• Title/Summary/Keyword: Riemannian geodesic

Search Result 49, Processing Time 0.022 seconds

GEODESIC SEMI E-PREINVEX FUNCTIONS ON RIEMANNIAN MANIFOLDS

  • PORWAL, SANDEEP KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.5_6
    • /
    • pp.521-530
    • /
    • 2018
  • Several classes of functions, named as semi E-preinvex functions and semilocal E-preinvex functions and their properties are studied by various authors. In this paper we introduce the geodesic concept over two types of problems first is semi E-preinvex functions and another is semilocal E-preinvex functions on Riemannian manifolds and study some of their properties.

Geodesic Clustering for Covariance Matrices

  • Lee, Haesung;Ahn, Hyun-Jung;Kim, Kwang-Rae;Kim, Peter T.;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.321-331
    • /
    • 2015
  • The K-means clustering algorithm is a popular and widely used method for clustering. For covariance matrices, we consider a geodesic clustering algorithm based on the K-means clustering framework in consideration of symmetric positive definite matrices as a Riemannian (non-Euclidean) manifold. This paper considers a geodesic clustering algorithm for data consisting of symmetric positive definite (SPD) matrices, utilizing the Riemannian geometric structure for SPD matrices and the idea of a K-means clustering algorithm. A K-means clustering algorithm is divided into two main steps for which we need a dissimilarity measure between two matrix data points and a way of computing centroids for observations in clusters. In order to use the Riemannian structure, we adopt the geodesic distance and the intrinsic mean for symmetric positive definite matrices. We demonstrate our proposed method through simulations as well as application to real financial data.

LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Shin, Jong Moon
    • East Asian mathematical journal
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • We study the geometry of r-lightlike submanifolds M of a semi-Riemannian manifold $\bar{M}$ with a semi-symmetric non-metric connection subject to the conditions; (a) the screen distribution of M is totally geodesic in M, and (b) at least one among the r-th lightlike second fundamental forms is parallel with respect to the induced connection of M. The main result is a classification theorem for irrotational r-lightlike submanifold of a semi-Riemannian manifold of index r admitting a semi-symmetric non-metric connection.

CLAIRAUT POINTWISE SLANT RIEMANNIAN SUBMERSION FROM NEARLY KÄHLER MANIFOLDS

  • Gauree Shanker;Ankit Yadav
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.109-122
    • /
    • 2023
  • In the present article, we introduce pointwise slant Riemannian submersion from nearly Kähler manifold to Riemannian manifold. We established the conditions for fibers to be totally geodesic. We also find necessary and sufficient conditions for pointwise slant submersion 𝜑 to be a harmonic and totally geodesic. Further, we study clairaut pointwise slant Riemannian submersion from nearly Kähler manifold to Riemannian manifold. We derive the clairaut conditions for 𝜑 such that 𝜑 is a clairaut map. Finally, one example is constructed which demonstrates existence of clairaut pointwise slant submersion from nearly Kähler manifold to Riemannian manifold.

LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

  • Jin, Dae-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.763-770
    • /
    • 2012
  • In this paper, we study the geometry lightlike hypersurfaces (M, $g$, S(TM)) of a semi-Riemannian manifold ($\tilde{M}$, $\tilde{g}$) of quasi-constant curvature subject to the conditions: (1) The curvature vector field of $\tilde{M}$ is tangent to M, and (2) the screen distribution S(TM) is either totally geodesic in M or totally umbilical in $\tilde{M}$.

NON-TANGENTIAL HALF LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN MANIFOLDS WITH SEMI-SYMMETRIC NON-METRIC CONNECTIONS

  • Jin, Dae Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.311-323
    • /
    • 2014
  • In this paper, we construct two types of non-tangential half lightlike submanifolds of a semi-Riemannian manifold admitting a semi-symmetric non-metric connection. Our main result is to prove several characterization theorems for each types of such half lightlike submanifolds equipped with totally geodesic screen distributions.

HORIZONTALLY HOMOTHETIC HARMONIC MORPHISMS AND STABILITY OF TOTALLY GEODESIC SUBMANIFOLDS

  • Yun, Gab-Jin;Choi, Gun-Don
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.493-511
    • /
    • 2008
  • In this article, we study the relations of horizontally homothetic harmonic morphisms with the stability of totally geodesic submanifolds. Let $\varphi:(M^n,g)\rightarrow(N^m,h)$ be a horizontally homothetic harmonic morphism from a Riemannian manifold into a Riemannian manifold of non-positive sectional curvature and let T be the tensor measuring minimality or totally geodesics of fibers of $\varphi$. We prove that if T is parallel and the horizontal distribution is integrable, then for any totally geodesic submanifold P in N, the inverse set, $\varphi^{-1}$(P), is volume-stable in M. In case that P is a totally geodesic hypersurface the condition on the curvature can be weakened to Ricci curvature.

ASCREEN LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.311-317
    • /
    • 2014
  • We study lightlike hypersurfaces of a semi-Riemannian space form $\tilde{M}(c)$ admitting a semi-symmetric non-metric connection. First, we construct a type of lightlike hypersurfaces according to the form of the structure vector field of $\tilde{M}(c)$, which is called a ascreen lightlike hypersurface. Next, we prove a characterization theorem for such an ascreen lightlike hypersurface endow with a totally geodesic screen distribution.

DISK-HOMOGENEOUS RIEMANNIAN MANIFOLDS

  • Lee, Sung-Yun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.395-402
    • /
    • 1999
  • We introduce the notion of strongly k-disk homogeneous apace and establish a characterization theorem. More specifically, we prove that any analytic Riemannian manifold (M,g) of dimension n which is strongly k-disk homogeneous with 2$\leq$k$\leq$n-1 is a space of constant curvature. Its K hler analog is obtained. The total mean curvature homogeneity of geodesic sphere in k-disk is also considered.

  • PDF