATIONS OF COHEN-MACAULAY MODULES 529

an associated prime q of dimension 1. We have by [7, Example 4.1] that

dim
R̂
(H1

m(R)) = N-dim(H1
m(R)) = 1 < dimR(H

1
m(R)) = 2.

(i) Let S = R[[x, y]] be the ring of all formal power series in two variables
x, y with coefficients in R. Then dimS = 4 and depthS = 3. Since S is a
Noetherian local domain of dimension 4, it is clear that S is a Cohen-Macaulay
ring in dimension > 2.

(ii) It is clear that n = (m, x, y)S is the unique maximal ideal of S and

Ŝ = R̂[[x, y]] is the n-adic completion of S. As p̂ ∈ Ass R̂, there exists a ∈ R̂
such that p̂ = Ann

R̂
a. Set

p̂[[x, y]] =
{ ∞∑

i=0

aix
i + biy

i ∈ S | ai, bi ∈ p̂, ∀i
}
.

Then p̂[[x, y]] is a prime ideal of Ŝ and

Ann
Ŝ
a =

{ ∞∑

i=0

aix
i + biy

i ∈ Ŝ |
∞∑

i=0

(aai)x
i + (abi)y

i = 0
}
= p̂[[x, y]].

Therefore, p̂[[x, y]] ∈ Ass Ŝ and

dim
( Ŝ

p̂[[x, y]]

)
= dim

( R̂
p̂

)
[[x, y]] = dim(R̂/p̂) + 2 = 3.

By [2, Corollary 11.3.3], it implies that p̂[[x, y]] ∈ Att
Ŝ
(H3

n̂
(Ŝ)) ∼= Att

Ŝ
(H3

n(S)).

Hence p̂[[x, y]] ⊇ Ann
Ŝ
(H3

n(S)). As p̂[[x, y]] ∈ Ass Ŝ ∩ Att
Ŝ
(H3

n(S)), we have

p̂[[x, y]] ∩ S ∈ Ass(S) ∩ Att
Ŝ
(H3

n(S)) = 0

since S is a domain. Therefore, we get

AnnS(H
3
n(S)) = Ann

Ŝ
(H3

n(S)) ∩ S ⊆ p̂[[x, y]] ∩ S = 0.

Thus, dimS S/AnnS(H
3
n(S)) = dimS/a(S) = dimS = 4.

(iii) We get by Proposition 3.3 that p(S) = 3. Hence dim Ŝ/a(Ŝ) = p(Ŝ) =

p(S) = 3 by [5]. Therefore Ŝ is not a Cohen-Macaulay ring in dimension > 2
by Main Theorem. �
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