• Title/Summary/Keyword: Rings with involution

Search Result 20, Processing Time 0.023 seconds

REMARKS ON GENERALIZED JORDAN (α, β)*-DERIVATIONS OF SEMIPRIME RINGS WITH INVOLUTION

  • Hongan, Motoshi;Rehman, Nadeem ur
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • Let R be an associative ring with involution * and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an $({\alpha},{\beta})^*$-derivation of R if $d(xy)=d(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $F:R{\rightarrow}R$ is called a generalized $({\alpha},{\beta})^*$-derivation of R associated with an $({\alpha},{\beta})^*$-derivation d if $F(xy)=F(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [12], and a theorem of Daif and El-Sayiad [6], moreover, we generalize a theorem of Ali et al. [4] and a theorem of Huang and Koc [9] related to generalized Jordan triple $({\alpha},{\beta})^*$-derivations.

A STUDY OF DIFFERENTIAL IDENTITIES ON 𝜎-PRIME RINGS

  • Adnan Abbasi;Md. Arshad Madni;Muzibur Rahman Mozumder
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.679-693
    • /
    • 2023
  • Let 𝓡 be a 𝜎-prime ring with involution 𝜎. The main objective of this paper is to describe the structure of the 𝜎-prime ring 𝓡 with involution 𝜎 satisfying certain differential identities involving three derivations 𝜓1, 𝜓2 and 𝜓3 such that 𝜓1[t1, 𝜎(t1)] + [𝜓2(t1), 𝜓2(𝜎(t1))] + [𝜓3(t1), 𝜎(t1)] ∈ 𝒥Z for all t1 ∈ 𝓡. Further, some other related results have also been discussed.

SEMIPRIME RINGS WITH INVOLUTION AND CENTRALIZERS

  • ANSARI, ABU ZAID;SHUJAT, FAIZA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.709-717
    • /
    • 2022
  • The objective of this research is to prove that an additive mapping T : R → R is a left as well as right centralizer on R if it satisfies any one of the following identities: (i) T(xnyn + ynxn) = T(xn)yn + ynT(xn) (ii) 2T(xnyn) = T(xn)yn + ynT(xn) for each x, y ∈ R, where n ≥ 1 is a fixed integer and R is any n!-torsion free semiprime ring. In addition, we talk over above identities in the setting of *-ring(ring with involution).

ON 𝜂-GENERALIZED DERIVATIONS IN RINGS WITH JORDAN INVOLUTION

  • Phool Miyan
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.585-593
    • /
    • 2024
  • Let 𝒦 be a ring. An additive map 𝖚 → 𝖚 is called Jordan involution on 𝒦 if (𝖚) = 𝖚 and (𝖚𝖛+𝖛𝖚) = 𝖚𝖛+𝖛𝖚 for all 𝖚, 𝖛 ∈ 𝒦. If Θ is a (non-zero) 𝜂-generalized derivation on 𝒦 associated with a derivation Ω on 𝒦, then it is shown that Θ(𝖚) = 𝛄𝖚 for all u ∈ 𝒦 such that 𝛄 ∈ Ξ and 𝛄2 = 1, whenever Θ possesses [Θ(𝖚), Θ(𝖚)] = [𝖚, 𝖚] for all 𝖚 ∈ 𝒦.

A STRUCTURE OF NONCENTRAL IDEMPOTENTS

  • Cho, Eun-Kyung;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Seo, Yeon Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.25-40
    • /
    • 2018
  • We focus on the structure of the set of noncentral idempotents whose role is similar to one of central idempotents. We introduce the concept of quasi-Abelian rings which unit-regular rings satisfy. We first observe that the class of quasi-Abelian rings is seated between Abelian and direct finiteness. It is proved that a regular ring is directly finite if and only if it is quasi-Abelian. It is also shown that quasi-Abelian property is not left-right symmetric, but left-right symmetric when a given ring has an involution. Quasi-Abelian property is shown to do not pass to polynomial rings, comparing with Abelian property passing to polynomial rings.

On Commutativity of σ-Prime Γ-Rings

  • DEY, KALYAN KUMAR;PAUL, AKHIL CHANDRA;DAVVAZ, BIJAN
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.827-835
    • /
    • 2015
  • Let U be a ${\sigma}$-square closed Lie ideal of a 2-torsion free ${\sigma}$-prime ${\Gamma}$-ring M. Let $d{\neq}1$ be an automorphism of M such that $[u,d(u)]_{\alpha}{\in}Z(M)$ on U, $d{\sigma}={\sigma}d$ on U, and there exists $u_0$ in $Sa_{\sigma}(M)$ with $M{\Gamma}u_0{\subseteq}U$. Then, $U{\subseteq}Z(M)$. By applying this result, we generalize the results of Oukhtite and Salhi respect to ${\Gamma}$-rings. Finally, for a non-zero derivation of a 2-torsion free ${\sigma}$-prime $\Gamma$-ring, we obtain suitable conditions under which the $\Gamma$-ring must be commutative.

Study of Generalized Derivations in Rings with Involution

  • Mozumder, Muzibur Rahman;Abbasi, Adnan;Dar, Nadeem Ahmad
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Let R be a prime ring with involution of the second kind and centre Z(R). Suppose R admits a generalized derivation $F:R{\rightarrow}R$ associated with a derivation $d:R{\rightarrow}R$. The purpose of this paper is to study the commutativity of a prime ring R satisfying any one of the following identities: (i) $F(x){\circ}x^*{\in}Z(R)$ (ii) $F([x,x^*]){\pm}x{\circ}x^*{\in}Z(R)$ (iii) $F(x{\circ}x^*){\pm}[x,x^*]{\in}Z(R)$ (iv) $F(x){\circ}d(x^*){\pm}x{\circ}x^*{\in}Z(R)$ (v) $[F(x),d(x^*)]{\pm}x{\circ}x^*{\in}Z(R)$ (vi) $F(x){\pm}x{\circ}x^*{\in}Z(R)$ (vii) $F(x){\pm}[x,x^*]{\in}Z(R)$ (viii) $[F(x),x^*]{\mp}F(x){\circ}x^*{\in}Z(R)$ (ix) $F(x{\circ}x^*){\in}Z(R)$ for all $x{\in}R$.

LIE IDEALS AND DERIVATIONS OF $\sigma$-PRIME RINGS

  • Shuliang, Huang
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.87-92
    • /
    • 2010
  • Let R be a 2-torsion free $\sigma$-prime ring with an involution $\sigma$, U a nonzero square closed $\sigma$-Lie ideal, Z(R) the center of Rand d a derivation of R. In this paper, it is proved that d = 0 or $U\;{\subseteq}\;Z(R)$ if one of the following conditions holds: (1) $d(xy)\;-\;xy\;{\in}\;Z(R)$ or $d(xy)\;-\;yx\;{\in}Z(R)$ for all x, $y\;{\in}\;U$. (2) $d(x)\;{\circ}\;d(y)\;=\;0$ or $d(x)\;{\circ}\;d(y)\;=\;x\;{\circ}\;y$ for all x, $y\;{\in}\;U$ and d commutes with $\sigma$.

Generalized Inverses and Solutions to Equations in Rings with Involution

  • Yue Sui;Junchao Wei
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • In this paper, we focus on partial isometry elements and strongly EP elements on a ring. We construct characterizing equations such that an element which is both group invertible and MP-invertible, is a partial isometry element, or is strongly EP, exactly when these equations have a solution in a given set. In particular, an element a ∈ R# ∩ R is a partial isometry element if and only if the equation x = x(a)*a has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. An element a ∈ R#∩R is a strongly EP element if and only if the equation (a)*xa = xaa has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. These characterizations extend many well-known results.