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ON THE COMPACT RIEMANNIAN MANIFOLDS
WITH SOME GEODESICAL PROPERTIES

KWANG-S00ON PARK

ABSTRACT. In the paper, we study an n-dimensional compact Rie-
mannian manifold (M, g) with the property that the lengthes of the
images ¢(R) in M of any geodesic curves ¢: R — M are finite.

1. Introduction

In the differential geometry, we know

THEOREM 1.1. (H. Whitney) Any n-dimensional differentiable man-
ifold can be embedded into R?"*1 [5].

So, in order to study any differentiable manifolds, it is sufficient to
consider only the submanifolds of R™ for each integer m > 1.
We also see

THEOREM 1.2. (J. Nash) Every Riemannian manifold (M, g) can be
isometrically embedded into some Euclidean space R™ ([1],[3],[4]).

Thus, by Theorem 1.2, in the paper we consider a Riemannian man-
ifold (M, g) as a submanifold of some Euclidean space R™. Now, we can
consider the following Question:

QUESTION 1.1. Let M = S1x 82, Is there a geodesic curve ¢ : R +— M
such that the length of its image ¢(R) in M is infinite?

More generally, we can also give the following Question:

QUESTION 1.2. Let (M, g) be an n-dimensional compact Riemannian
manifold. Is there a geodesic curve ¢ : R — M such that the length of
its image ¢(R) in M is infinite?

Received December 28, 2005.
2000 Mathematics Subject Classification: 53C22.
Key words and phrases: Riemannian manifold, geodesic curve.



492 Kwang-Soon Park

For the answers of the above Questions, we have the following Main
Theorems.

MAIN THEOREM 1. Let (M, g) be an n—dimensional.compact Rie-
mannian manifold with the property that for each geodesic curve c :
R — M, the length of its image c¢(R) in M is finite. Then we have

either m(M)=12Z or m (M) =2Z, for somep € N.

MAIN THEOREM 2. Let (M, g) be an n-dimensional compact Rie-
mannian manifold with the property that for each geodesic curve c :
R + M, the length of its image ¢(R) in M is finite. If n > 2, then we
obtain

m (M) = Z, for somep € N.
But we know

THEOREM 1.3. (Synge) Any compact oriented even-dimensional Rie-
mannian manifold with positive sectional curvature is simply connected

[2].

So, we can compare Main Theorem 2 with Theorem 1.3.
In the paper, we will use the following notations:

R = the set of real numbers

R* = the set of positive real numbers

Q = the set of rational numbers

N = the set of natural numbers

Z = the set of integers

Z, = the quotient group Z/pZ

I = the closed interval |0, 1]

L(c) = the length of a curve ¢

T,M = the tangent space of M at p € M

V = the Levi-Civita connection of a metric g in M

[v| = \/g(v,v) for v e T,M

UM = {v e T,M | |v] =1}

~¢(p,v) = the (closed) geodesic curve in (M, g) with the initial con-
ditions: yo(p,v) = p, ¥(p,v) =v

S™ = the n-dimensional unit sphere

m1(M) = the fundamental group of M
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2. Proofs of the main theorems

Let (M, g) be an n-dimensional compact Riemannian manifold with -
the property that for each geodesic curve ¢ : R — M, the length of its
image ¢(R) in M is finite. Then we have

PRrROPOSITION 2.1. Every complete geodesic curve in (M, g) is closed.

PROOF. Suppose that there exists a nontrivial complete geodesic
curve ¢ : R +— M such that c is not closed. Define a curve ¢: R — M by

c(s) :=¢f ) for s e R.

s

|¢(0)]

Then we know that ¢ is also geodesic in (M, g) such that
Id(s)| =1 for s € R.

By the definition of a geodesic curve, i.e., since every geodesic curve ¢(t)
with €(0) = p and €(0) = v in (M, g) is the unique solution of the initial
value problem:

Vaod =0, ¢0)=p, ¢(0)=u,

we obtain that the length of the image of the curve ¢(s) from 0 to sg is
equal to sgp.

ie., L(c([0,s0])) = so.
That is, if the curve ¢(s) has self-intersection points in the image ¢(R) C
M, then they must intersect transversely.

Thus,
L(c([0,00])) = lim L(¢([0, sp])) = lim sp = oo.
8000 S9—00
This contradicts the hypothesis. Therefore, the result follows. O

PROPOSITION 2.2. For each non-zero tangent vector v,v' € T,M,
p € M, there is a homotopy between the closed geodesic curve v;(p,v)
and the closed geodesic curve v(p,v').

PROOF. Define a map ¢ : UpM — R by
t(w) := min{ty € RY | 7, (p, w) = p and Vi (s w) = w} for w € UpM.

Then by Proposition 2.1, f is well-defined. For each non-zero tangent
vector v,v’ € T,M, define amap F : I x I — M by

F(t,s) = v(p,v),
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&)
where ¢t = —lli;'l— -t and ¥ = (1 — s)v + sv' for s,t € I. Then clearly,
~ F is a homotopy between the closed curve ~;(p,v) and the closed curve
Tt (pa 'Ul) . U

PROOF OF THE MAIN THEOREM 1. Since each class in 7 (M) can be

represented by a closed geodesic curve [2], by Proposition 2, the result
follows. N

EXAMPLE 2.1. a) For the unit circle S, we know that the lengthes of
the images c(R) of any non-trivial geodesic curves ¢ : R — S are equal
to 27, and so finite. But m;(S') = Z.

b) For the unit sphere 52, let ¢ : R — 52 be a non-trivial geodesic
curve in S2. Then the length of the image c(R) C 52 is equal to 27, and
so finite. But 7;(5%) = 0.

¢) For the generalized flat torus T? := R?/sZ @ tZ with s,t € RT,
we know that 71(7?) = Z ® Z. But let 7 : R? — T? be the natural
projection. Then for any straight lines I : y = ax + b with a¢,b € R in
R2, we have

(sn)2 + (tm)? ifa =T € Q— {0} and m,n integers,

00 ifaeR-Q,
L) = ifa=0
t ifl:z=p, peR,

where c is the image 7(l) in T2. So, the torus T2 has a geodesic curve
whose image is of infinite length in T2.

d) Let (M,g) be an n-dimensional compact connected Riemannian
manifold such that neither 71(M) = Z nor m(M) = Z,, for some p € N.
Then there exists a geodesic curve in (M, g) such that the length of its
image in M is infinite.

PROOF OF THE MAIN THEOREM 2. Consider themap ¢ : UM +— R,
defined by

t(v) := min{ty € R | v, (p,v) = p and v}, (p,v) = v} for v € U, M.

Let o be the north pole of the unit sphere ™ and T' : T55™ — T, M an

isometry. For each closed geodesic curve v (p,v) : [0,£(v)] — M with
v € UpM, let w :=T~1(v) € U;S™. Then define a map f, : S™ — M by

fv(a) =p
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and for any
BEUS, fuleld ) = 4lp, T(@) for {i clom) fww

tH{T(w))

co(0,w) = 0 and ¢;(0,w) = W. Then by the definition of f,, obviously,
fv is a well-defined map. Let 0 be the south pole of ™. Then we can
also show that,

where t= -t and ¢:(0,W) is the geodesic curve in S™ such that

fo lsn—gzy: 8" — {0} — M is continuous,
where fy |gn_{5) is the restriction map of f, to the subset 5™ — {0}.
For each v € UpM, we get w = T~}(v) € UzS™. Then conveniently,

we may assume w = (—1,0,---,0) € R’ Consider the map F :
I x I+~ S™, given by

F(t,s) := (—ssin2nt, 1/25(1 — s)(1 — sin 27t),0,--- ,0,1— s+ s cos 27t)
for (¢,s) € I x I and the inclusion map : I x [0,1) — I X I.

Let F' := f,oFoi : Ix[0,1) — M. Then define the map FiIxI—M
by

F(t,s):= F(t,s), (t,s) € I x[0,1)
F(t,1) = lim F(t,s), (t,1)eIx{1}.

It is easy to show that F is continuous. By Main Theorem 1, there is
an element a in 71(M) such that o generates the group m1(M). Then
we have

o = [ve(p,vo)] for some vy € UM,
where [v,(p,vg)] denotes the class represented by the closed geodesic
curve (p, vo). Consider the map f,, and the map F obtained by using
fuo instead of f, as above. Then

0 = [p] = [F(t,0)] = [F(t,1)] = [v:(p,v0) + C] = [ys(p, vo)] + [C],
where C = (F(t,1) — y(p,vo)) U {Viwy (P, v0)} and to obtain the last
equality, with the abuse of the notatiéns we handle those classes in the

last equation with the new base point ~i(, (p,v0) instead of the old
2

original base point p. Since the closed curves v;(p, vp) and C have the
same orientation in some sense, by Main Theorem 1, there exists a non-
negative integer n such that [C] = na. Thus we have

(n+1)a = 0.
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Therefore, we conclude
m(M)=1Z, for somepe N.
O

REMARK 2.1. a) Let P" be the n-dimensional real projective space
with n > 2. ie., let A : S™ — S™ be the antipodal map, defined by
A(q) = —q for ¢ € S". Then we have P" := S"/{id, A}. We know
m1(P") = Z2. But with some computations, we have

0 = [F(t,1)] = 2a.

Let ¢ : R — P be a geodesic curve in P*. Then the length of the image
c(R) € P™ is equal to or less than m, and so finite.

b) Let M = S x S2. Since m (M) = Z and dim M > 2, we know
that there exists a geodesic curve in M such that the length of its image
in M is infinite.

c) If m (M) D Z with dim M > 2, then for each point p € M there is
a tangent vector v € Up M such that the complete geodesic curve v;(p, v)
with yo(p,v) = p and vy(p,v) = v has the length of its image in M to
be infinite.

d) Let N be a k-dimensional compact Riemannian manifold with
k> 1. Let M = S§' x N. Since m(M) D Z, we must have a geodesic
curve in M whose image is of infinite length.
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