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A SYSTEM OF NONLINEAR VARIATIONAL INCLUSIONS
WITH (A, η)-MONOTONE MAPPINGS IN HILBERT SPACES

Meijuan Shang and Xiaolong Qin

Abstract. In this paper, we introduce a system of nonlinear varia-
tional inclusions involving (A, η)-monotone mappings in the framework
of Hilbert spaces. Based on the generalized resolvent operator technique

associated with (A, η)-monotonicity, the approximation solvability of so-
lutions using an iterative algorithm is investigated. Our results improve
and extend the recent ones announced by many others.

1. Introduction

Variational inclusions problems are among the most interesting and inten-
sively studied classes of mathematical problems and have wide applications
in the fields of optimization and control, economics and transportation equi-
librium and engineering sciences. Variational inclusions problems have been
generalized and extended in different directions using the novel and innova-
tive techniques. Various kinds of iterative algorithms to solve the variational
inequalities and variational inclusions have been developed by many authors.
For details, we can refer to [1-9]. Inspired and motivated by the recent research
going on in this area, we introduce and analysis a new class of variational in-
clusions problems involving (A, η)-monotone mappings which was introduced
by Verma [9] in the framework of Hilbert spaces. Since (A, η)-monotonicity
generalizes A-monotonicity [7] and H-monotonicity [2, 3], our results improve
and extend the recent ones announced by many others.

2. Preliminaries

In this section we explore some basic properties derived from the notion of
(A, η)-monotonicity. Let H denote a real Hilbert space with the norm ∥ · ∥ and
inner product ⟨·, ·⟩. Let η : H ×H :→ H be a single-valued mapping. The map
η is called τ -Lipschitz continuous if there is a constant τ > 0 such that

∥η(u, v)∥ ≤ τ∥y − v∥, ∀u, v ∈ H.
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Definition 2.1. Let η : H × H → H be a single-valued mapping and let
M : H → 2H be a multivalued mapping on H.

(1) The map M is said to be (r, η)-strongly monotone if

⟨u∗ − v∗, η(u, v)⟩ ≥ r∥u − v∥, ∀(u, u∗), (v, v∗) ∈ Graph(M).

(2) η-pseudomonotone if ⟨v∗, η(u, v)⟩ ≥ 0 implies

⟨u∗, η(u, v)⟩ ≥ 0, ∀(u, u∗), (v, v∗) ∈ Graph(M).

(3) (m, η)-relaxed monotone if there exists a positive constant m such that

⟨u∗ − v∗, η(u, v)⟩ ≥ −m∥u − v∥2, ∀(u, u∗), (v, v∗) ∈ Graph(M).

Definition 2.2. ([2,3]) Let H : X → X be a nonlinear mapping on a Hilbert
space X and let M : X → 2X be a multivalued mapping on X. The map M is
said to be H-monotone if (H + ρM)X = X for ρ > 0.

Definition 2.3. ([7]) Let A : H → H be a nonlinear mapping on a Hilbert
space H and let M : H → 2H be a multivalued mapping on H. The map M is
said to be A-monotone if

(1) M is m-relaxed monotone.
(2) A + ρM is maximal monotone for ρ > 0.

Remark 2.4. A-monotonicity generalizes the notion of H-monotonicity intro-
duced by Fang and Huang [2,3].

Definition 2.5. ([5]) A mapping M : H → 2H is said to be maximal (m, η)-
relaxed monotone if

(1) M is (m, η)-relaxed monotone,
(2) for (u, u∗) ∈ H × H and

⟨u∗ − v∗, η(u, v)⟩ ≥ −m∥u − v∥2, ∀(v, v∗) ∈ graph(M),

we have u∗ ∈ M(u).

Definition 2.6. ([5]) Let A : H → H and η : H×H → H be two single-valued
mappings. The map M : H → 2H is said to be (A, η)-monotone if

(1) M is (m, η)-relaxed monotone,
(2) R(A + ρM) = H for ρ > 0.

Note that, alternatively, the map M : H → 2H is said to be (A, η)-monotone
if

(1) M is (m, η)-relaxed monotone,
(2) A + ρM is η-pseudomonotone for ρ > 0.

Remark 2.7. (A, η)-monotonicity generalizes the notion of A-monotonicity
introduced by Verma [7].

Definition 2.8. Let A : H → H be an (r, η)-strong monotone mapping and let
M : H → H be an (A, η)-monotone mapping. Then the generalized resolvent
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operator JA,η
M,ρ : H → H is defined by

JA,η
M,ρ(u) = (A + ρM)−1(u), ∀u ∈ H,

where ρ > 0 is a constant.

Definition 2.9. The map N : H × H is said to be relaxed (β, γ)-cocoercive
with respect to A if there exists two positive constants α, β such that

⟨Tx − Ty,Ax − Ay⟩ ≥ (−β)∥Tx − Ty∥2 + γ∥x − y∥2, ∀(x, y) ∈ H × H.

Proposition 2.10. ([9]) Let η : H× → H be a single-valued mapping, A :
H → H be (r, η)-strongly monotone mapping and M : H → 2H be an (A, η)-
monotone mapping. Then the mapping (A + ρM)−1 is single-valued.

3. Results on algorithmic convergence analysis

Let N1, N2 : H → H and η1, η2 : H × H → H be four nonlinear mappings.
Let M1 : H → 2H be an (A, η)-monotone mapping and M2 : H → 2H be
an (A2, η2)-monotone mapping, respectively. Then the nonlinear system of
variational inclusion (NSVI) problem: determine elements u, v ∈ H such that

0 ∈ A1u − A1v + ρ1[N1v + M1u],(3.1)

0 ∈ A2v − A2u + ρ2[N2u + M2v].(3.2)

Next, we consider a special case of NSVI problem (3.1)-(3.2).

(I) If M1 = M2 = M , N1 = N2 = N , u = v, η1 = η2 = η and ρ1 = ρ2 in
NSVI (3.1)-(3.2), we have the following NVI problem:

Find an element u ∈ H such that

(3.3) 0 ∈ Nu + Mu.

In order to prove our main results, we need the following lemmas.

Lemma 3.1. Let H be a real Hilbert space and let η : H × H → H be a
τ -Lipschitz continuous nonlinear mapping. Let A : H → H be a (r, η)-strongly
monotone and let M : H → 2H be (A, η)-monotone. Then the generalized
resolvent operator JA,η

M,ρ : H → H is τ/(r − ρm), that is,

∥JA,η
M,ρ(x) − JA,η

M,ρ(y)∥ ≤ τ

r − ρm
∥x − y∥, ∀x, y ∈ H.

Lemma 3.2. Let H be a real Hilbert space, let Ai : H → H be (ri, ηi)-strongly
monotone and let Mi : H → 2H be (Ai, ηi)-monotone. Let ηi : H × H → H
be a τi-Lipschitz continuous nonlinear mapping for i = 1, 2. Then (u, v) is the
solution of NSVI (3.1)-(3.2) if and only if it satisfies{

u = JA1,η1
M1,ρ1

[A1v − ρ1N1v],

v = JA2,η2
M2,ρ2

[A2u − ρ2N2u].
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Next, we consider the following algorithms.

Algorithm 3.1. For any u0, v0 ∈ H, compute the sequences {un} and {vn}
by the iterative process:{

un+1 = JA1,η1
M1,ρ1

[A1vn − ρ1N1vn],

vn = JA2,η2
M2,ρ2

[A2un − ρ2N2un].

If M1 = M2 = M , N1 = N2 = N , un = vn, η1 = η2 = η and ρ1 = ρ2 = ρ in
Algorithm 3.1, then we have the following algorithm:

Algorithm 3.2. For any u0 ∈ H, compute the sequence {un} by the iterative
processes:

un+1 = JA,η
M,ρ[Aun − ρNun].

We remark that Algorithm 3.2 gives the approximate solution to the NVI
(3.3)

Now, we are in the position to prove our main results.

Theorem 3.1. Let H be a real Hilbert space, let Ai : H × H be (ri, ηi)-
strongly monotone and si-Lipschitz continuous and let Mi : H → 2H be (Ai, ηi)-
monotone. Let ηi : H×H → H be a τi-Lipschitz continuous nonlinear mapping
and let Ni : H → H be relaxed (βi, γi)-cocoercive (with respect to Ai) and µi-
Lipschitz continuous for i = 1, 2. Let (u∗, v∗) be the solution of NSVI problem
(3.1)-(3.2), {un} and {vn} be sequences generated by Algorithm 3.1. Suppose
the following condition are satisfied: τ1τ2θ1θ2 < (r1 −ρ1m1)(r2 −ρ2m2), where
θ1 =

√
s2
1 − 2ρ1γ1 + 2ρ1β1µ2

1 + ρ2
1µ

2
1 and θ2 =

√
s2
2 − 2ρ2γ2 + 2ρ2β2µ2

2 + ρ2
2µ

2
2,

then the sequences {un} and {vn} converges strongly to u∗, v∗, respectively.

Proof. Let (u∗, v∗) ∈ H is the solution of NSVI problem (3.1)-(3.2), we have

{
u∗ = JA1,η1

M1,ρ1
[A1v

∗ − ρ1N1v
∗],

v∗ = JA2,η2
M2,ρ2

[A2u
∗ − ρ2N2u

∗].

It follows that

(3.4)

∥un+1 − u∗∥ = ∥JA1,η1
M1,ρ1

[A1vn − ρ1N1vn] − u∗∥

= ∥JA1,η1
M1,ρ1

[A1vn − ρ1N1vn] − JA1,η1
M1,ρ1

[A1v
∗ − ρ1N1v

∗]∥

≤ τ1

r1 − ρ1m1
∥A1vn − A1v

∗ − ρ(N1vn − N1v
∗)∥.
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It follows from relaxed (β1, γ1)-cocoercive monotonicity and µ1-Lipschitz con-
tinuity of N1 that

(3.5)

∥A1vn − A1v
∗ − ρ1(N1vn − N1v

∗)∥2

= ∥A1vn − A1v
∗∥2 − 2ρ1⟨N1vn − N2v

∗, A1vn − A1u
∗⟩

+ ρ2
1∥N1vn − N1v

∗∥2

≤ θ2
1∥vn − v∗∥2,

where θ1 =
√

s2
1 − 2ρ1γ1 + 2ρ1β1µ2

1 + ρ2
1µ

2
1. On the other hand, one has

(3.6)

∥vn − v∗∥ = ∥JA2,η2
M2,ρ2

[A2un − ρ2N2un] − v∗∥

= ∥JA2,η2
M2,ρ2

[A2un − ρ2N2un] − JA2,η2
M2,ρ2

[A2u
∗ − ρ2Nu∗]∥

≤ τ2

r2 − ρ2m2
∥A2un − A2u

∗ − ρ2(N2un − N2u
∗)∥.

It follows from relaxed (β2, γ2)-cocoercive monotonicity and µ2-Lipschitz con-
tinuity of N2 that

(3.7)

∥A2un − A2u
∗ − ρ2(N2un − N2u

∗)∥2

= ∥A2un − A2u
∗∥2 − 2ρ2⟨N2un − N2u

∗, A2un − A2u
∗⟩

+ ρ2
2∥N2un − N2u

∗∥2

≤ θ2
2∥un − u∗∥2,

where θ2 =
√

s2
2 − 2ρ2γ2 + 2ρ2β2µ2

2 + ρ2
2µ

2
2. Substituting (3.7) into (3.6) yields

that

(3.8) ∥vn − v∗∥ ≤ τ2θ2

r2 − ρ2m2
∥un − u∗∥.

Substituting (3.8) into (3.5), we have

(3.9) ∥A1vn − A1v
∗ − ρ1(N1vn − N1v

∗)∥ ≤ τ2θ1θ2

r2 − ρ2m2
∥un − u∗∥.

Again, Substituting (3.9) into (3.4), one has

(3.10) ∥un+1 − u∗∥ ≤ τ1τ2θ1θ2

(r1 − ρ1m1)(r2 − ρ2m2)
∥un − u∗∥.

Observing the assumption τ1τ2θ1θ2 < (r1 − ρ1m1)(r2 − ρ2m2), we can obtain
the desired conclusion. This completes the proof. ¤

From Theorem 3.1, we have the following result immediately.

Corollary 3.2. Let H be a real Hilbert space, let A : H × H be (r, η)-strongly
monotone and s-Lipschitz continuous and let M : H → 2H be (A, η)-monotone.
Let η : H × H → H be a τ -Lipschitz continuous nonlinear mapping and let
N : H → H be relaxed (β, γ)-cocoercive (with respect to A) and µ-Lipschitz
continuous for i = 1, 2. Let u∗ be the solution of NVI problem (3.3) and {un}
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be a sequence generated by Algorithm 3.2. Suppose the following condition
are satisfied: τθ < (r − ρm), where θ =

√
s2 − 2ργ + 2ρβµ2 + ρ2µ2, then the

sequence {un} converges strongly to u∗.
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