J. Korean Math. Soc. 45 (2008), No. 2, pp. 493511

HORIZONTALLY HOMOTHETIC HARMONIC MORPHISMS
AND STABILITY OF TOTALLY GEODESIC SUBMANIFOLDS

GABJIN YUN" AND GUNDON CHOI

ABSTRACT. In this article, we study the relations of horizontally homo-
thetic harmonic morphisms with the stability of totally geodesic subman-
ifolds. Let ¢ : (M™, g) — (N"™, h) be a horizontally homothetic harmonic
morphism from a Riemannian manifold into a Riemannian manifold of
non-positive sectional curvature and let T be the tensor measuring min-
imality or totally geodesics of fibers of . We prove that if 7' is parallel
and the horizontal distribution is integrable, then for any totally geodesic
submanifold P in N, the inverse set, ¢~ 1(P), is volume-stable in M.
In case that P is a totally geodesic hypersurface, the condition on the
curvature can be weakened to Ricci curvature.

1. Introduction

A harmonic map ¢ : (M,g) = (N,h) between Riemannian manifolds is
a critical point of the energy functional defined on each compact domain of
M. A harmonic morphism between Riemannian manifolds is a map preserving
harmonic structure. In other words, a map ¢ : (M™,g) — (N™,h) is called a
harmonic morphism if for any harmonic function f defined on an open subset
V C N such that ¢71(V) # 0, the composition fo ¢ : ¢ (V) — R is also
harmonic. Harmonic morphisms are characterized as harmonic maps which are
horizontally (weakly) conformal ([4], [6]).

Let ¢ : (M™,g) - (N™, h) be a harmonic morphism between Riemannian
manifolds. Then it is well-known ([1]) that if dim(N) = m = 2, the regular
fibers of ¢ are minimal submanifolds of M and if dim(N) = m > 3, ¢ has
minimal fibers if and only if it is horizontally homothetic.

A minimal submanifold of a Riemannian manifold is a submanifold whose
mean curvature defined as the trace of the second fundamental form determined
by a normal vector field is vanishing. Or, equivalently, a minimal submanifold
is a critical point of the volume functional defined on the variation of each
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compact domain. A submanifold of a Riemannian manifold is called totally ge-
odesic if the second fundamental form vanishes. On the other hand, a minimal
submanifold of a Riemannian manifold is called stable (or volume-stable) if the
second derivative of the volume functional is non-negative for any normal vari-
ation with compact support. Not much results for stable minimal submanifolds
are known compared with minimal submanifolds.

Given a horizontally (weakly) conformal map ¢ : (M™,g) — (N™, h) with
n > m, there is a (2, 1)-tensor T defined originally by O’Neill ([11])) measuring
whether the fibers of ¢ are minimal or totally geodesic (see section 2 for defi-
nition). In fact, it is easy observation that the fibers of ¢ are totally geodesic
if and only if T vanishes. We say the tensor T is parallel if the covariant deriv-
ative of T with respect to any vector field is vanishing. Thus, if a horizontally
(weakly) conformal map ¢ : (M",g) — (N™,h) has totally geodesic fibers,
then T is automatically parallel.

In [3], we studied the stability of minimal fibers of horizontally conformal
submersions between Riemannian manifolds. We proved that if ¢ : (M", g) —
(N™, h) is a horizontally conformal submersion with integrable horizontal dis-
tribution, and T is parallel, then any minimal fiber is volume-stable. Conse-
quently, if ¢ : (M™,g) - (N™,h) is a submersive harmonic morphism with
totally geodesic fibers and the horizontal distribution is integrable, then all the
fibers are volume-stable. In case the dimension of N is two, we could obtain
the same result without the condition of minimality of fibers.

On the other hand, in [10], Montaldo proved that if a submersive harmonic
morphism ¢ : (M",g9) — (N™,h) from a compact Riemannian manifold to
a surface has volume-stable minimal fibers, then ¢ is energy-stable, i.e., the
second derivative of the energy functional is non-negative for any variation.
Applying this fact to our result, one can conclude that if ¢ : (M™, g) — (N™, h)
is a submersive harmonic morphism from a compact Riemannian manifold M
to a surface IV with integrable horizontal distribution, and T is parallel, then
@ is energy-stable.

In this paper, we studied the stability of minimal submanifolds given by in-
verse sets of horizontally homothetic harmonic morphisms between Riemannian
manifolds.

Let ¢ : (M™,g) — (N™, h) be a horizontally homothetic harmonic morphism
and let P be a minimal submanifold of N. Then it is well-known ([2]) that the
inverse set ¢~!(P) is a minimal submanifold of M. However, it is not true in
general that ¢~!(P) is volume-stable. We proved that if P is totally geodesic
and T is parallel, then ¢! (P) is volume-stable if the horizontal distribution
determined by ¢ is integrable and the sectional curvature of N is non-positive.
If the dimension of P is zero, i.e., P is a single set in N, then ¢~ '(P) is a
regular fiber and by [1], ¢~ !(P) is minimal. In this case we proved ([3]) that
the fiber L = ¢~1(P) is volume-stable without the curvature condition on N.
Thus we may assume that the dimension of P is greater than or equal to one
and dim(N) =m > 2.
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2. Area formula and stability

In this section, we shall describe basic notions for horizontally (weakly)
conformal maps and stability of minimal submanifolds and derive the area
formula for the second derivative of the volume functional.

Let ¢ : (M™,g) — (N™, h) be a smooth map between Riemannian manifolds
(M,g) and (N,h). For a point z € M, we set V, = ker(dy,) which is called
the vertical space of ¢ at z. Let H, denote the orthogonal complement of V,
in the tangent space T, M. For a tangent vector X € T, M, we denote X" and
X7 respectively, the vertical component and the horizontal component of X.
Let V and H denote the corresponding vertical and horizontal distributions in
the tangent bundle TM. We say that v is horizontally (weakly) conformal if,
for each point € M at which dp, # 0, the restriction dpe |3, : Hz — To)N
is conformal and surjective. Thus there exists a non-negative function A on M
such that

h(dp(X), dp(Y)) = Ng(X,Y)

for horizontal vectors X,Y. The function A is called the dilation of ¢. Note
that A? is smooth and is equal to |dy|?/m, where m = dim(N).

Let ¢ : M™ — N™ be a horizontally (weakly) conformal map between
Riemannian manifolds (M, g) and (N, h). Denote the set of critical points of ¢
by C, = {z € M : dp, = 0} and let M* = M — C,. We define two tensors T
and A over M* by

TpF = (VEVFV)H + (vaFH)V
and

AgF = (VEHF%)V + (vaFV)”
for vector fields £ and F on M. Here V denotes the Levi-Civita connection on
M.

A smooth map ¢ : (M™,g) - (N™,h) between Riemannian manifolds M
and N of dimensions n and m, respectively, is called a harmonic morphism
if ¢ preserves the harmonic structures of (M,g) and (N,h). In other words,
@ (M™ g) = (N™ h) is a harmonic morphism if it pull backs local harmonic
functions to harmonic functions. It is well-known ([4], [6]) that a smooth map
¢ : M — N is a harmonic morphism if and only if ¢ is both harmonic and
horizontally (weakly) conformal.

Let ¢ : (M™,g) — (N™, h) be a submersion with the horizontal distribution

#H and vertical distribution V, respectively. Let P! C N be an [-dimensional
submanifold of N and define

L=y Y(P).
For each z € L = p~1(P), we define
Wo =T,L, H,=W.NH, HI=W;
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so that we have the following orthogonal decompositions
W=VeoH, H=HoH' TM=VeoH=WaeH"
The second fundamental form B of L = ¢~!(P) in M is defined by

(2.1) B:WxW-H",  BXY)= (Vx¥)",

where V denotes the Levi-Civita connection on M. On the other hand, the
second fundamental form Bp of P in N is given by

p:TPxTP TP, Bp(E,F)=("VgF)"

where TP1 denotes the normal bundle of P and MV is the Levi-Civita con-
nection on N.

Let {e1,...,er} be a local orthonormal frame on V, where k = n — m, and
let {X3,...,X;} be alocal orthonormal frame on P. Denote the horizontal lift
of X; by X;, ie.,

de(X;))=X; (i=1,...,])
so that
(X1, AX))
forms a local orthonormal frame on H#’'. Then
{61,.. .,ek,)\Xl,. ..,AX[}
is a local orthonormal frame on L = p~!(P).
Note that
dimp ' (P)=k+l=n-m+I
and normal vector field £ € T'(H") corresponds to dg(E) € T'(TPL).
Let E be a normal vector field on L = ¢~ (P) with compact support, i.e.,

E is a component of #". Then the second derivative of the volume functional
A in the direction E ([8]) is given by

(2.2) A"(0) = /L (~AE + R(E) — B(E), E).

Introducing a local orthonormal basis

{81,---,ek,)\le---7)\Xl,€l+1,---,§m}

on TM such that {&41,...,&=} is a local orthonormal frame on TLt =
Te~1(P)L, the equation (2.2) becomes

k+1 k1
@3) A= [(VEF - Y (Rles BIE,e) = 3 (Bles,es), B}
i=1 7,j=1

Here e;1; = AX; for ¢ > k + 1 and V-+ denotes the normal connection on
TLt = Tp~Y(P)L.
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We say a minimally immersed submanifold L of M is stable (or volume-
stable) if, for any normal variation E with compact support, the second deriv-
ative of the volume functional in the direction E is non-negative, i.e.,

A”(0) > 0.

From now on, we shall carry out some computations on covariant derivatives
and derive the area formula for the second derivative of the volume functional
from the equation (2.3).

First of all, denoting, for i > k + 1,

erti = AXy,
we have, from (2.1),
k+l e » k+l .
(BB),E) = > (Bleie)), B =3 ((Vee;) B2 = (e, Ve, E)?
i,7=1 2,7=1 2,j=1
B+l [ & 1
= Z (Z e]’ >2 + Z(AXOMVQ‘E>2)
=1 \j=t a=1
k+1 2
_ Z(\VQE {+\ o) \)
i=1
k

S
N
Il
T
<
<
T o
+
=
ES
N—

Note that if E is a normal vector field on L = ¢~ 1(P),

N 9 k+1 N 9 k+1 . J_2 k-1 = 2 2
ViR = YIveE =Y |(V.r)| = Y |(.n)" |
=1 =1

i=1

(2.5)

1

Next, recall that

k+1 . k+1 .
(R(E),E) = Z(R(ei,E)ei,E) = —}:(R(ei,E)E,ei)

= —|EP ZKM(IEl ) |E|? ZKM (lEl/\/\Y)
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where Ky (T%l A ei) is the sectional curvature of the plane spanned by TEE—I

and e; on M.

By [5] or [7], the sectional curvatures are given by, for i = 1,...,k,
E 2 E - E
Ky (IFI/\G,') = ’Al%re, lTeiE +<(V%T)eiei, |E|>
(2.6) l<Vlog; 22 el> 1<V6 (V1og A?) ez>
2 2 % )

and, for j =1,...,1,

K (Igl ANX; ) = MKy (dcp (q%) /\d(p(AXj)) ~3 i,cxlej;T(,\Xj)(2

1 /= nH E
+§<V1% (V1og A?) ’|E—|>

l /= H
+5 (Vax, (ViogX?)™,0X;),
where V denotes the gradient on M. So the gradient on ¢ ~!(P) is given by
Ve-ip)f = (VY +(VHY

Thus from now on, we shall use the confused notation for the gradient on M
and ¢~ (P) since there are no ambiguities.
By definition of the tensor A, we obtain fori =1,...,%

(28) Ar%ez = (v]%re,’)?{
So,

1y (Ve

2
(2.9) ‘A%[ei =

i | Tz = g {|Feed |+ [(Fe™ ]

Fori=k+1,... k+l(j=1 1),

2

(2.10) IEP (Ve(AX)) ’ = |E|2 ((vEx) | .
By definition of the tensor T', fori = 1,..., k,

b= (m) =(more(m)2)

T.— = (V. — Ve.E+ei E
|E| ( |E|> |E| |E|
1
- LE.n.

IB|
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So,

E| 2
(2.11) Teirg| = ”;‘2 (¥..5)"]
Lemma 2.1 ([3]). Fori=1,...,k,
(2.12) (ﬁT%T) . e; = !E\ (VET) €;-

The following lemma is well-known ([5], [7]).

Lemma 2.2. Let ¢ : (M™,g) — (N™,h) be a horizontally conformal submer-
sion with dilation \. Then for horizontal vector fields X,Y,

1%
AxY = (VxY)V = % {[X,Y] - XX, Y)V (/\12) }

Corollary 2.3. Let ¢ : (M™,g9) — (N™,h) be a horizontally conformal sub-
mersion. If the horizontal distribution is integrable, then for horizontal vector
fields X, Y which are orthogonal,

(VxY)’ =

Therefore, it follows from Corollary 2.3 and the equation (2.10) that if the
horizontal distribution of the horizontally conformal submersion ¢ is integrable,
then

(2.13) Az (AX;) =0.

Now, assume ¢ : (M™,g) = (N™, h) is horizontally homothetic so that it is
horizontally conformal submersion and

(Vg /\2) =0.
Then by Corollary 2.3 and the equations (2.7) and (2.10), we have

Ky (él ANX; ) = XKy (d¢ (é) A dcp(/\Xj)> - % (v log)\2)v‘2.

Hence
(R(E), E)

= - i ‘(VEei)ur + Ej: ‘(VeiE)vr ~ zj; ((VsT), e E)

k
+ %ﬁ Z (Vlog )\2,6i>2 - LEEE Z <_V_el (VIOgAz)v’ei>

i=1 i=1

(2.14)

—)\Q\E]zzKN (d¢<|§|> /\dap()\Xj)> |4|2 \(mogAQ) \ :

7=1



500 GABJIN YUN AND GUNDON CHOI

Therefore, from (2.3), (2.4), (2.5), and (2.14), we obtain the following area
formula.

Proposition 2.4. Let ¢ : (M™,g) — (N™,h) be a horizontal homothetic map
with integrable horizontal distribution H. Let P' C N be an l-dimensional
submanifold of N and define L := o' (P). Let {e;} and {X;} be as above and
denote by V the vertical distribution. Then for any normal vector field E to L
with compact support

0 < 5 (5.0 - o[
+§/L)\2 (J@x e[ - |@xe])

U ) AL R Py gE ot
[ S - B (5 e )

P i=1
_/L /\2|E|2§KN (dcp (%) A d<p(AXj)) :

3. Some properties for horizontally conformal submersions

In this section, we are going to prove some properties for horizontally con-
formal submersions and covariant derivatives of a horizontal vector ficld and a
vertical vector field of a horizontally weakly conformal map.

Lemma 3.1. Let ¢ : (M™,g) = (N™,h) be a horizontally conformal submer-
sion with dilation X. Let P' be an I-dimensional submanifold of N and let
L=¢ 1 (P). Assumel <m —1. Then
1 2 .
MAL ()\——2) = ‘(Vlog)\Q)T‘ — divy, (Vg AT,

where Ap and divy, denote the Laplacian and divergence on L, respectively, V
denotes the gradient on M and 7 denotes the tangential component of L, i.e.,
W-component.

Proof. Let k = n —m and {ey,...,ex,AX1,...,AXs,&1,...,&m—1} be a local
orthonormal frame on M so that {ei,...,ex, AX1,...,AX;} is tangent to L and
{&,--.,&m—1} is normal to L.

Define Z, = $&, (@ =1,...,m —1) so that A\?|Z,|? = |,|2 = 1. Then the
derivative in the direction e; becomes

0= ei(’\2|Za|2)



HARMONIC MORPHISMS AND STABLE MINIMAL SUBMANIFOLDS 501

and so
€; ()\2)

eillZaf?) = =255

|Za|* = | Za|*ei(log X%).
Here recall that
ext; =AX; for j=1,....L
Thus,
(VIZa?)T = =|Za|* (ViogX?)T .
In fact, the following identity holds between M and L:
k+1

(VAT =V,f= Z ei(fle;  (locally)

for any function f defined on M.
Now by definition of the Laplacian,

AL Zof? = dive (V|Za)?)T = —((V|Za]*)T,
(ViogA?) ") — | Zo[?divy, (ViogA?)T.
Since A2 (V ($£))" = — (V1ogX?)T, we have

1)\’ 1
(3.1) (wzaﬂ‘:(v (r)) =~z (ViegX)".
Hence
A ! = Ap(|Z?) = 2 1X”2 1d' Viog A2)T
tlyw)= P c¥|)—ﬁ(Vog ) —FIVL( og )

That is,
2
NAp <%> = l(Vlog/\2)T‘ —divg, (ViegAH)T.
O

Remark 3.2. Let ¢ : (M",g) — (N™, h) be a horizontally homothetic submer-
sion with dilation A. Then

(ViogA2)T = (Viog A2)” + (Vioga2)™ = (Viogr2)”
and so we have
1 2
NAp (F) = ‘(Vlog/\Z)v‘ — divy, (ViegA?)"” .

Lemma 3.3. Let ¢ : (M™,g9) — (N™,h) be a horizontally conformal sub-
mersion. If X is a basic vector field and V is a vertical vector field on M,
then
(1) = (@ x)"
and in particular,
2

(x| = | @)
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Proof. Since X is a basic vector field and V is a vertical vector field, it is easy
to see that

X, V]=VxV -VpX
is a vertical vector field and so
(VxV -9y x)" =0.
O
Corollary 3.4. Let ¢ : (M™,g) = (N™,h) be a horizontally conformal sub-

mersion and P be a submanifold of N. If X is a basic vector field and V is a
vertical vector field on M, then

Tx¥)* = @y x)"
and ;
(VXV)H = (VVX)’H .
In particular,
. 2 - 2
'(VVX)” ‘ - [(vxv)” ‘

and . o
](vvx)” ’ :1(vxv)” [ .

Let ¢ : M™ — N™ be a horizontally homothetic harmonic morphism with
integrable horizontal distribution # and let {ei,...,es} be a local orthonormal
frame on the vertical distribution V. Let P! be an I-dimensional submanifold
of N™ and let L = ™! (P). Note that the dimension of L is n —m +1 and the
dimension of the vertical distribution is k := n — m.

Let {X3,..., X} be an (local) orthonormal frame for TP and {{i, . .. Em1}
be an orthonormal frame for TP+. Let X; and €. be the horizontal lifts of X ;
and &, respectively, so that {A\X1,..., X} together with {ey,...,ex} forms
a local orthonormal frame on TL and ¢, := ¢, is a local orthonormal frame
on the normal space TL*.

Lemma 3.5. Let {e;} be a local orthonormal frame on the vertical distribution
V, and {X;} and {&,...,&m—1} be as above. Then

k
NAp (%2) = Y (Vi) = 3" (V. (ViogA)” .es)
i=1 ;

=1
l V|2
+3 ‘(Vlog)\Q) ‘ )
Proof. By Lemma 3.1

2
MAp (%) = ’(Vlogx\2)T} — divy (Vieg A*)T
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k k
Z (Vg A2, e;) Z<V61 (VlOg,\Q)V,ei>
i=1 =1
!
—/\22<ij (Vlog)\2)v,Xj>.
=
On the other hand,

i< Vlog)\z)

i=1

((Vioga?)” , ¥x, X, )

~
Il
-

I I
MN ‘MN

((V10g2?)", (Vx, X,)").

.
Il
—

Since, by Lemma 2.2,

= | 1\\” 2o v (L
(Vx, X;) =-3 \% 5V and  Vlog A"V 3z

we have
I
2 N2 2\V 4 __l_ 2\ V|2
(3.2) A ]Z:;<VXJ (VigA?)”, X;) = = |(VIog?) .
Therefore
1 k koo v
NAp (F) = Z(v log A%, e;)?2 — Z <vei (V1ogA?) e>
i=1 i=1
2
+% (V10g4?)"|".
O
Next, we shall consider the local orthonormal frame {&;,...,&,—1} of TL*

and derive some relations of the covariant derivatives of £, with the covariant
derivative V., E for a normal vector field E whose values in H"-distribution.
First of all, the following lemma, follows directly from Lemma 2.2.

Lemma 3.6. If o # 3,

— 1
(Vsafﬁ)v = 5[£a,§ﬁ]v-
Lemma 3.7.

<V éa,fﬁ> = <€a7§5] ei>‘

Proof. If o = j3, it is obvious since |£,| = 1. So, we may assume a # 3.
Since &, is basic and e; is vertical, by Corollary 3.4,

(3.3) (v 5(1)%“ (ﬁgei) )
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Since &, = )\ZZ, by Lemma 3.6,
(Veibasbs) = <€z’(/\)g + AV &, €B>
M(78)" 6) =2 {(7ze)" &)

(Veuer€a) = = ((Veubs)”e1) = =1 ((6ar 61" 0.

Corollary 3.8. If the horizontal distribution H is integrable, then

<Ve.'£a;§3> =0 and so (veifa)%” —0.

Also by Lemma 2.2 and Corollary 2.3, we have
= v 1 1 v 1 v
(34) (Ve &) = —5,\2 (V (ﬁ)) bop = -5 (ViogA?)” dap.

Next, since it follows from Corollary 2.3 that (V¢ X ]‘)v =0, we get

7

1
(Veae)™ = 3 (Veoes, AXj)AX, = 22 > (e Ve X5) X;
Jj=1 j=1
l
= Y (e (Ve X;) ) X; =0
j=1
Thus,
m—1
(3.5) (Vee)™ =3 fa (Ve.e)™ =0.
a=1

On the other hand, note that, by Lemma 2.2,

= 1 1\\” 1
(Ve.&s)" = —5A (V (ﬁ)) b = =5 (V10g %) dag.

So,
" m—I N m—{ .
Vee) = Y (Verer&s) €5 = — > (e Ve bs) &5
B=1 B=1
m—1
= <€ (Vsuﬁﬁ)v> s = <€ (Vsa€a)v> éa
B=1

N o=

<e,~, (Vieg A?) v> &
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Hence,

= H < — H 1 V
(Vee)™ =Y fa (Verer)™ =5 (ei (VIog)*)") E
and so

%<ez, (Vlog A2) > B2,
Therefore, by (3.5),

k 2
S
=1

(3.6)

2

E]WMWH=EZ@MW%WWWW

i=1 i=1

Next, since &, is obtained from the basic normal vector field {a, we have the
following property.

‘(Vlog)\Q)V‘z B2 = %mg

I

Lemma 3.9. If E is a normal vector field to L and the horizontal distribution
H s integrable, then

(V.E)" =0.

Proof. Let £ be an unit normal vector field obtained from a basic normal vector
field. By linearity, it suffices to show that only for E = f¢,

(V.E)" =o0.
First, note that for £ = f¢
m—1
(FeB) = 1 (70" = ;2 3 (7.6 X)X,
=1

On the other hand, for any vector fields X,Y, Z on M, the covariant derivative
(VxY, Z) is given by

2AVXY,Z) = X(Y,Z)+Y(X,Z) - Z(X,Y)
(37) +<[X,Y],Z>—<[X,Z],Y>—<[Y,Z],X>
Applying the equation (3.7) to (V.,&, X;), we get
(Va6 X5) = (leq €], X5) — (6, X5], €:).

Since the horizontal distribution # is integrable, [§, X;] is a horizontal vector
field and so

<v6i£7Xj> = ([eiaf]an>-
Now let € be the basic vector field so that dgo(g) =¢ and

£ =X,
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where £ is an unit normal vector field on P C N. Then since les, '{] is a vertical
vector field,

(lei: €, X5) = (e:(VE + Alei, €], X;) = 0.
Hence
(Vo.E)* =0.
O
Proposition 3.10. Let ¢ : (M™,g) — (N™,h) be a horizontally homothetic
map with integrable horizontal distribution H. Let P C N be an l-dimensional
submanifold of N and define L = ¢~1(P). Let {e;} and {X;} be as above and

denote by V the vertical distribution. Then for any normal vector field E to L
with compact support

40) = g [|@.5
59 o3 [ () - X [ (o), )
R Z [ (j@x5 | - |@x[)
-/ VIEPZ;KN (dw (é—l) A dso(AXj)) -

Proof. The proof follows from Lemma 3.5, Lemma 3.9 and the equations (2.15),
(3.6). O

2 2
—1/ B |(Viogx?)”]
4/

4. Stability of totally geodesic submanifolds

In this section, we assume that ¢ : (M™,g) — (N™ h) is a horizontal
homothetic map with integrable horizontal distribution % and P' C N is an
I-dimensional totally geodesic submanifold of N and define L = ¢~ !(P). We
are going to use the same notations as in the previous sections for {e;}, {X;}
and £,, and denote by V the vertical distribution.

Let E be a (local) normal vector field to TL, i.e., a section of 7L+ with
compact support. Then we can write

m—1
E=Y" fala,
a=1
where f, is a local function with compact support. Then, by Corollary 3.8,

m—1 m—1

=Y eilfolba + fa (Vo) = Y eilfo)ia

a=1 a=1

(vm E) H
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and so
1 m_l
(4.1) ‘(EE)” |2 = eilfa)
a=1

Lemma 4.1. Let ¢ : M™ — N™ be a horizontally homothetic map and let P
be an l-dimensional totally geodesic submanifold of N™ and let L = o~ (P).
Then for any normal vector field E to TL,

(VxB)" =0
for any basic vector field X on M.
Proof. Let {X;,.. ., X1} be an (local) orthonormal frame for TP and {&,..
§m l} be an orthonormal frame for TPL. Let X; and fa be the horizontal hfts

of X; and &,, respectively, so that {A X1, .. /\Xl} together with {e1,...,ex}

forms a local orthonormal frame on TL and &, = )\Z; is a local orthonormal
frame on the normal space TL*. Let dy(X) = X. Since P is totally geodesic,
it follows from definition that

(Vi) =
and so by [7]
do (Txx)™") = (V)" =0.
Thus,
(Vxxi) " =o0.
Also since ¢ is horizontally homothetic, the derivative of the conformal factor

A in the direction X is vanishing, i.e., X(A) = (VA,X) = 0. Hence, for each
a=1,....m-1

(VX?&)H” - <VX£:, )\Xk> AXy = — <£§, vXAXk> AX,
= -2 (&, VxXi) Xi = -2 (&, (VXXk)””>Xk
= 0.
Therefore, letting E = ZZL:_:{ faba,
(VxE mzlfa VXfoz leAfa (foa) ’:0.
a=1 a=1

We are ready to prove our main result.

Theorem 4.2. Let ¢ : (M",g) - (N™, h) be a horizontally homothetic har-
monic morphism with dilation X to a Riemannian manifold N of non-positive
sectional curvature. Let P be a totally geodesic submanifold of N and let
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L =@~ Y(P). If T is parallel and the horizontal distribution of ¢ is integrable,
then L is a stable minimal submanifold of M.

Proof. First of all, note that L is a minimal submanifold of M by [2]. By Propo-
sition 3.10, the equation (4.1) and Lemma 4.1 together with our assumptions,

we obtain for any normal vector field E = Z;":_ll fa€a with compact support,
m—l1 9
1 V|2
A'(0) = Z{/ )(Vfa)v, —Z/fg (Vlog A\?) ) }
= U L
w1 1 : "
242 2| s
— — B
+;2/LfQA A(A2>+];/L)\ |(Vx,B)
m—1 1 E
- 2y2 — | Adp(AX;) ).
;/foagm (a6 (&) nawirxs))

Applying the integration by parts to each f., = f, we have

L pea(L) = [ (sumone (1))

4 rerarme(s)
%/L (V£ (TiogA2) ") - %/sz <W2’V (:\13)>
/Lf<Vf, (Vlog)\2)v>+2/Lf2|v)\—)2\|2

- /Lf<Vf, (Vlog)\Q)v>+%/Lf2‘(V10g)\2)vl2.

Here V denotes the gradient on P (Actually, we used a confused notation for
gradients on P and M, but there are no ambiguities). Thus,

A"0) = ng{/L‘(Vfa)v‘2+i/Lf§ (Vlogf)vr}
(4.2) +/Lfa <vfa,(v1og,\2)V>+zl:/L,\2i(§7‘ij)H/,
i=1
_:Y;/L ,\2f§j:ilKN (dgo (%) /\dw(AXj)) ‘

Since, for each f, = f,

jf <Vf, (v10gA2)">j

12

{2

9. % }f<(Vf)V,(V10gA2)V>‘

(VNP P+ 18 |(V10x)* |

IN
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Hence

AT0) > - g/L )‘2f§iKN (d«p (%) A dw(”@))

j=1
! "2
+E//\2,(VX].E)H >0
=1"1
by curvature assumption on V. 0

As a direct application, we can obtain the following result.

Corollary 4.3. Let ¢ : (M™,g) — (N™, h) be a horizontally homothetic har-
monic morphism with totally geodesic fibers to a Riemannian manifold N of
non-positive sectional curvature. Let P be a totally geodesic submanifold of N
and let L = ¢~ (P). If the horizontal distribution of o is integrable, then L is
a stable minimal submanifold of M.

Example 4.4. Let ¢ : R* — R™ (n > m) be the canonical projection defined
by
elat,z?, . o e™ ™ ™) = (2h2? L a™).

Then it is easy to see that the map ¢ is a horizontally homothetic harmonic
morphism and the fiber ¢ '(p), of a point p € R™ is R"™™ which is totally
geodesic. Also the horizontal space of ¢ is integrable and so the map ¢ : R* —
R™ (n > m) satisfies the conditions in Theorem 4.2. Therefore, for any totally
geodesic submanifold P of R™, the inverse set ¢~ (P) is volume-stable minimal
submanifold of R”.

In fact, it is well-known that any totally geodesic submanifold of K™ is the
Euclid subspace R* (k < m) and we have

(‘0_1(Rk) =R ™ ]Rk
which is both totally geodesic and volume-stable.

Example 4.5. Let H* = R*~! x Rt be the upper-half space with the standard
hyperbolic metric g = (w—i)ﬂ , Jrn. Let 7 : H® — R*! be the projection
defined by 7 (p,z) = p. For p € R"~! the fiber of 7 over p is parametrized with
respect to arclength by 7,(s) = (p,e®). Along the fibers we have A\2(s) = e?*
and so the map 7 is horizontally homothetic and it has totally geodesic fibers.
The level hypersurfaces corresponding to the horizontal space are parallel affine
subspaces

R = {(p,e’) e R*™P xR : pe R}
with constant sectional curvature Kp».-1 = 0. Thus the horizontal space is

integrable. Consequently, the projection = : H* — R*~! satisfies the conditions
in Theorem 4.2. Therefore, for any totally geodesic submanifold P of R* !,
the inverse set 7~ (P) is volume-stable. In fact, for P = R¥ | we have

7 L(RF) = R x RY
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which is totally geodesic. It is well-known that for any Riemannian manifold of
non-positive Ricci curvature, any totally geodesic submanifold is automatically
volume-stable.

Remark 4.6. In view of examples, the integrability of the horizontal distribution
of a harmonic morphism is deeply related with the curvature of manifolds. For
example, let S = {(z,w) € C? : |z|> + |w|? = 1} and consider the Hopf map
¢ : 8% - S? defined by

(,O(Z,’LU) = (22‘”“_)’ |Z‘2 - |w|2)

in complex variables. Then ¢ is a harmonic morphism and the fibers of ¢
are circles S! which is totally geodesic. However, the horizontal distributions
are nowhere integrable. Lack of examples, the authors expect that for any
horizontally homothetic harmonic morphism ¢ : M -~ N between Riemann-
ian manifolds, the horizontal distribution is integrable if N has non-positive
sectional curvature. It is known that the sectional curvature of the horizontal
distribution is non-negative and the sectional curvature of N is non-positive,
then the horizontal distribution is integrable.

In case of hypersurfaces, the assumption on the sectional curvature condition
in Theorem 4.2 can be weakened to non-positive Ricci curvature.

Corollary 4.7. Let ¢ : (M™, g) = (N™, h) be a horizontally homothetic har-
monic morphism to a Riemannian manifold N of non-positive Ricci curvature.
Let P be a totally geodesic hypersurface of N and let L = ¢~ 1(P). If T is
parallel and the horizontal distribution of ¢ is integrable, then L is a stable
minimal hypersurface of M.
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