ON THE COMPACT RIEMANNIAN MANIFOLDS WITH SOME GEODESICAL PROPERTIES

KWANG-SOON PARK

ABSTRACT. In the paper, we study an n-dimensional compact Riemannian manifold (M, g) with the property that the lengthes of the images $c(\mathbb{R})$ in M of any geodesic curves $c: \mathbb{R} \mapsto M$ are finite.

1. Introduction

In the differential geometry, we know

THEOREM 1.1. (H. Whitney) Any n-dimensional differentiable manifold can be embedded into \mathbb{R}^{2n+1} [5].

So, in order to study any differentiable manifolds, it is sufficient to consider only the submanifolds of \mathbb{R}^m for each integer $m \geq 1$.

We also see

THEOREM 1.2. (J. Nash) Every Riemannian manifold (M, g) can be isometrically embedded into some Euclidean space \mathbb{R}^n ([1], [3], [4]).

Thus, by Theorem 1.2, in the paper we consider a Riemannian manifold (M, g) as a submanifold of some Euclidean space \mathbb{R}^n . Now, we can consider the following Question:

QUESTION 1.1. Let $M = S^1 \times S^2$. Is there a geodesic curve $c : \mathbb{R} \mapsto M$ such that the length of its image $c(\mathbb{R})$ in M is infinite?

More generally, we can also give the following Question:

QUESTION 1.2. Let (M,g) be an n-dimensional compact Riemannian manifold. Is there a geodesic curve $c: \mathbb{R} \mapsto M$ such that the length of its image $c(\mathbb{R})$ in M is infinite?

Received December 28, 2005.

2000 Mathematics Subject Classification: 53C22.

Key words and phrases: Riemannian manifold, geodesic curve.

For the answers of the above Questions, we have the following Main Theorems.

MAIN THEOREM 1. Let (M,g) be an n-dimensional compact Riemannian manifold with the property that for each geodesic curve $c: \mathbb{R} \mapsto M$, the length of its image $c(\mathbb{R})$ in M is finite. Then we have

either
$$\pi_1(M) = \mathbb{Z}$$
 or $\pi_1(M) = \mathbb{Z}_p$ for some $p \in \mathbb{N}$.

MAIN THEOREM 2. Let (M,g) be an n-dimensional compact Riemannian manifold with the property that for each geodesic curve $c: \mathbb{R} \mapsto M$, the length of its image $c(\mathbb{R})$ in M is finite. If $n \geq 2$, then we obtain

$$\pi_1(M) = \mathbb{Z}_p$$
 for some $p \in \mathbb{N}$.

But we know

THEOREM 1.3. (Synge) Any compact oriented even-dimensional Riemannian manifold with positive sectional curvature is simply connected [2].

So, we can compare Main Theorem 2 with Theorem 1.3. In the paper, we will use the following notations:

 \mathbb{R} = the set of real numbers

 \mathbb{R}^+ = the set of positive real numbers

 \mathbb{Q} = the set of rational numbers

 \mathbb{N} = the set of natural numbers

 \mathbb{Z} = the set of integers

 $\mathbb{Z}_p = \text{the quotient group } \mathbb{Z}/p\mathbb{Z}$

I =the closed interval [0, 1]

L(c) = the length of a curve c

 T_pM = the tangent space of M at $p \in M$

 ∇ = the Levi-Civita connection of a metric g in M

 $|v| = \sqrt{g(v,v)}$ for $v \in T_pM$

 $U_pM = \{v \in T_pM \mid |v| = 1\}$

 $\gamma_t(p,v)$ = the (closed) geodesic curve in (M,g) with the initial conditions: $\gamma_0(p,v) = p, \gamma'_0(p,v) = v$

 S^n = the *n*-dimensional unit sphere

 $\pi_1(M)$ = the fundamental group of M

2. Proofs of the main theorems

Let (M,g) be an *n*-dimensional compact Riemannian manifold with the property that for each geodesic curve $c: \mathbb{R} \mapsto M$, the length of its image $c(\mathbb{R})$ in M is finite. Then we have

Proposition 2.1. Every complete geodesic curve in (M, g) is closed.

PROOF. Suppose that there exists a nontrivial complete geodesic curve $c: \mathbb{R} \mapsto M$ such that c is not closed. Define a curve $\widetilde{c}: \mathbb{R} \mapsto M$ by

$$\widetilde{c}(s) := c(\frac{s}{|c'(0)|}) \text{ for } s \in \mathbb{R}.$$

Then we know that \tilde{c} is also geodesic in (M, g) such that

$$|\widetilde{c}'(s)| = 1 \text{ for } s \in \mathbb{R}.$$

By the definition of a geodesic curve, i.e., since every geodesic curve $\widehat{c}(t)$ with $\widehat{c}(0) = p$ and $\widehat{c}'(0) = v$ in (M, g) is the unique solution of the initial value problem:

$$\nabla_{\widehat{c}'}\widehat{c}' \equiv 0$$
, $\widehat{c}(0) = p$, $\widehat{c}'(0) = v$,

we obtain that the length of the image of the curve $\tilde{c}(s)$ from 0 to s_0 is equal to s_0 .

i.e.,
$$L(\tilde{c}([0, s_0])) = s_0$$
.

That is, if the curve $\widetilde{c}(s)$ has self-intersection points in the image $\widetilde{c}(\mathbb{R}) \subset M$, then they must intersect transversely.

Thus,

$$L(\widetilde{c}([0,\infty])) = \lim_{s_0 \to \infty} L(\widetilde{c}([0,s_0])) = \lim_{s_0 \to \infty} s_0 = \infty.$$

This contradicts the hypothesis. Therefore, the result follows. \Box

PROPOSITION 2.2. For each non-zero tangent vector $v, v' \in T_pM$, $p \in M$, there is a homotopy between the closed geodesic curve $\gamma_t(p, v)$ and the closed geodesic curve $\gamma_t(p, v')$.

PROOF. Define a map $\widetilde{t}: U_pM \mapsto \mathbb{R}$ by

$$\widetilde{t}(w) := \min\{t_0 \in \mathbb{R}^+ \mid \gamma_{t_0}(p, w) = p \text{ and } \gamma'_{t_0}(p, w) = w\} \text{ for } w \in U_pM.$$

Then by Proposition 2.1, \widetilde{t} is well-defined. For each non-zero tangent vector $v, v' \in T_pM$, define a map $F: I \times I \mapsto M$ by

$$F(t,s) := \gamma_{\widehat{t}}(p,\widehat{v}),$$

where $\widehat{t} = \frac{\widetilde{t}(\frac{\widehat{v}}{|\widehat{v}|})}{|\widehat{v}|} \cdot t$ and $\widehat{v} = (1-s)v + sv'$ for $s, t \in I$. Then clearly, F is a homotopy between the closed curve $\gamma_t(p, v)$ and the closed curve $\gamma_t(p, v')$.

PROOF OF THE MAIN THEOREM 1. Since each class in $\pi_1(M)$ can be represented by a closed geodesic curve [2], by Proposition 2, the result follows.

EXAMPLE 2.1. a) For the unit circle S^1 , we know that the lengthes of the images $c(\mathbb{R})$ of any non-trivial geodesic curves $c: \mathbb{R} \mapsto S^1$ are equal to 2π , and so finite. But $\pi_1(S^1) = \mathbb{Z}$.

- b) For the unit sphere S^2 , let $c: \mathbb{R} \mapsto S^2$ be a non-trivial geodesic curve in S^2 . Then the length of the image $c(\mathbb{R}) \subset S^2$ is equal to 2π , and so finite. But $\pi_1(S^2) = 0$.
- c) For the generalized flat torus $T^2 := \mathbb{R}^2/s\mathbb{Z} \oplus t\mathbb{Z}$ with $s, t \in \mathbb{R}^+$, we know that $\pi_1(T^2) = \mathbb{Z} \oplus \mathbb{Z}$. But let $\pi : \mathbb{R}^2 \mapsto T^2$ be the natural projection. Then for any straight lines l : y = ax + b with $a, b \in \mathbb{R}$ in \mathbb{R}^2 , we have

$$L(c) = \begin{cases} \sqrt{(sn)^2 + (tm)^2} & \text{if } a = \frac{m}{n} \in \mathbb{Q} - \{0\} \text{ and } m, n \text{ integers,} \\ \infty & \text{if } a \in \mathbb{R} - \mathbb{Q}, \\ s & \text{if } a = 0, \\ t & \text{if } l : x = p, \ p \in \mathbb{R}, \end{cases}$$

where c is the image $\pi(l)$ in T^2 . So, the torus T^2 has a geodesic curve whose image is of infinite length in T^2 .

d) Let (M, g) be an n-dimensional compact connected Riemannian manifold such that neither $\pi_1(M) = \mathbb{Z}$ nor $\pi_1(M) = \mathbb{Z}_p$ for some $p \in \mathbb{N}$. Then there exists a geodesic curve in (M, g) such that the length of its image in M is infinite.

PROOF OF THE MAIN THEOREM 2. Consider the map $\widetilde{t}: U_{p}M \mapsto \mathbb{R}$, defined by

$$\widetilde{t}(v) := \min\{t_0 \in \mathbb{R}^+ \mid \gamma_{t_0}(p, v) = p \text{ and } \gamma'_{t_0}(p, v) = v\} \text{ for } v \in U_pM.$$

Let \widetilde{o} be the north pole of the unit sphere S^n and $T: T_{\widetilde{o}}S^n \mapsto T_pM$ an isometry. For each closed geodesic curve $\gamma_t(p,v): [0,\widetilde{t}(v)] \mapsto M$ with $v \in U_pM$, let $w:=T^{-1}(v) \in U_{\widetilde{o}}S^n$. Then define a map $f_v: S^n \mapsto M$ by

$$f_v(\widetilde{o}) := p$$

and for any

$$\overline{w} \in U_{\widetilde{o}}S^n, \quad f_v(c_t(\widetilde{o}, \overline{w})) := \gamma_{\widetilde{t}}(p, T(\overline{w})) \text{ for } \begin{cases} t \in [0, \pi) & \text{if } \overline{w} \neq w \\ t \in [0, \pi] & \text{if } \overline{w} = w, \end{cases}$$

where $\hat{t} = \frac{\tilde{t}(T(\overline{w}))}{2\pi} \cdot t$ and $c_t(\tilde{o}, \overline{w})$ is the geodesic curve in S^n such that $c_0(\tilde{o}, \overline{w}) = \tilde{o}$ and $c'_0(\tilde{o}, \overline{w}) = \overline{w}$. Then by the definition of f_v , obviously, f_v is a well-defined map. Let \hat{o} be the south pole of S^n . Then we can also show that

$$f_v \mid_{S^n - \{\widehat{o}\}} : S^n - \{\widehat{o}\} \mapsto M$$
 is continuous,

where $f_v \mid_{S^n - \{\widehat{o}\}}$ is the restriction map of f_v to the subset $S^n - \{\widehat{o}\}$.

For each $v \in U_pM$, we get $w = T^{-1}(v) \in U_{\tilde{o}}S^n$. Then conveniently, we may assume $w = (-1, 0, \dots, 0) \in \mathbb{R}^{n+1}$. Consider the map $F : I \times I \mapsto S^n$, given by

$$F(t,s) := (-s\sin 2\pi t, \sqrt{2s(1-s)(1-\sin 2\pi t)}, 0, \cdots, 0, 1-s+s\cos 2\pi t)$$
 for $(t,s) \in I \times I$ and the inclusion map $i: I \times [0,1) \hookrightarrow I \times I$.

Let $\widetilde{F}:=f_v\circ F\circ i:I\times [0,1)\mapsto M.$ Then define the map $\widehat{F}:I\times I\mapsto M$ by

$$\begin{cases} \widehat{F}(t,s) := \widetilde{F}(t,s), & (t,s) \in I \times [0,1) \\ \widehat{F}(t,1) := \lim_{s \to 1} \widetilde{F}(t,s), & (t,1) \in I \times \{1\}. \end{cases}$$

It is easy to show that \widehat{F} is continuous. By Main Theorem 1, there is an element α in $\pi_1(M)$ such that α generates the group $\pi_1(M)$. Then we have

$$\alpha = [\gamma_t(p, v_0)]$$
 for some $v_0 \in U_p M$,

where $[\gamma_t(p, v_0)]$ denotes the class represented by the closed geodesic curve $\gamma_t(p, v_0)$. Consider the map f_{v_0} and the map \widehat{F} obtained by using f_{v_0} instead of f_v as above. Then

$$0 = [p] = [\widehat{F}(t,0)] = [\widehat{F}(t,1)] = [\gamma_t(p,v_0) + \widetilde{C}] = [\gamma_t(p,v_0)] + [\widetilde{C}],$$

where $\widetilde{C} = (\widehat{F}(t,1) - \gamma_t(p,v_0)) \cup \{\gamma_{\frac{\widetilde{\iota}(v_0)}{2}}(p,v_0)\}$ and to obtain the last equality, with the abuse of the notations we handle those classes in the last equation with the new base point $\gamma_{\frac{\widetilde{\iota}(v_0)}{2}}(p,v_0)$ instead of the old

original base point p. Since the closed curves $\gamma_t(p, v_0)$ and \widetilde{C} have the same orientation in some sense, by Main Theorem 1, there exists a nonnegative integer n such that $[\widetilde{C}] = n\alpha$. Thus we have

$$(n+1)\alpha = 0.$$

Therefore, we conclude

$$\pi_1(M) = \mathbb{Z}_p$$
 for some $p \in \mathbb{N}$.

REMARK 2.1. a) Let \mathbb{P}^n be the *n*-dimensional real projective space with $n \geq 2$. i.e., let $A: S^n \mapsto S^n$ be the antipodal map, defined by A(q) = -q for $q \in S^n$. Then we have $\mathbb{P}^n := S^n/\{id, A\}$. We know $\pi_1(\mathbb{P}^n) = \mathbb{Z}_2$. But with some computations, we have

$$0 = [\widehat{F}(t,1)] = 2\alpha.$$

Let $c: \mathbb{R} \to \mathbb{P}^n$ be a geodesic curve in \mathbb{P}^n . Then the length of the image $c(\mathbb{R}) \subset \mathbb{P}^n$ is equal to or less than π , and so finite.

- b) Let $M = S^1 \times S^2$. Since $\pi_1(M) = \mathbb{Z}$ and dim $M \geq 2$, we know that there exists a geodesic curve in M such that the length of its image in M is infinite.
- c) If $\pi_1(M) \supset \mathbb{Z}$ with dim $M \geq 2$, then for each point $p \in M$ there is a tangent vector $v \in U_pM$ such that the complete geodesic curve $\gamma_t(p,v)$ with $\gamma_0(p,v) = p$ and $\gamma_0'(p,v) = v$ has the length of its image in M to be infinite.
- d) Let N be a k-dimensional compact Riemannian manifold with $k \geq 1$. Let $M = S^1 \times N$. Since $\pi_1(M) \supset \mathbb{Z}$, we must have a geodesic curve in M whose image is of infinite length.

References

- M. Günther, Zum Einbettungssatz von J. Nash, Math. Nachr. 144 (1989), 165– 187.
- [2] J. Jost Riemannian geometry and geometric analysis, Springer-Verlag, Berlin Heidelberg, 1995.
- [3] J. Nash, C¹ isometric imbeddings, Ann. of Math.(2) **60** (1954), 383–396.
- [4] _____, The imbedding problem for Riemannian manifolds, Ann. of Math.(2) 63 (1956), 20-63.
- [5] H. Whitney, Differentiable manifolds, Ann. of Math. 37 (1936), 645-680.

School of Mathematical Sciences Seoul National University Seoul 151-747, Korea E-mail: parkksn@math.snu.ac.kr \Box