
J. Korean Math. Soc. 51 (2014), No. 2, pp. 311–323
http://dx.doi.org/10.4134/JKMS.2014.51.2.311

NON-TANGENTIAL HALF LIGHTLIKE SUBMANIFOLDS OF

SEMI-RIEMANNIAN MANIFOLDS WITH SEMI-SYMMETRIC

NON-METRIC CONNECTIONS

Dae Ho Jin

Abstract. In this paper, we construct two types of non-tangential half
lightlike submanifolds of a semi-Riemannian manifold admitting a semi-
symmetric non-metric connection. Our main result is to prove several
characterization theorems for each types of such half lightlike submani-
folds equipped with totally geodesic screen distributions.

1. Introduction

The theory of lightlike submanifolds is an important topic of research in
differential geometry due to its application in mathematical physics, especially
in the general relativity. The study of such notion was initiated by Duggal
and Bejancu [4] and later studied by many authors (see recent results in two
books [6, 7]). The class of codimension two lightlike submanifolds M of a semi-
Riemannian manifold M̄ is compose of two classes, which are called the half

lightlike and coisotropic submanifolds of M̄ , by virtue of the rank of its radical
distribution Rad(TM) = TM ∩ TM⊥, where TM and TM⊥ are the tangent
and normal bundles of M , respectively [3, 5]. Half lightlike submanifold [11, 12]
is a special case of the general r-lightlike submanifold [4] such that r = 1, and
its geometry is more general form than that of coisotrophic submanifold [8] or
lightlike hypersurface [13, 15]. Much of the geometry on half lightlike subman-
ifolds will be immediately generalized in a formal way to arbitrary r-lightlike
submanifolds. For this reason, we study only half lightlike submanifolds.

The notion of a semi-symmetric non-metric connection on a Riemannian
manifold was introduced by Ageshe and Chafle [1]. Recently many authors
have studied lightlike submanifolds of semi-Riemannian manifolds admitting
semi-symmetric non-metric connections (see [10]∼[17]). Most of authors that
wrote on lightlike submanifolds M of semi-Riemannian manifolds M̄ admitting
semi-symmetric non-metric connections fail to treat with the case that the
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structure vector field ζ of M̄ is not tangent to M , but studied only the case
that ζ is tangent to M . In case that the structure vector field ζ of M̄ is tangent
to M , we say that M is a tangential lightlike submanifold of M̄ . There is only a
paper on non-tangential lightlike submanifolds of a semi-Riemannian manifold
with a semi-symmetric non-metric connections, studied by Jin [15].

In this paper, we study non-tangential half lightlike submanifolds M of a
semi-Riemannian manifold M̄ admitting a semi-symmetric non-metric connec-
tion. There are several different types of non-tangential half lightlike subman-
ifolds according to the form of the structure vector field of M̄ . We study two
types of them here, which are called the ascreen and transversal half lightlike
submanifolds. We prove several classification theorems for each types of such
half lightlike submanifolds M endow with totally geodesic screen distributions.

2. Semi-symmetric non-metric connection

Let (M̄, ḡ) be a semi-Riemannian manifold. A connection ∇̄ on M̄ is called a
semi-symmetric non-metric connection [1] if ∇̄ and its torsion tensor T̄ satisfy

(∇̄X ḡ)(Y, Z) = −π(Y )ḡ(X,Z)− π(Z)ḡ(X,Y ),(2.1)

T̄ (X,Y ) = π(Y )X − π(X)Y,(2.2)

for any vector fields X, Y and Z on M̄ , where π is a 1-form associated with a
non-vanishing vector field ζ, which is called the structure vector field, by

π(X) = ḡ(X, ζ).

A codimension 2 submanifold (M, g) of a semi-Riemannian manifold M̄ is
called a half lightlike submanifold [3, 5] if its radical distribution Rad(TM) =
TM ∩ TM⊥ is a subbundle of the tangent bundle TM and the normal bundle
TM⊥ of rank 1. Then there exist two non-degenerate complementary vector
bundles S(TM) and S(TM⊥) of Rad(TM) in TM and TM⊥ respectively,
which are called the screen and co-screen distributions on M , such that

(2.3) TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where ⊕orth denotes the orthogonal direct sum. We denote such a half lightlike
submanifold by M = (M, g, S(TM)). Denote by F (M) the algebra of smooth
functions on M and by Γ(E) the F (M) module of smooth sections of a vector
bundle E overM . Choose L ∈ Γ(S(TM⊥)) as a spacelike unit vector field, i.e.,
ḡ(L,L) = 1, without loss of generality. Consider the orthogonal complementary
distribution S(TM)⊥ to S(TM) in TM̄ . Certainly Rad(TM) and S(TM⊥)
are subbundles of S(TM)⊥. As S(TM⊥) is non-degenerate, we have

S(TM)⊥ = S(TM⊥)⊕orth S(TM⊥)⊥,

where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥.
For any null section ξ of Rad(TM), there exists a uniquely defined lightlike

vector bundle ltr(TM) and a null vector field N of ltr(TM) satisfying

(2.4) ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = ḡ(N,L) = 0, ∀X ∈ Γ(S(TM)).



NON-TANGENTIAL HALF LIGHTLIKE SUBMANIFOLDS 313

We call N, ltr(TM) and tr(TM) = S(TM⊥)⊕orth ltr(TM) the lightlike trans-

versal vector field, lightlike transversal vector bundle and transversal vector

bundle of M with respect to S(TM), respectively [4]. Then TM̄ is decomposed
as

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)(2.5)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).

From now and in the sequel, we takeX, Y, Z, W ∈ Γ(TM), unless otherwise
specified. Let P be the projection morphism of TM on S(TM). Then the local
Gauss and Weingartan formulas of M and S(TM) are given respectively by

∇̄XY = ∇XY +B(X,Y )N +D(X,Y )L,(2.6)

∇̄XN = −A
N
X + τ(X)N + ρ(X)L,(2.7)

∇̄XL = −A
L
X + φ(X)N ;(2.8)

∇XPY = ∇∗

XPY + C(X,PY )ξ,(2.9)

∇Xξ = −A∗

ξX − σ(X)ξ,(2.10)

where ∇ and ∇∗ are induced linear connections on TM and S(TM) respec-
tively, B and D are called the local lightlike and screen second fundamental

forms of M respectively, C is called the local second fundamental form on
S(TM). A

N
, A∗

ξ and A
L

are linear operators on TM , which are called the
shape operators, and τ, ρ, φ and σ are 1-forms on TM . We say that

h(X,Y ) = B(X,Y )N +D(X,Y )L

is the global second fundamental form tensor of M .
Using (2.1), (2.2) and (2.6), we show that B and D are symmetric, and

(∇Xg)(Y, Z) = − π(Y )g(X,Z)− π(Z)g(X,Y )(2.11)

+ B(X,Y )η(Z) +B(X,Z)η(Y ),

T (X,Y ) = π(Y )X − π(X)Y,(2.12)

where T is the torsion tensor with respect to ∇ and η is a 1-form such that

η(X) = ḡ(X,N).

From the facts that B(X,Y ) = ḡ(∇̄XY, ξ) and D(X,Y ) = ḡ(∇̄XY, L), we know
that B and D are independent of the choice of S(TM) and satisfy

(2.13) B(X, ξ) = 0, D(X, ξ) = −φ(X).

In the entire discussion of this article, we shall assume that the structure
vector field ζ of M̄ to be unit spacelike vector field. Let a, b and e be smooth
functions defined by a = π(N), b = π(ξ) and e = π(L). Then the above three
local second fundamental forms are related to their shape operators by

g(A∗

ξX,Y ) = B(X,Y )− bg(X,Y ), ḡ(A∗

ξX,N) = 0,(2.14)

g(A
L
X,Y ) = D(X,Y )− eg(X,Y ) + φ(X)η(Y ),(2.15)

ḡ(A
L
X,N) = ρ(X)− eη(X),
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g(A
N
X,PY ) = C(X,PY )− ag(X,PY )− η(X)π(PY ),(2.16)

ḡ(A
N
X,N) = −aη(X), σ(X) = τ(X)− bη(X).

It follows from (2.14) that A∗

ξ is Γ(S(TM))-valued self-adjoint and satisfies

(2.17) A∗

ξξ = 0.

Definition. A distribution D on M is called a parallel distribution if

∇XY = 0, ∀X ∈ Γ(TM) and ∀Y ∈ Γ(D).

In case X ∈ Γ(D), we say that D is auto-parallel distribution on M .

Definition. (1) A screen distribution S(TM) is called totally geodesic [5] in M
if C = 0 on a coordinate neighborhood U in M .

(2) A half lightlike submanifold M is called totally umbilical [5] if there exist
a transversal vector field H ∈ Γ(tr(TM)) on U such that

h(X,Y ) = Hg(X,Y ), ∀X, Y ∈ Γ(TM).

In case H = 0 on U , we say that M is totally geodesic.

It is easy to see that M is totally umbilical if and only if there exist smooth
functions β and δ on U such that H = βN + δL and

B(X,Y ) = βg(X,Y ), D(X,Y ) = δg(X,Y ), ∀X, Y ∈ Γ(TM).

Remark 2.1. If S(TM) is totally geodesic in M , then, from (2.9), (2.10) and
(2.17), we show that Rad(TM) and S(TM) are auto-parallel distributions of
M such that M = Rad(TM)⊕orthS(TM). Thus, by de Rham’s decomposition
theorem [2], M is locally a product manifold M = C ×M∗, where C is a null
curve tangent to Rad(TM) and M∗ is a leaf of S(TM).

In general, S(TM) is not necessarily integrable. The following result gives
equivalent conditions for the integrability of S(TM):

Theorem 2.2 ([16]). Let M be a half lightlike submanifold of a semi-Rieman-

nian manifold M̄ admitting a semi-symmetric metric connection. Then the

following assertions are equivalent :

(1) The screen distribution S(TM) is an integrable distribution.

(2) C is symmetric, i.e., C(X,Y ) = C(Y,X) for all X,Y ∈ Γ(S(TM)).
(3) The shape operator A

N
is self-adjoint with respect to g, i.e.,

g(A
N
X,Y ) = g(X,A

N
Y ), ∀X, Y ∈ Γ(S(TM)).

Definition. A vector field X on a manifold M̄ is said to be conformal Killing

[16] if L̄
X
ḡ = −2δ ḡ for any smooth non-vanishing function δ, where the symbol

L̄
X

denotes the Lie derivative with respect to X , that is,

(L̄
X
ḡ)(Y, Z) = X(ḡ(Y, Z))− ḡ([X,Y ], Z)− ḡ(Y, [X,Z]),

for all Y, Z ∈ Γ(TM̄). In particular, if δ = 0 (δ is a non-zero constant), then
X is called a Killing (homothetic Killing) vector field. A distribution G on M̄
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is called conformal Killing (Killing or homothetic Killing) if each vector field
belonging to G is a conformal Killing (Killing or homothetic Killing).

Theorem 2.3 ([16]). Let M be a half lightlike submanifold of a semi-Rie-

mannian manifold M̄ admitting a semi-symmetric non-metric connection. If

S(TM⊥) is conformal Killing, then there exists a smooth function δ such that

(2.18) D(X,Y ) = δg(X,Y ), ∀X, Y ∈ Γ(TM).

Proof. For any X, Y, Z ∈ Γ(TM̄), using (2.1) and (2.2), we have

(L̄
X
ḡ)(Y, Z) = ḡ(∇̄Y X,Z) + ḡ(Y, ∇̄ZX)− 2π(X)ḡ(Y, Z).

If S(TM⊥) is a conformal Killing distribution, then, using (2.8) and (2.15), we
have ḡ(∇̄XL, Y ) = −D(X,Y ) + eg(X,Y ). Thus we obtain

(L̄
L
ḡ)(X,Y ) = −2D(X,Y ), ∀X, Y ∈ Γ(TM).

Thus we have D(X,Y ) = δg(X,Y ) for all X, Y ∈ Γ(TM). �

Denote by R̄ , R and R∗ the curvature tensors of the semi-symmetric non-
metric connection ∇̄ on M̄ , the induced connection ∇ on M and the induced
connection ∇∗ on S(TM) respectively. Using the Gauss -Weingarten formulas
for M and S(TM), we obtain the Gauss-Codazzi equations for M and S(TM) :

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)A
N
Y −B(Y, Z)A

N
X(2.19)

+D(X,Z)A
L
Y −D(Y, Z)A

L
X

+{(∇XB)(Y, Z)− (∇Y B)(X,Z)

+B(Y, Z)[τ(X)− π(X)]−B(X,Z)[τ(Y )− π(Y )]

+D(Y, Z)φ(X)−D(X,Z)φ(Y )}N

+{(∇XD)(Y, Z)− (∇Y D)(X,Z) +B(Y, Z)ρ(X)

−B(X,Z)ρ(Y )−D(Y, Z)π(X) +D(X,Z)π(Y )}L,

R̄(X,Y )N = −∇X(A
N
Y ) +∇Y (AN

X) +A
N
[X,Y ](2.20)

+ τ(X)A
N
Y − τ(Y )A

N
X + ρ(X)A

L
Y − ρ(Y )A

L
X

+{B(Y,A
N
X)−B(X,A

N
Y ) + 2dτ(X,Y )

+φ(X)ρ(Y )− φ(Y )ρ(X)}N

+{D(Y,A
N
X)−D(X,A

N
Y ) + 2dρ(X,Y )

+ ρ(X)τ(Y )− ρ(Y )τ(X)}L,

R̄(X,Y )L = −∇X(A
L
Y ) +∇Y (AL

X) +A
L
[X,Y ](2.21)

+φ(X)A
N
Y − φ(Y )A

N
X

+{B(Y,A
L
X)−B(X,A

L
Y ) + 2dφ(X,Y )

+ τ(X)φ(Y )− τ(Y )φ(X)}N ;
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R(X,Y )PZ = R∗(X,Y )PZ+C(X,PZ)A∗

ξY −C(Y, PZ)AξX(2.22)

+{(∇XC)(Y, PZ)−(∇Y C)(X,PZ)

+C(X,PZ)[σ(Y )+π(Y )]− C(Y, PZ)[σ(X) + π(X)]}ξ,

R(X,Y )ξ = −∇∗

X(A∗

ξY ) +∇∗

Y (A
∗

ξX) +A∗

ξ [X,Y ](2.23)

+σ(Y )A∗

ξX − σ(X)A∗

ξY

+{C(Y,A∗

ξX)− C(X,A∗

ξY )− 2dσ(X,Y )}ξ.

In case R = 0 {R∗ = 0}, we say that M {the leaf M∗ of S(TM)} is flat.

Definition. A complete connected semi-Riemannian manifold M̄ of constant
curvature c is called a semi-Riemannian space form, and denote it by M̄(c).
For any vector fields X, Y, Z of M̄ , the curvature tensor R̄ of M̄(c) is given by

(2.24) R̄(X,Y )Z = c{ḡ(Y, Z)X − ḡ(X,Z)Y }.

Taking the scalar product with ξ and L to (2.24), we get

(2.25) ḡ(R̄(X,Y )Z, ξ) = 0, ḡ(R̄(X,Y )Z, L) = 0,

for all X, Y, Z ∈ Γ(TM). From this results and (2.17), we obtain

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)A
N
Y −B(Y, Z)A

N
X(2.26)

+D(X,Z)A
L
Y −D(Y, Z)A

L
X, ∀X, Y, Z ∈ Γ(TM).

3. Ascreen half lightlike submanifolds

Definition. A half lightlike submanifold M of a semi-Riemannian manifold
M̄ admitting a semi-symmetric non-metric connection is called an ascreen half

lightlike submanifold [9, 15] if ζ belongs to Rad(TM)⊕ ltr(TM).

If M is an ascreen half lightlike submanifold of M̄ , then ζ is expressed as

(3.1) ζ = aξ + bN, e = 0.

As ḡ(ζ, ζ) = 1, we have 2ab = 1. This implies that a 6= 0 and b 6= 0. Denote
by (2.16)i the i-th equation of (2.16). We use same notations for any others.
Taking the scaler product with X to (3.1), we have π(X) = bη(X) for all
X ∈ Γ(TM). Comparing this equation with (2.16)3, we obtain

(3.2) τ(X) = π(X) + σ(X), ∀X ∈ Γ(TM).

Theorem 3.1. Let M be an ascreen half lightlike submanifold of a semi-

Riemannian manifold M̄ admitting a semi-symmetric non-metric connection.

Then the screen distribution S(TM) is an integrable distribution.

Proof. Taking the scalar product with ξ to (2.20) and N to (2.19) such that
Z = ξ by turns and using (2.13), (2.15)2 and (2.23), we obtain

ḡ(R̄(X,Y )ξ, N)

= B(X,A
N
Y )−B(Y,A

N
X)− 2dτ(X,Y ) + ρ(X)φ(Y )− ρ(Y )φ(X)
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= C(Y,A∗

ξX)− C(X,A∗

ξY )− 2dσ(X,Y ) + ρ(X)φ(Y )− ρ(Y )φ(X).

From the above two representations, we deduces to the following equation:

B(X,A
N
Y )−B(Y,A

N
X)− 2dτ(X,Y )

= C(Y,A∗

ξX)− C(X,A∗

ξY )− 2dσ(X,Y ).

Substituting (2.14) and (2.16) into the last equation and using (3.2) and the
facts that π(A∗

ξX) = 0 for any X ∈ Γ(TM) and A∗

ξ is self-adjoint, we have

2dπ(X,Y ) = b{g(X,A
N
Y )− g(A

N
X,Y )}, ∀X, Y ∈ Γ(TM).

As π = 0 on S(TM), we show that dπ = 0 on S(TM). Thus we obtain

g(A
N
X,Y ) = g(X,A

N
Y ), ∀X, Y ∈ Γ(S(TM)).

It follows from Theorem 2.2 that S(TM) is an integrable distribution. �

Theorem 3.2. Let M be an ascreen half lightlike submanifold of a semi-

Riemannian space form M̄(c) admitting a semi-symmetric non-metric connec-

tion. If S(TM) is totally geodesic and S(TM⊥) is conformal Killing, then

(1) c = 0,
(2) M and M∗ are totally geodesic and flat manifolds,

(3) S(TM⊥) is a Killing and parallel distribution, and

(4) M is locally a product flat manifold C × M∗, where C is a null curve

tangent to Rad(TM) and M∗ is a flat leaf of the integrable S(TM).

Proof. Using (2.16) and the fact that π(PX) = 0, we show that S(TM) is
totally geodesic in M if and only if the shape operator A

N
satisfies

(3.3) A
N
X = −aX, ∀X ∈ Γ(TM).

Taking the scalar product with N to (2.22) and using C = 0, we get

ḡ(R(X,Y )PZ, N) = 0, ∀X, Y, Z ∈ Γ(TM).

Taking the scalar product with N to (2.26) such that Z = PZ and using
(2.15)2, (2.16)2, (2.24), (2.18) and the last equation, we obtain

{cη(X) + δρ(X)}g(Y, PZ)− {cη(Y ) + δρ(Y )}g(X,PZ)

= a{B(Y, PZ)η(X)− B(X,PZ)η(Y )}.

Replacing X by ξ to this equation and using (2.13)1, we have

(c+ δρ(ξ))g(X,Y ) = aB(X,Y ), ∀X, Y ∈ Γ(TM).

As a 6= 0, let β = a−1(c+ δρ(ξ)). Then we obtain

(3.4) B(X,Y ) = βg(X,Y ), ∀X, Y ∈ Γ(TM).

From (2.18) and (3.4), we show that M is totally umbilical.
As S(TM⊥) is conformal Killing, from (2.15), (2.18) and the facts that

φ = e = 0 and X = PX + η(X)ξ, we have

(3.5) A
L
X = δX + (ρ(X)− δη(X))ξ,
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for all X ∈ Γ(TM). Substituting (2.24) and (3.5) into (2.21) and using (2.13)
and the facts that φ = 0 and B is symmetric, we have

(3.6) ∇X(A
L
Y )−∇Y (AL

X)−A
L
[X,Y ] = 0,

for all X, Y ∈ Γ(TM). Applying ∇Y to (3.5) and using (2.10), we have

∇X(A
L
Y ) = X [δ]Y + δ∇XY − (ρ(Y )− δη(Y ))A∗

ξX

+ {X [ρ(Y )− δη(Y )]− σ(X)(ρ(Y )− δη(Y ))}ξ.

Substituting this equation into (3.6) and using (2.12) and (3.5), we have

{X [δ]− δπ(X)}Y − {Y [δ]− δπ(Y )}X(3.7)

+ (ρ(X)− δη(X))A∗

ξY − (ρ(Y )− δη(Y ))A∗

ξX

+ {2dρ(X,Y )− 2δdη(X,Y )−X [δ]η(Y ) + Y [δ]η(X)

− σ(X)(ρ(Y )− δη(Y )) + σ(Y )(ρ(X)− δη(X))}ξ = 0.

Taking the scalar product with N to (3.7) and using (2.14)2 and (3.2), we have

2dρ(X,Y )− 2δdη(X,Y ) + δτ(X)η(Y )− δτ(Y )η(X)(3.8)

+ 2δ{π(Y )η(X)− π(X)η(Y )} + ρ(X)σ(Y )− ρ(Y )σ(X) = 0.

Applying ∇̄X to η(Y ) = ḡ(Y,N) and using (2.1), (2.6), (2.7) and (3.3), we get

X(η(Y )) = −π(Y )η(X) + η(∇XY ) + τ(X)η(Y ).

Substituting this relation into 2dη(X,Y ) = X(η(Y )) − Y (η(X)) − η([X,Y ])
and using (2.12) and (3.3), we have

2dη(X,Y ) = τ(X)η(Y )− τ(Y )η(X).

Substituting this into (3.8) and using the fact that π(X) = bη(X), we have

2dρ(X,Y ) + ρ(X)σ(Y )− ρ(Y )σ(X) = 0.

On the other hand, taking the scalar product with L to (2.20) and using (2.24),
(3.3) and the fact that D is symmetric, we get

2dρ(X,Y ) + ρ(X)τ(Y )− ρ(Y )τ(X) = 0.

Subtracting the last two equations and then, using (3.2) we obtain

ρ(X)π(Y ) = ρ(Y )π(X), ∀X, Y ∈ Γ(TM).

Replacing Y by ξ to this and using π(X) = bη(X) and b 6= 0, we have

(3.9) ρ(X) = ρ(ξ)η(X), ∀X ∈ Γ(TM).

Taking the scalar product with PZ to (3.7) and using (2.14)1, we have

{X [δ]− δπ(X) + (β − b)(ρ(X)− δη(X))}g(Y, Z)

= {Y [δ]− δπ(Y ) + (β − b)(ρ(Y )− δη(Y ))}g(X,Z).

Replacing X by ξ and Z by Y to this such that g(Y, Y ) 6= 0, we obtain

(3.10) ξ[δ]− δβ + (β − b)ρ(ξ) = 0.
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Taking the scalar product with L to (2.19) and using (2.24), we have

(∇XD)(Y, Z)− (∇Y D)(X,Z)(3.11)

= B(X,Z)ρ(Y )−B(Y, Z)ρ(X)−D(X,Z)π(Y ) +D(Y, Z)π(X).

Applying ∇Z to (2.18) and using (2.11,) (3.4) and π(X) = bη(X), we get

(∇XD)(Y, Z) = X [δ]g(Y, Z) + δ(β − b){g(X,Z)η(Y )− g(X,Y )η(Z)}.

Substituting this, (2.18), (3.4) and π(X) = bη(X) into (3.11), we have

{X [δ]− δβη(X) + βρ(X)}g(Y, Z)(3.12)

= {Y [δ]− δβη(Y ) + βρ(Y )}g(X,Z).

Taking X = ξ and Y = Z to this equation such that g(Y, Y ) 6= 0, we obtain

(3.13) ξ[δ]− δβ + βρ(ξ) = 0.

Subtracting (3.13) from (3.10) and using the fact that b 6= 0, we obtain ρ(ξ) = 0.
It follows from (3.9) that ρ = 0. In this case, we show that β = c/a.

Taking the scalar product with PZ to (2.20) and using ρ = 0, we have

ḡ(R̄(X,Y )N, PZ) = g(−∇X(A
N
Y ) +∇Y (AN

X) +A
N
[X,Y ], PZ)(3.14)

+ τ(X)g(A
N
Y, PZ)− τ(Y )g(A

N
X,PZ),

for any X, Y, Z ∈ Γ(TM). Applying ∇X to A
N
Y = −aY , we have

∇X(A
N
Y ) = −X [a]Y − a∇XY.

Substituting this, (2.24) and (3.3) into (3.14), we have

{X [a]− aπ(X)− aτ(X) + cη(X)}g(Y, Z)

= {Y [a]− aπ(Y )− aτ(Y ) + cη(Y )}g(X,Z).

Taking X = ξ and Y = Z to this such that g(Y, Y ) 6= 0, we obtain

(3.15) ξ[a]− ab− aτ(ξ) + c = 0.

Taking the scalar product with ξ to (2.19) and using (2.25)1, we have

(∇XB)(Y, Z)− (∇Y B)(X,Z)(3.16)

= {π(X)− τ(X)}B(Y, Z)− {π(Y )− τ(Y )}B(X,Z).

Applying ∇X to B(Y, Z) = βg(Y, Z) and using (2.11) and (3.4), we have

(∇XB)(Y, Z) = X [β]g(Y, Z)− {βπ(Y )− β2η(Y )}g(X,Z)

− {βπ(Z)− β2η(Z)}g(X,Y ).

Substituting this equation into (3.16), we get

{X [β] + βτ(X) − β2η(X)}g(Y, Z) = {Y [β] + βτ(Y )− β2η(Y )}g(X,Z).

Taking X = ξ and Y = Z to this such that g(Y, Y ) 6= 0, we obtain

ξ[β] + βτ(ξ) − β2 = 0.
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Replacing β by c/a to this equation and using the facts that a 6= 0, we have

c{ξ[a]− aτ(ξ) + c} = 0.

Now we assume that c 6= 0. Then the last equation is reduced to

(3.17) ξ[a]− aτ(ξ) + c = 0.

Comparing (3.15) with (3.17), we have ab = 0. It is a contradiction to ab 6= 0.
It follows that c = 0, i.e., R̄ = 0. As c = 0, we get β = B = 0.

Substituting (2.18) and (3.5) into (2.26) and using R̄ = B = 0, we have

R(X,Y )Z = δ2{g(Y, Z)X − g(X,Z)Y }(3.18)

− δ2{g(Y, Z)η(X)− g(X,Z)η(Y )}ξ.

As C = 0, from (2.22) we see that R(X,Y )PZ = R∗(X,Y )PZ for allX, Y, Z ∈
Γ(TM). This implies R(X,Y )PZ ∈ Γ(S(TM)). Thus we obtain

R∗(X,Y )PZ = δ2{g(Y, PZ)X − g(X,PZ)Y },(3.19)

δ2{g(Y, PZ)η(X)− g(X,PZ)η(Y )} = 0,(3.20)

for all X, Y, Z ∈ Γ(TM). Taking X = ξ and Y = PZ to (3.20) such that
g(PZ, PZ) 6= 0, we have δ = 0. It follows from (3.18) and (3.19) that M and
M∗ are flat manifolds. As β = δ = 0, M is totally geodesic and S(TM⊥) is
a Killing distribution by (2.18) and (3.4). As ρ = δ = 0, we see that A

L
= 0

by (3.5). It follows from (2.8) that ∇̄XL = 0. Thus S(TM⊥) is a parallel
distribution. From these results and Remark 2.1 we have our theorem. �

4. Transversal half lightlike submanifolds

Definition. A half lightlike submanifold M of a semi-Riemannian manifold M̄
admitting a semi-symmetric non-metric connection is called a transversal half

lightlike submanifold [9] if ζ belongs to the transversal vector bundle tr(TM).

If M is a transversal half lightlike submanifold of M̄ , then ζ is decomposed
as ζ = eL + bN . Since 1 = ḡ(ζ, ζ) = e2ḡ(L,L) = e2, i.e., e = ±1, we may
assume that e = 1, without loss of generality. In this case, we have

(4.1) ζ = L+ bN, a = 0.

In this section, by saying that transversal half lightlike submanifolds we shall
mean half lightlike submanifolds satisfying (4.1) such that b 6= 0.

Taking the scaler product with X to (4.1), we have π(X) = bη(X) for all
X ∈ Γ(TM). Comparing this equation with (2.16)3, we obtain

(4.2) τ(X) = π(X) + σ(X), ∀X ∈ Γ(TM).

Theorem 4.1. Let M be a transversal half lightlike submanifold of a semi-

Riemannian manifold M̄ admitting a semi-symmetric non-metric connection.

Then the screen distribution S(TM) is an integrable distribution.
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Proof. By using the method of Theorem 3.1, we obtain

B(X,A
N
Y )−B(Y,A

N
X)− 2dπ(X,Y )

= C(Y,A∗

ξX)− C(X,A∗

ξY ) + φ(X)η(Y )− φ(Y )η(X).

Substituting (2.14) and (2.16) into the last equation and using the facts that
A∗

ξ is self-adjoint and π(A∗

ξX) = 0 for any X ∈ Γ(TM), we have

2dπ(X,Y ) = b{g(X,A
N
Y )− g(A

N
X,Y )}+ η(X)φ(Y )− η(Y )φ(X).

As π = 0 on S(TM), we show that dπ = 0 on S(TM). Thus we obtain

g(A
N
X,Y ) = g(X,A

N
Y ), ∀X, Y ∈ Γ(S(TM)).

It follows from Theorem 2.2 that S(TM) is an integrable distribution. �

Theorem 4.2. Let M be a transversal half lightlike submanifold of a semi-

Riemannian space form M̄(c) admitting a semi-symmetric non-metric connec-

tion. If S(TM) is totally geodesic and S(TM⊥) is conformal Killing, then

(1) c = 0,
(2) M and M∗ are flat manifolds,

(3) S(TM⊥) is a homothetic Killing and parallel distribution, and

(4) M is locally a product manifold C×M∗, where C is a null curve tangent

to Rad(TM) and M∗ is a flat leaf of the integrable S(TM).

Proof. Using (2.16) and the facts that a = 0 and π(PX) = 0, we show that
the screen distribution S(TM) is totally geodesic in M if and only if A

N
= 0.

As S(TM⊥) is conformal Killing, from (2.15) and (2.18), we have

(4.3) A
L
X = (δ − 1)X + (ρ(X)− δη(X))ξ, ∀X ∈ Γ(TM).

Taking the scalar product with N to (2.22) and using C = 0, we get

ḡ(R(X,Y )PZ, N) = 0, ∀X, Y, Z ∈ Γ(TM).

Taking the scalar product with N to (2.26) such that Z = PZ and using the
last equation, (2.15)2, (2.24), (2.18) and the fact that A

N
= 0, we get

{cη(X) + δ(ρ(X)− η(X))}g(Y, Z)

= {cη(Y ) + δ(ρ(Y )− η(Y ))}g(X,Z).

Taking X = ξ and Y = Z to this equation such that g(Y, Y ) 6= 0, we have

(4.4) c+ δρ(ξ) = δ.

Taking the scalar product with PZ to (2.20) and using A
N
= 0, we have

ḡ(R̄(X,Y )N, PZ) = ρ(X)g(A
L
Y, PZ)− ρ(Y )g(A

L
X,PZ).

Substituting (4.3) and (2.24) to this equation, we have

{cη(Y ) + (δ − 1)ρ(Y )}g(X,Z) = {cη(X) + (δ − 1)ρ(X)}g(Y, Z).

Taking X = ξ and Y = Z to this equation such that g(Y, Y ) 6= 0, we have

(4.5) c+ δρ(ξ) = ρ(ξ).
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Comparing (4.4) and (4.5), we obtain δ = ρ(ξ) and c = δ(1− δ).
Taking the scalar product with N to (2.20) and using (2.15)2 and the facts

that A
N
= 0 and ḡ(R̄(X,Y )N,N) = 0, we have

ρ(X)η(Y ) = ρ(Y )η(X), ∀X, Y ∈ Γ(TM).

Replacing Y by ξ to this equation, we have ρ(X) = ρ(ξ)η(X) for any X ∈
Γ(TM). From this, the fact that δ = ρ(ξ) and (4.3), we obtain

(4.6) ρ(X)− δη(X) = 0, A
L
X = (δ − 1)X, ∀X ∈ Γ(TM).

Taking the scalar product with L to (2.19) and using (2.25)2, we have

(∇XD)(Y, Z)− (∇Y D)(X,Z)(4.7)

= B(X,Z)ρ(Y )−B(Y, Z)ρ(X)−D(X,Z)π(Y ) +D(Y, Z)π(X).

Applying ∇X to D(Y, Z) = δg(Y, Z) and using (2.11), we have

(∇XD)(Y, Z) = X [δ]g(Y, Z)− δπ(Y )g(X,Z)− δπ(Z)g(X,Y )

+δB(X,Z)η(Y ) + δB(X,Y )η(Z).

Substituting this equation into (4.7) and using (4.6)1, we get

X [δ]g(Y, Z) = Y [δ]g(X,Z), ∀X, Y ∈ Γ(TM).

Taking X = ξ and Y = Z to this such that g(Y, Y ) 6= 0, we have ξ[δ] = 0.
Taking the scalar product with PZ to (2.21) and using φ = 0, we have

ḡ(R̄(X,Y )L, PZ) = g(−∇X(A
L
Y ) +∇Y (AL

X) +A
L
[X,Y ], PZ).

Applying ∇X to A
L
Y = (δ − 1)Y , we have

∇X(A
L
Y ) = X [δ]Y + (δ − 1)∇XY.

Substituting this equation and (2.24) into the last equation, we have

{X [δ]− (δ − 1)π(X)}g(Y, Z) = {Y [δ]− (δ − 1)π(Y )}g(X,Z).

Taking X = ξ and Y = Z to this equation such that g(Y, Y ) 6= 0 and using the
facts that ξ[δ] = 0 and b 6= 0, we obtain δ = 1. Substituting δ = ρ(ξ) = 1 into
(4.4), we have c = 0. As δ = 1, from (4.6)2 we get A

L
= 0. From (2.26) and

the facts that A
N
= 0 and A

L
= 0, we show that

R(X,Y )Z = 0, ∀X, Y, Z ∈ Γ(TM).

Thus M is flat. From this, (2.22) and the fact that C = 0, we also have

R∗(X,Y )Z = 0, ∀X, Y, Z ∈ Γ(S(TM)).

Thus the leaf M∗ of S(TM) is also flat. As A
L
= φ = 0, from (2.8) we show

that S(TM⊥) is a parallel distribution. As δ = 1, S(TM⊥) is homothetic
Killing. From these results and Remark 2.1, we have our theorem. �
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