APPROXIMATION- SOLVABILITY OF A CLASS OF A-MONOTONE VARIATIONAL INCLUSION PROBLEMS

RAM U. VERMA

ABSTRACT. First the notion of the A-monotonicity is applied to the approximation - solvability of a class of nonlinear variational inclusion problems, and then the convergence analysis is given based on a projection-like method. Results generalize nonlinear variational inclusions involving H-monotone mappings in the Hilbert space setting.

1. Introduction and Preliminaries

Based on the notion of the A-monotonicity, recently the author [8] studied a new class of variational inclusion problems, including hemivariational inclusion problems applied to engineering and mechanics. The obtained results generalize some variational inclusion problems introduced and studied by Fang and Huang [2]. They solved nonlinear variational problems applying the resolvent operator technique. These notions have energized the theory of maximal monotone mappings in general. In this paper consider applications of A-monotone mappings to the approximation-solvability of a class of nonlinear variational inclusions in a Hilbert space setting. The convergence analysis for the solution is based on a projection-like method. The obtained results generalize results on general maximal monotone and H-monotone mappings, including [2]. We have established some auxiliary results as well. For more details on the generalized monotonicity, we recommend [1-9].

AMS Subject Classification: 49D15, 65B05, 47H17

Key Words and Phrases: A-monotone mappings, Resolvent operator technique, Relaxed

monotone mappings, Approximation-solvability, Projection-like methods.

Definition 1. [8] Let $A: X \to X^*$ be a mapping from a reflexive Banach space X into its dual X^* and M: $X \to P(X^*)$ be another mapping from X into the power set $P(X^*)$ of X^* . The map M is said to be A-monotone if M is m-relaxed monotone and $A + \rho M$ is maximal monotone for $\rho > 0$.

Definition 2. [2] Let $H: H \rightarrow H$ and $M: H \rightarrow 2^H$ be any two mappings on H. The map M is said to be H-monotone if M is monotone and $(H + \rho M)(H) = H$ holds for $\rho > 0$.

This is equivalent to stating that $H + \rho M$ is maximal monotone if M is monotone and $H + \rho M$ is maximal monotone. If H is strictly monotone and M is H-monotone, then M is maximal monotone. Let the resolvent operator J^{ρ}_{HM} : $H \rightarrow H$ be defined by

$$J_{HM}^{\rho}(u) = (H + \rho M)^{-1}(u) \ \forall \ u \in H.$$

On the top of that, if H is r-strongly monotone and M is H-monotone, then the resolvent operator J^{ρ}_{HM} is (1/r)-Lipschitz continuous for r > 0. From now on, P(H) shall denote the power set 2^H .

Definition 3. A mapping T: $H \rightarrow H$ is said to be:

(i) r-strongly monotone with respect to A if there exists a positive constant r such that

$$< T(x) - T(y), A(x) - A(y) > \ge ||x - y||^2 \quad \forall x, y \in H.$$

(ii) r-strongly monotone if there exists a positive constant r such that

$$< T(x) - T(y), x - y >$$
 $\ge r ||x - y||^2 \quad \forall x, y \in H.$

(iii) m-relaxed monotone if there is a positive constant m such that

$$< T(x) - T(y), x - y > \ge (-m) ||x - y||^2 \quad \forall x, y \in H.$$

(iv) (γ,s) -relaxed cocoercive with respect to A if there exist positive constants γ and s such that

$$< T(x) - T(y), A(x) - A(y) > \ge (-\gamma) ||T(x) - T(y)||^2 + s ||x - y||^2 \quad \forall x, y \in H$$

Lemma 1. Let $A: H \to H$ be r-strongly monotone and $M: H \to P(H)$ be A-monotone. Then the resolvent operator $J^{\rho}_{A,M}(u): H \to H$ is $[1/(r - \rho m)]$ -Lipschitz continuous for $0 < \rho < r/m$, where r, ρ and m are positive constants.

Proof. For any u,v∈H, we have from the definition of the resolvent operator that

$$J_{A,M}^{\rho}(\mathbf{u}) = (A + \rho \mathbf{M})^{-1}(\mathbf{u})$$

 $J_{A,M}^{\rho}(\mathbf{v}) = (A + \rho \mathbf{M})^{-1}(\mathbf{v}).$

It follows that

$$(1/\rho)[\mathbf{u} - A(J^{\rho}_{A,M}(\mathbf{u}))] \in \mathbf{M}(J^{\rho}_{A,M}(\mathbf{u}))$$
$$(1/\rho)[\mathbf{v} - A(J^{\rho}_{A,M}(\mathbf{v}))] \in \mathbf{M}(J^{\rho}_{A,M}(\mathbf{v})).$$

Since M is A-monotone (and hence m-relaxed monotone), it implies that

$$(1/\rho) < \mathbf{u} - A(J^{\rho}_{A,M}(\mathbf{u})) - [\mathbf{v} - A(J^{\rho}_{A,M}(\mathbf{v}))], \quad J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v}) >$$

$$= (1/\rho) < \mathbf{u} - \mathbf{v} - [A(J^{\rho}_{A,M}(\mathbf{u})) - A(J^{\rho}_{A,M}(\mathbf{v}))], \quad J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v}) >$$

$$\geq (-\mathbf{m}) \|J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v})\|^{2}.$$

As a result, we have

$$\|\mathbf{u} - \mathbf{v}\| \|J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v})\| \ge < \mathbf{u} - \mathbf{v}, J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v})>$$

$$\ge < A(J^{\rho}_{A,M}(\mathbf{u})) - A(J^{\rho}_{A,M}(\mathbf{v})), \quad J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v})>$$

$$- \rho \mathbf{m} \|J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v})\|^{2}$$

$$\ge \mathbf{r} \|J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v})\|^{2} - \rho \mathbf{m} \|J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v})\|^{2}$$

$$= (\mathbf{r} - \rho \mathbf{m}) \|J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v})\|^{2}.$$

Lemma 2. Let M: H \rightarrow P(H) be A-monotone. Then the resolvent operator $J^{\rho}_{I,M}$:= $(I + \rho M)^{-1}$: H \rightarrow H is $[1/(1 - \rho m)]$ -Lipschitz continuous for $0 < \rho < 1/m$, where ρ and m are positive constants and I is the identity mapping.

Lemma 3. Let $H: H \to H$ be r-strongly monotone and $M: H \to P(H)$ be H-monotone. Then the resolvent operator $J^{\rho}_{H,M}(u): H \to H$ is r-cocoercive

Proof. For any u,v∈H, we have from the definition of the resolvent operator that

$$J^{\rho}_{H,M}(\mathbf{u}) = (H + \rho \mathbf{M})^{-1}(\mathbf{u})$$

$$J_{HM}^{\rho}(v) = (H + \rho M)^{-1}(v).$$

It follows that

$$(1/\rho)[\mathbf{u} - H(J^{\rho}_{H,M}(\mathbf{u}))] \in \mathbf{M}(J^{\rho}_{H,M}(\mathbf{u}))$$

$$(1/\rho)[v - H(J^{\rho}_{H,M}(v))] \in M(J^{\rho}_{H,M}(v)).$$

Since M is H-monotone and H is r-strongly monotone, it implies that

$$(1/\rho) < u - H(J^{\rho}_{H,M}(u)) - [v - H(J^{\rho}_{H,M}(v))], \quad J^{\rho}_{H,M}(u) - J^{\rho}_{H,M}(v) > 0$$

$$= (1/\rho) < \mathbf{u} - \mathbf{v} - [H(J^{\rho}_{H,M}(\mathbf{u})) - H(J^{\rho}_{H,M}(\mathbf{v}))], \quad J^{\rho}_{H,M}(\mathbf{u}) - J^{\rho}_{H,M}(\mathbf{v}) > \geq 0.$$

As a result, we have

$$< \mathbf{u} \cdot \mathbf{v}, J^{\rho}_{H,M}(\mathbf{u}) \cdot J^{\rho}_{H,M}(\mathbf{v}) > \ge < H(J^{\rho}_{H,M}(\mathbf{u})) \cdot H(J^{\rho}_{H,M}(\mathbf{v})), \quad J^{\rho}_{H,M}(\mathbf{u}) \cdot J^{\rho}_{H,M}(\mathbf{v}) >$$

$$\ge \mathbf{r} \|J^{\rho}_{H,M}(\mathbf{u}) \cdot J^{\rho}_{H,M}(\mathbf{v})\|^{2}.$$

For H = I and $r \le 1$, $J_M^{\rho}(u) = (I + \rho M)^{-1}$: $H \to H$ is 1-cocoercive.

Lemma 4. [2] Let $H: H \to H$ be r-strongly monotone and $M: H \to P(H)$ be H-monotone. Then the resolvent operator $J^{\rho}_{H,M}: H \to H$ is (1/r)-Lipschitz continuous for a positive constant r.

Lemma 5. Let $A: H \to H$ be r-strongly monotone and M: $H \to P(H)$ be A-monotone. Then the resolvent operator $J^{\rho}_{A,M}: H \to H$ is $(r - \rho m)$ -cocoercive for $0 < \rho < r/m$, where r, ρ and m are positive constants

Proof. For any u,v∈H, we have from the definition of the resolvent operator that

$$J_{A,M}^{\rho}(\mathbf{u}) = (A + \rho \mathbf{M})^{-1}(\mathbf{u})$$

 $J_{A,M}^{\rho}(\mathbf{v}) = (A + \rho \mathbf{M})^{-1}(\mathbf{v}).$

It follows that

$$(1/\rho)[\mathbf{u} - A(J^{\rho}_{A,M}(\mathbf{u}))] \in \mathbf{M}(J^{\rho}_{A,M}(\mathbf{u}))$$
$$(1/\rho)[\mathbf{v} - A(J^{\rho}_{A,M}(\mathbf{v}))] \in \mathbf{M}(J^{\rho}_{A,M}(\mathbf{v})).$$

Since M is A-monotone (and hence m-relaxed monotone), it implies that

$$(1/\rho) < \mathbf{u} - A(J^{\rho}_{A,M}(\mathbf{u})) - [\mathbf{v} - A(J^{\rho}_{A,M}(\mathbf{v}))], \quad J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v}) >$$

$$= (1/\rho) < \mathbf{u} - \mathbf{v} - [A(J^{\rho}_{A,M}(\mathbf{u})) - A(J^{\rho}_{A,M}(\mathbf{v}))], \quad J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v}) >$$

$$\geq (-\mathbf{m}) \|J^{\rho}_{A,M}(\mathbf{u}) - J^{\rho}_{A,M}(\mathbf{v})\|^{2}.$$

As a result, we have

$$< u - v, J^{\rho}_{A,M}(u) - J^{\rho}_{A,M}(v) >$$

 $\ge < A(J^{\rho}_{A,M}(u)) - A(J^{\rho}_{A,M}(v)), \quad J^{\rho}_{A,M}(u) - J^{\rho}_{A,M}(v) >$

$$- \rho m \|J^{\rho}_{A,M}(u) - J^{\rho}_{A,M}(v)\|^{2}$$

$$\geq r \|J^{\rho}_{A,M}(u) - J^{\rho}_{A,M}(v)\|^{2} - \rho m \|J^{\rho}_{A,M}(u) - J^{\rho}_{A,M}(v)\|^{2}$$

$$= (r - \rho m) \|J^{\rho}_{A,M}(u) - J^{\rho}_{A,M}(v)\|^{2}.$$

Example 1. [3, Lemma 7.11] Let X be a reflexive Banach space and X^* its dual. Suppose that $A: X \to X^*$ is m-strongly monotone and $f: X \to R$ is locally Lipschitz such that ∂f is α -relaxed monotone. Then ∂f is A-monotone (i.e., $A + \partial f$ is maximal monotone for $m - \alpha > 0$, where $m, \alpha > 0$) for $\rho = 1$. Since A is m-strongly monotone and ∂f is α -relaxed monotone, it implies that $A + \partial f$ is $(m - \alpha)$ -strongly monotone. It further follows that $A + \partial f$ is pseudomonotone and hence $A + \partial f$ is, in fact, maximal monotone.

Example 2. [5, Theorem 4.1] Let X be a reflexive Banach space and X* its dual. Let A: X \rightarrow X* be a-strongly monotone and B: X \rightarrow X* be c-strongly Lipschitz continuous. Let f: X \rightarrow R be locally Lipschitz such that ∂ f is relaxed α -monotone. Then ∂ f is (A - B)-monotone (i.e. $A - B + \partial$ f is maximal monotone for a $-c - \alpha > 0$) for $\rho = 1$.

Let H be a real Hilbert space and let A be a nonempty closed convex subset of H. Let T: $H \rightarrow H$ be a nonlinear mapping. Let A: $H \rightarrow H$ and M: $H \rightarrow P(H)$ be any mappings. Then the problem of finding $a \in H$ such that

$$0 \in T(a) + M(a) \tag{1}$$

is called the nonlinear variational inclusion (NVI) problem.

Let f: H \rightarrow R be a locally Lipschitz continuous function and ∂ f:H \rightarrow P(H) be m-relaxed monotone.

Then for $M = \partial f$, the NVI (1) problem reduces to: find an element $a \in H$ such that

$$0 \in \mathsf{T}(\mathsf{a}) + \partial \mathsf{f}(\mathsf{a}). \tag{2}$$

If f: H \rightarrow R is proper, convex and lower semicontinuous, and f'(x) denotes the gradient of f at x such that $M(x) = \partial f(x)$ for all $x \in H$, then problem (1) reduces to: find an element $a \in A$ such that

$$< T(a), x - a > + < f'(a), x - a > \ge 0 \quad \forall x \in H,$$
 (3)

where A is a nonempty closed convex subset of H.

It follows from (3) that

$$< T(a), x - a > + f(x) - f(a) > \ge 0 \quad \forall x \in H.$$
 (4)

When $M(x) = \partial_A(x)$ for all $x \in A$, where A is a nonempty closed convex subset of and δ_A denotes the indicator function of A, the NVI (1) problem reduces to the problem: determine an element $a \in A$ such that

$$\langle T(a), x - a \rangle \ge 0 \quad \forall x \in A.$$
 (5)

Let $f: H \to R \cup \{\pm \infty\}$ be a functional on H. A functional $x^* \in H$ is a subgradient of f at u iff $f(u) \neq \mu \infty$ and

$$f(v) \ge f(u) + \langle x^*, v - u \rangle \quad \forall v \in H.$$

The set of all subgradients of f at u, denoted $\partial f(u)$, is called the subdifferential at u. If there exists no subgradients, then $\partial f(u) = \emptyset$.

A function $f: H \to R \cup \{\pm \infty\}$ is said to be *one-sided directional Gâteaux- differentiable* at x^* if there is the $f'(x^*, h)$ such that

$$\lim_{\mu \to 0} [f(x^* + \mu h) - f(x^*)]/\mu = f'(x^*, h) \quad \forall h \in H.$$

If f is convex, then f is one-sided directional Gâteaux-differentiable at every point $x \in H$ with $f(x) \neq \mu \infty$. On the top of that, we have

$$f(x) - f(u) \ge f'(u, x - u) \forall x \in H$$

and

$$f'(u, x - u) \ge - f'(u, -(x - u)) \ \forall \ x \in H.$$

A function $f: H \to R \cup \{\pm \infty\}$ is called *locally Lipschitz* at x if a neighborhood U of x exists such that f is finite on U and

$$|f(x) - f(y)| \le c ||x - y|| \forall x \in H,$$

where c is a positive constant depending on U.

Next we define the generalized directional differential (in the sense of Clarke) of f at x in the direction y, denoted $f^0(x,y)$, by

$$\lim_{\mu \to 0^+, h \to 0} [f(x+h+\mu y) - f(x+h)]/\mu = f^0(x,y).$$

The corresponding generalized gradient of f at x, denoted by $\partial f(x)$, is defined by

$$\partial f(x) = \{x^*: x^* \in H, f^0(x, y^-x) \ge \langle x^*, y^-x \rangle \quad \forall y \in H\},$$

where $\partial f: H \to 2^H$. If we set $M(x) = \partial f(x)$ in (1), then it reduces to a constrained problem: find an element $a \in H$ such that

$$< T(a), x - a > + f^{0}(a, x - a) > \ge 0 \quad \forall x \in H,$$
 (6)

Let B(u₀, r) denote the closed ball in H defined by

$$B(u_0, r) = \{v \in H: ||u_0 - v|| \le r \text{ for } r > 0\},$$

where u_0 is the center and r is the radius. Let A be a closed and star-shaped subset of H with respect to $B(u_0, r)$. A is star-shaped with respect to $B(u_0, r)$ if

$$y \in A \Leftrightarrow \lambda y + (1 - \lambda)w \in A$$
 for any $\lambda \in [0, 1]$ and $w \in B(u_0, r)$.

Let $d_A: H \rightarrow R$ denote the distance function of A defined by

$$d_A(v) = \inf_{w \in A} ||v - w|| \text{ for } v \in H.$$

Further more, let $T_A(u)$ denote Clarke's tangent cone of A at u, which is defined by

$$T_A(u) = \{k \in H : \forall u_n \to u, u_n \in A, \forall \lambda_n \to 0, \text{ there exists } k_n \to k \text{ such that } u_n + \lambda_n k_n \in A\}$$

Note that $T_A(u)$ is a closed convex cone and it always contains zero. Now if we set M(x)= $\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \left$

 $\partial \delta(T_A(x))$, where $\delta(T_A)$ denotes the indicator function of $T_A(x)$, then the NVI (1) problem reduces to: find an element $a \in A$ such that

$$< T(a), k > \ge 0 \quad \forall k \in T_A(a).$$
 (7)

Since A is not convex, the problem (7) is called a constrained hemivariational inequality (NHI) problem. Clearly, the NHI (7) problem reduces to the NVI (5) problem when A is convex.

Lemma 6. Let H be a real Hilbert space, let $A: H \to H$ be strictly monotone, and M: H $\to 2^H$ be A-monotone. Then an element $a \in H$ is a solution to the NVI (1) problem iff a satisfies

$$\mathbf{a} = J^{\rho}_{AM}[A(\mathbf{a}) - \rho \mathbf{T}(\mathbf{a})], \tag{8}$$

where T: H \rightarrow H is any mapping on H and ρ is a positive constant.

Theorem 1. Let H be a real Hilbert space. Let A: H \rightarrow H be r-strongly monotone and α -Lipschitz continuous. Let M: H \rightarrow P(H) be A-monotone. Suppose that T: H \rightarrow H be a mapping such that T is (s)-strongly monotone with respect to A and μ -Lipschitz continuous. If, in addition, there exists a constants $\rho > 0$ such that

$$\sqrt{\alpha^2 2\rho s + \rho^2 \mu^2}$$
 < r-\rhom,

then the NVI (1) problem has a unique solution.

Proof. For $u,v \in H$, let us define a mapping $\Lambda: H \to H$ by

$$\Lambda(\mathbf{u}) = J^{\rho}_{A,M}(A(\mathbf{u}) - \rho \mathbf{T}(\mathbf{u})).$$

Then we have

$$\|\Lambda(\mathbf{u}) - \Lambda(\mathbf{v})\| = \|J^{\rho}_{A,M}(A(\mathbf{u}) - \rho T(\mathbf{u})) - J^{\rho}_{A,M}(A(\mathbf{u}) - \rho T(\mathbf{u}))\|$$

$$\leq [1/(r - \rho m)] \| (A(u) - \rho T(u)) - (A(u) - \rho T(u)) \|.$$

It follows that

$$\begin{split} & \|A(u) - A(v) - \rho(T(u) - T(v))\|^2 \\ &= \|A(u) - A(v)\|^2 + \rho^2 \|T(u) - T(v)\|^2 - 2\rho < A(u) - A(v), T(u) - T(v) > \\ &\leq \alpha^2 \|u - v\|^2 + \rho^2 \mu^2 \|u - v\|^2 - 2\rho s \|u - v)\|^2 + 2\rho \gamma \|T(u) - T(v))\|^2 \\ &\leq \alpha^2 \|u - v\|^2 + \rho^2 \mu^2 \|u - v\|^2 - 2\rho s \|u - v)\|^2 \\ &\leq \alpha^2 \|u - v\|^2 + \rho^2 \mu^2 \|u - v\|^2 - 2\rho s \|u - v)\|^2 \\ &= (\alpha^2 - 2\rho s + \rho^2 \mu^2) \|u - v\|^2. \end{split}$$

Hence,

where
$$\theta = \sqrt{\alpha^2 2\rho s + \rho^2 \mu^2} < r - \rho m$$

Hence, Λ : H \rightarrow H is a contraction for $0 < \rho < r/m$. This implies that there exists a unique element $a \in H$ such that

 $\Lambda(a) = a$, that means,

$$\mathbf{a} = J^{\rho}_{AM}(A(\mathbf{a}) - \rho \mathbf{T}(\mathbf{a})).$$

It follows from Lemma 6 that a is a unique solution to the NVI (1) problem.

Corollary 1. Let H be a real Hilbert space. Let $A: H \rightarrow H$ be r-strongly monotone and α -Lipschitz continuous. Let $\partial f: H \rightarrow P(H)$ be A-monotone. Suppose that $T: H \rightarrow H$ be a mapping such that T is (s)-strongly monotone with respect to A and μ -Lipschitz continuous. If, in addition, there exists a constants $\rho > 0$ such that

$$\sqrt{\alpha^2 2\rho s + \rho^2 \mu^2}$$
 < r-\rhom,

then the NVI (2) problem has a unique solution.

Corollary 2. Let H be a real Hilbert space. Let $H: H \rightarrow H$ be r-strongly monotone and α -Lipschitz continuous. Let $M: H \rightarrow P(H)$ be H-monotone. Suppose that $T: H \rightarrow H$ be a mapping such that T is

(s)-strongly monotone with respect to H and μ -Lipschitz continuous. If, in addition, there exists a constants $\rho > 0$ such that

$$\sqrt{\alpha^2 2\rho_S + \rho^2 \mu^2} < r,$$

then the NVI (1) problem has a unique solution.

2. Convergence Analysis

In this section, we apply a projection-type iterative algorithm to approximate the unique solution to the NVI (1) problem.

Algorithm 1. For an arbitrarily chosen initial point $a^0 \in H$, compute the sequence $\{a^k\}$ such that

$$a^{k+1} = (1 - \alpha^k)a^k + \alpha^k J^{\rho}_{AM}[A(a^k) - \rho T(a^k)]$$
 for $k \ge 0$,

where the sequence $\{\alpha^k\}$ satisfies

$$0 \le \alpha^k < 1 \text{ and } \sum_{k=0}^{\infty} \alpha^k = \infty.$$

Theorem 2. Let H be a real Hilbert space. Let A: H \rightarrow H be r-strongly monotone with respect to A and α -Lipschitz continuous. Let M: H \rightarrow P(H) be A-monotone. Suppose that T: H \rightarrow H be a mapping such that T is (s)-strongly monotone with respect to A and μ -Lipschitz continuous. If, in addition, there exists a constants $\rho > 0$ such that

$$\sqrt{\alpha^2 2\rho_S + \rho^2 \mu^2}$$
 < r-\rhom for \rho < r/m,

and the sequence $\{a^k\}$ is generated by Algorithm 1, then the sequence $\{a^k\}$ converges to a unique solution to the NVI (1) problem.

Proof. Since in Theorem 1, it is shown that an element $a \in H$ is the unique solution to the, NVI (1) problem, we have

$$\begin{aligned} \|\mathbf{a}^{k+1} - \mathbf{a}\| &= \| (1 - \alpha^k) \mathbf{a}^k + \alpha^k \mathcal{J}_{A,M}^{\rho} [A(\mathbf{a}^k) - \rho \mathbf{T}(\mathbf{a}^k)] - (1 - \alpha^k) \mathbf{a} - \alpha^k) \mathcal{J}_{A,M}^{\rho} [A(\mathbf{a}) - \rho \mathbf{T}(\mathbf{a})] \| \\ &\leq (1 - \alpha^k) \| (\mathbf{a}^k - \mathbf{a}) \| + \alpha^k \| \mathcal{J}_{A,M}^{\rho} [A(\mathbf{a}^k) - \rho \mathbf{T}(\mathbf{a}^k)] - \mathcal{J}_{A,M}^{\rho} [A(\mathbf{a}) - \rho \mathbf{T}(\mathbf{a}) \| \\ &\leq (1 - \alpha^k) \| (\mathbf{a}^k - \mathbf{a}) \| + \alpha^k / (\mathbf{r} - \rho \mathbf{m}) \| A(\mathbf{a}^k) - A(\mathbf{a}) - \rho (\mathbf{T}(\mathbf{a}^k) - \mathbf{T}(\mathbf{a})) \| \end{aligned}$$

$$\leq (1 - \alpha^{k}) \| (a^{k} - a) \| + \{\alpha^{k}/(r - \rho m)\} \sqrt{\alpha^{2} 2\rho s + \rho^{2} \mu^{2}} \| (a^{k} - a) \|$$

$$= \{1 - \alpha^{k} + [\alpha^{k}/(r - \rho m)]\theta\} \| (a^{k} - a) \|$$

$$= [1 - \alpha^{k} + (\alpha^{k}/(r - \rho m))\theta] \| (a^{k} - a) \|$$

$$= \{1 - (1 - \Theta)\alpha^{k}\} \| (a^{k} - a) \|$$

$$\leq \Pi^{k}_{i=0} \{1 - (1 - \Theta)\alpha^{i}\} \| (a^{0} - a) \|,$$
(9)

where $\Theta < 1$ for $\Theta = \theta/(r - \rho m)$ and for

$$\sqrt{\alpha^2 2\rho s + \rho^2 \mu^2}$$
 < r-\rhom.

Since $\Theta < 1$ and $\sum_{k=0}^{\infty} \alpha^{k}$ is divergent, it implies from [9] that

$$\lim_{k\to\infty} \Pi^k_{j=0} \{1 - (1 - \Theta)\alpha^j\} = 0.$$

Now it follows from (5) that the sequence $\{a^k\}$ converges to a, the unique solution to the NVI (1) problem.

References

- [1] N. J. Huang, Generalized Nonlinear implicit quaivariational inclusion and an application to implicit variational inequalities, ZAMM 79(8)(1999), 560-575.
- [2] Y. P. Fang and N. J. Huang, H-monotone operators and system of variational inclusions, Communications on Applied Nonlinear Analysis 11(1)(2004), 93-101.
- [3] Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, New York, New York, 1995.
- [4] P. D. Panagiotopoulos, Hemivariational Inequalities and Their Applications in Mechanics and Engineering, Springer-Verlag, New York, New York, 1993.
- [5] B. E. Rhoades and R. U. Verma, Two-step algorithms and their applications to variational problems, Communications on Applied Nonlinear Analysis 11(2)(20040, 45-55.
- [6] R. U. Verma, Nonlinear variational and constrained hemivariational inequalities involving relaxed operators, ZAMM 77(5)(1997), 387-391.

- [7] R. U. Verma, Generalized system for relaxed cocoercive variational inequalities and projection methods, *Journal of Optimization Theory and Applications* **121**(1)(2004), 203-210.
- [8] R. U. Verma, A-monotonicity and applications to nonlinear variational inclusions, Journal of Applied Mathematics and Stochastic Analysis 17(2)(2004), to appear.
- [9] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Archiv der Mathematik 58(1992), 486-491.

International Publications 5066 Jamieson Drive, Suite B-9 Toledo, Ohio 43613, USA http://www.internationalpubls.com/journals verma99@msn.co