• Title/Summary/Keyword: Resolvent Operator

Search Result 77, Processing Time 0.019 seconds

EXISTENCE AND EXPONENTIAL STABILITY OF NEUTRAL STOCHASTIC PARTIAL INTEGRODIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION WITH IMPULSIVE EFFECTS

  • CHALISHAJAR, DIMPLEKUMAR;RAMKUMAR, K.;ANGURAJ, A.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.1_2
    • /
    • pp.9-26
    • /
    • 2022
  • The purpose of this work is to study the existence and continuous dependence on neutral stochastic partial integrodifferential equations with impulsive effects, perturbed by a fractional Brownian motion with Hurst parameter $H{\in}({\frac{1}{2}},\;1)$. We use the theory of resolvent operators developed in Grimmer [19] to show the existence of mild solutions. Further, we establish a new impulsive-integral inequality to prove the exponential stability of mild solutions in the mean square moment. Finally, an example is presented to illustrate our obtained results.

SYSTEM OF GENERALIZED SET-VALUED PARAMETRIC ORDERED VARIATIONAL INCLUSION PROBLEMS WITH OPERATOR ⊕ IN ORDERED BANACH SPACES

  • Akram, Mohammad;Dilshad, Mohammad
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.103-119
    • /
    • 2021
  • In this article, we study a system of generalized set-valued parametric ordered variational inclusion problems with operator ⊕ in ordered Banach spaces. We introduce the concept of the resolvent operator associated with (α, λ)-ANODSM set-valued mapping and establish the existence theorem of solution for the system of generalized set-valued parametric ordered variational inclusion problems in ordered Banach spaces. In order to prove the existence of solution, we suggest an iterative algorithm and discuss the convergence analysis under some suitable mild conditions.

INERTIAL PROXIMAL AND CONTRACTION METHODS FOR SOLVING MONOTONE VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS

  • Jacob Ashiwere Abuchu;Godwin Chidi Ugwunnadi;Ojen Kumar Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.175-203
    • /
    • 2023
  • In this paper, we study an iterative algorithm that is based on inertial proximal and contraction methods embellished with relaxation technique, for finding common solution of monotone variational inclusion, and fixed point problems of pseudocontractive mapping in real Hilbert spaces. We establish a strong convergence result of the proposed iterative method based on prediction stepsize conditions, and under some standard assumptions on the algorithm parameters. Finally, some special cases of general problem are given as applications. Our results improve and generalized some well-known and related results in literature.

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.

FUZZY NONLINEAR RANDOM VARIATIONAL INCLUSION PROBLEMS INVOLVING ORDERED RME-MULTIVALUED MAPPING IN BANACH SPACES

  • Kim, Jong Kyu;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • v.34 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this paper, we consider a fuzzy nonlinear random variational inclusion problems involving ordered RME-multivalued mapping in ordered Banach spaces. By using the random relaxed resolvent operator and its properties, we suggest an random iterative algorithm. Finally both the existence of the random solution of the original problem and the convergence of the random iterative sequences generated by random algorithm are proved.

ALGORITHMS FOR SYSTEMS OF NONLINEAR VARIATIONAL INEQUALITIES

  • Cho, Y.J.;Fang, Y.P.;Huang, N.J.;Hwang, H.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.489-499
    • /
    • 2004
  • In this paper, we introduce and study a new system of nonlinear variational inequalities. The existence and uniqueness of solution for this problem are proved and an iterative algorithm for approximating the solution of system of nonlinear variational inequalities is constructed.

GENERALIZED RELAXED PROXIMAL POINT ALGORITHMS INVOLVING RELATIVE MAXIMAL ACCRETIVE MODELS WITH APPLICATIONS IN BANACH SPACES

  • Verma, Ram U.
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.313-325
    • /
    • 2010
  • General models for the relaxed proximal point algorithm using the notion of relative maximal accretiveness (RMA) are developed, and then the convergence analysis for these models in the context of solving a general class of nonlinear inclusion problems differs significantly than that of Rockafellar (1976), where the local Lipschitz continuity at zero is adopted instead. Moreover, our approach not only generalizes convergence results to real Banach space settings, but also provides a suitable alternative to other problems arising from other related fields.

SENSITIVITY ANALYSIS FOR A SYSTEM OF GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS WITH (A, η)-ACCRETIVE MAPPINGS IN BANACH SPACES

  • Jeong, Jae-Ug;Kim, Soo-Hwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1175-1188
    • /
    • 2009
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of parametric generalized nonlinear mixed quasi-variational inclusions with (A, ${\eta$)-accretive mappings in quniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS WITH (A, $\eta$)-MONOTONE MAPPINGS IN HILBERT SPACES

  • Shang, Meijuan;Qin, Xiaolong
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, we introduce a system of nonlinear variational inclusions involving (A, $\eta$)-monotone mappings in the framework of Hilbert spaces. Based on the generalized resolvent operator technique associated with (A, $\eta$)-monotonicity, the approximation solvability of solutions using an iterative algorithm is investigated. Our results improve and extend the recent ones announced by many others.

  • PDF

APPROXIMATION-SOLVABILITY OF A CLASS OF A-MONOTONE VARIATIONAL INCLUSION PROBLEMS

  • Verma, Ram U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.1
    • /
    • pp.55-66
    • /
    • 2004
  • First the notion of the A-monotonicity is applied to the approximation - solvability of a class of nonlinear variational inclusion problems, and then the convergence analysis is given based on a projection-like method. Results generalize nonlinear variational inclusions involving H-monotone mappings in the Hilbert space setting.

  • PDF