• Title/Summary/Keyword: Rhamnolipid biosurfactant

Search Result 25, Processing Time 0.024 seconds

An Efficiency Evaluation of Iron Concentrates Flotation Using Rhamnolipid Biosurfactant as a Frothing Reagent

  • Khoshdast, Hamid;Sam, Abbas
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • The effect of a rhamnolipid biosurfactant produced by a Pseudomonas aeruginosa MA01 strain on desulfurization of iron concentrates was studied. Surface tension measurement and frothing characterization indicated better surface activity and frothability of rhamnolipid compared to methyl isobutyl carbinol (MIBC) as an operating frother. Reverse flotation tests using rhamnolipid either as a sole frother or mixed with MIBC, showed that the desulfurization process is more efficient at pH 4.5 and high concentration of rhamnolipid in the presence of MIBC. However, under these conditions water recovery decreased due to the change in rhamnolipid aggregates morphology. Results from the present study seemed promising to introduce the biosurfactant from Pseudomonas aeruginosa as a new frother.

유류오염토양에서 분리된 Pseudomonas aeroginosa를 이용한 생물계면활성제 glycolipid 생산

  • Im, Yeong-Gyeong;O, Yeong-Suk;Jeong, Uk-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.497-500
    • /
    • 2000
  • A biosurfactant producing bacteria strain, D2D2 was selected from diesel-contaminated soil, and identified as Pseudomonas aeroginosa. A glycolipid produced by P. aeroginosa D2D2 was purified by ethyl acetate extraction and adsorption chromatography. The biosurfactant was Identified as glycolipid which has two types of biosurfactants as a results of TLC analysis. The purified glycolipid biosurfactant reduced the surface tension of water to 27 dyne/cm. In time course studies of growth and rhamnolipid production in a minimal salts medium containing 1.5% glucose and 1.5% olive oil, a maximum rhamnolipid yield of $11.45gL^{-1}$ was obtained after 5 days.

  • PDF

Biosurfactant Production from Novel Air Isolate NITT6L: Screening, Characterization and Optimization of Media

  • Vanavil, B.;Perumalsamy, M.;Rao, A. Seshagiri
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1229-1243
    • /
    • 2013
  • In this paper, an air isolate (NITT6L) has been screened based on hemolytic activity, emulsification activity, drop collapsing test, and oil displacement test, as well as lipase activity. It was found that strain NITT6L was able to reduce the surface tension of the medium from 61.5 to 39.83 mN/m and could form stable emulsions with tested vegetable oils. Morphological, biochemical, 16S rRNA sequencing analyses, and fatty acid methyl ester analysis using gas chromatography confirmed that the air isolate under study was Pseudomonas aeruginosa. Characterization of the biosurfactant using agar double diffusion assay revealed that the biosurfactant was anionic in nature, and CTAB-methylene blue assay and Molisch test revealed its glycolipid nature. The FT-IR spectrum confirmed that the crude biosurfactant was a rhamnolipid. Using unoptimized medium containing sucrose as the carbon source, the isolate was found to produce 0.3 mg/ml of rhamnolipid in batch cultivation (shake flask) at $37^{\circ}C$ and pH 7. Optimization of the medium components was carried out using design of experiments and the yield of rhamnolipid has been enhanced to 4.6 mg/ml in 72 h of fermentation.

A Study on Remediation of Diesel-Contaminated Soil by Biosurfactant- Enhanced Soil Washing (생물계면활성제를 이용한 디이젤 오염토양세척기술에 관한 연구)

  • 문혜준;임영경;김윤관;주춘성;방기연;정욱진;이승우
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.13-22
    • /
    • 2002
  • Soil washing by surfactants is a technology to enhance mobilization and subsequent degradation of oil pollutants by reducing the surface tension of pollutants which is combined with soil. In this study, biosurfactant, rhamnolipid was produced from Pseudomonas aemginosa ATCC 9027 which had an excellent biodegradable activity in soil without causing secondary pollution. Effects of chemical surfactants on the removal of diesel from diesel-contaminated soil were compared to those of biosurfactants including rhamnolipid. Diesel removal efficiency by rhamnolipid extracted from P. aeruginosa culture broth was over 95% in both batch and column washing test in 5,000ppm diesel-contaminated soil with 1% surfactants after washing for 24 hours. On the contrary, the results of chemical surfactants were below 50∼80%, The chemical surfactants with HLB value(8∼15) showed more then 75% efficiency of diesel removal. But, when the HLB values were below 8 or over 15. their efficiency were observed as less then 60% of diesel removal. Rhamnolipid, biologically produced surfactants, may also be promising agent for enhancing diesel removal from contaminated soil.

Studies on the Glycolipid Biosurfactant(1) The Optimum Effect of Medium of Rhamnolipid by Pseudomonas sp. 13 (당지질계 미생물 계면활성제에 관한 연구(제 1 보) Pseudomonas sp. 13에 의한 Rhamnolipid의 생성에 있어 배지의 최적효과)

  • Lee, Sun-Ju;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 1993
  • Rescently we are interested in the biosurfactant. Biosurfactant have a low toxcity and easily biodegradable compound. Pseudomonas sp. 13 was isolated from soil. This microorganism produced biosurfactant that consists of glycolipid R-1 and R-2. A time course study of fermentation indicated that the appearance of glycolipid in the fermentation broth the commencement of the stationary phase with the respect to biomass. The effect of variation of the media components such as amount of glucose, nitrogen, phosphate and metal ions has been investigated. The following values found to be optimum for biosurfactant production (glucose, $20g/{\ell}$; carbon to nitrogen ratio, 40; carbon to phosphate, 18; $FeSO_4{\cdot}7H_2O\;20mg/{\ell}$).

  • PDF

Suppression Effect of Gray Mold and Late Blight on Tomato Plants by Rhamnolipid B (Rhamnolipid B에 의한 토마토 잿빛곰팡이병과 역병의 억제효과)

  • Ahn, Ji-Ye;Park, Myung-Soo;Kim, Seul-Ki;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Choi, Jae-Eul;Kim, In-Seon;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • A Pseudomonas strain SG3 producing biosurfactant and showing antifungal and insecticidal activities was isolated from agricultural soil severely contaminated with machine oils. The antagonistic bacterium inhibited mycelial growth of all of the tested fungal pathogens. The fermentation broth of SG3 also effectively suppressed the development of various plant diseases including rice blast, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew and red pepper anthracnose. An antifungal substance was isolated from the fermentation broth of SG3 by ethyl acetate partitioning, silica gel column chromatography and preparative HPLC under the guide of bioassay. The chemical structure of the antifungal substance was determined to be rhamnolipid B by mass and NMR spectral analyses. The antifungal biosurfactant showed a potent in vivo antifungal activity against gray mold and late blight on tomato plants. In addition, rhamnolipid B inhibited mycelial growth of B. cinerea causing tomato gray mold and zoospore germination and mycelial growth of P. infestans causing tomato late blight. Pseudomonas sp. SG3 producing rhamnolipid B could be used as a new biocontrol agent for the control of plant diseases occurring on tomato plants.

Enhanced Bioremediation of Phenanthrene Using Biosurfactant (생물계면활성제를 이용한 Phenanthrene의 생물학적 처리)

  • 신경희;김경웅
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.375-380
    • /
    • 2003
  • This study was carried out 1) to investigate the pH effect on solubilization of phenanthrene by biosurfactant in aqueous system and 2) to evaluate the pH effect on the biodegradation rate of phenanthrene in the presence and the absence of the biosurfactant by phenanthrene degraders. Tween 80, which is a chemically synthesized surfactant, showed greater solubilizing capacity than rhamnolipid. The solubilization capacity can be expressed as a MSR(molar solubilization ratio=moles of organic compounds solubilized per mole of surfactant). The calculated MSR of Tween 80 and rhamnolipid were 0.1449 and 0.0425 respectively. The kinetic study of phenanthrene solubilization by rhamnolipid showed that solubilization mechanism could reach equilibrium within 24 hours. Addition of 240 ppm rhamnolipid solution, which concentration is 4.3 times of Critical Micelle Concentration(CMC), caused 9 times solubility enhancement compared to water solubility. The highest solubilities were detected around a pH range of 4.5-5.5. Changes in apparent solubility with the changes in pH are possibly related to the fact that the rhamnolipid, an anionic surfactant, can form different structures depending on the pH. Two biodegradation experiments were performed in the absence and the presence of rhamnolipid, with the cell growth investigated using a spread plate method. The specific growth rates at pH 6 and 7 were higher than at the other pH, and the HPLC analysis data, for the total phenanthrene loss, confirmed the trends in the $\mu$(specific growth rate) values. In presence of rhamnolipid, maximum $\mu$ values shifted from around pH 5 which showed maximum enhancement of solubility in the abiotic experiment, compared to the $\mu$ values obtained without the biosurfactant. In this study, the increase in the observed specific grow rate(1.44 times) was not as high as the increase in solubilization(5 times). This was supported by the fact all the solubilized phenanthrene is not bioavailable to microorganisms.

Surface-activity and Environmental Characteristics of Biosurfactant Produced by Pseudomonas aeruginosa JRT-4 (Pseudomonas aeruginosa JRT-4에 의해 생산된 Biosurfactant의 계면활성 및 환경적 특성)

  • 황경아;이정래;김상종;김윤석;안호정
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.159-165
    • /
    • 1999
  • Pseudomonas aeruginosa JRT-4 strain was used as a biosurfactant-producing microorganism in this study. It was one of the microorganisms isolated from the sewage sludge, the main and branch streams of Han river. The surface tension of the culture broth of P. aeruginosa JRT-4 decreased to 30mN/m. The crude biosurfactant was obtained from the culture broth by acid precipitation, solvent extraction, evaporation, and freeze drying. The CMC value of the crude biosurfactant was 0.006%(w/v). From analysis of the chemical structure of biosurfactant, it was determined as rhamnolipid 1 and 3 structures by FAB mass spectrometer. In the washing test for artificially contaminated textiles, the biosurfactant showed better bleachness than the two chemically synthesized surfactant, LAS and SLES. Finally, the biodegradation and ecotoxidolorical tests showed that the biosurfactant was readily biodegradable in the environment and a mild material for microorganisms and green algae.

  • PDF

Effect of pH and Temperature on the Production of Biosurfactant by Pseudomonas aeruginosa YPJ-80 and Its Separation (Pseudomonas aeruginosa YPJ-80에 의한 생물계면활성제 생산에 미치는 pH 및 온도의 영향과 생물계면활성제의 분리)

  • 박창호;손창규;김성훈;안도균
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.511-517
    • /
    • 1998
  • Temperature and pH conditions were studied for an effective biosurfactant production by Pseudomonas aeruginosa YPJ-80. Efficient methods of biosurfactant separation were also investigated. pH-uncontrolled experiments at 35$^{\circ}C$ and an initial pH of 8 resulted in the best cell growth (3.6 g/L) and biosurfactant production (0.073 g biosurfactant/g cell). Biosurfactant separation was most efficient using solvent extraction with chloroform/methanol (2:1 vol%) followed by acidification using 1N HCl.

  • PDF

Studies on the Glycolipid Biosurfactant(2);The Rhamnolipid Production and Isolation by Pseudomonas sp. 13 (당 지질계 미생물 계면활성제에 관한 연구(제2보);Pseudomonas sp. 13에 의한 Rhamnolipid의 생성 및 분리)

  • Lee, Sun-Ju;Nam, Ki-Dae;Park, Heung-Jo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.157-163
    • /
    • 1992
  • A microorganism, isolated from soil and designated Pseudomonas sp13, produced two kinds of rhamnolipid in the medium containing glucose as carbon source. There were both rhamnolipid contain L-rhamnose and ${\beta}$-hydroxydecanoic acid. Coumpound A and B elucted chloroform-methanol mixed solution of silicic acid column chromatography and recrystallized from a mixture of ether and n-hexane. Studies on the structure of these products reveled that compound A is L-rhamnopyranosyl-${\beta}$-hydroxydecanoyl-${\beta}$-hydroxydecanoic acid and compound B is L-rhamnopyranosyl-L-rhamnopyranosyl-${\beta}$-hydroxydecanoyl-${\beta}$-hydroxydecanoic acid.