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APPROXIMATION- SOLVABILITY OF
A CLASS OF 4-MONOTONE VARIATIONAL
INCLUSION PROBLEMS

RAM U. VERMA

ABSTRACT. First the notion of the 4-monotonicity is applied to the approximation -
solvability of a class of nonlinear variational inclusion problems, and then the
convergence analysis is given based on a projection-like method. Results generalize nonlinear
variational inclusions involving H-monotone mappings in the Hilbert space setting.

1. Introduction and Preliminaries

Based on the notion of the A-monotonicity, recently the author [8] studied a new class of
variational inclusion problems, including hemivariational inclusion problems applied to
engineering and mechanics. The obtained results generalize some variational inclusion
problems introduced and studied by Fang and Huang [2]. They solved nonlinear variational
problems applying the resolvent operator technique. These notions have energized the
theory of maximal monotone mappings in general. In this paper consider applications of
A-monotone mappings to the approximation-solvability of a class of nonlinear variational
inclusions in a Hilbert space setting. The convergence analysis for the solution is based on a
projection-like method. The obtained results generalize results on general maximal monotone
and H-monotone mappings, including [2]. We have established some auxiliary results as
well. For more details on the generalized monotonicity, we recommend [1- 9].
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Definition 1. [8] Let 4: X —X* be a mapping from a reflexive Banach space X into its dual
X* and M: X —P(X*) be another mapping from X into the power set P(X*) of X*. The
map M is said to be 4-monotone if M is m-relaxed monotone and 4 + pM is maximal
monotone for p > 0.

Definition 2. [2] Let A: H—>H and M: H—2" be any two mappings on H. The map M is said
to be H-monotone if M is monotone and (H + pM)(H) = H holds for p > 0.
This is equivalent to stating that H + pM is maximal monotone if M is monotone and H +

pM is maximal monotone. If H is strictly monotone and M is H-monotone, then M is maximal
monotone. Let the resolvent operator J”y, : H —H be defined by

T (W)= (H + pM)"'(0) V ueH.

On the top of that, if H is r-strongly monotone and M is H-monotone, then the resolvent
operator J”;  is (1/r)-Lipschitz continuous for r > 0. From now on, P(H) shall denote the
power set 24,

Definition 3. A mapping T: H »H is said to be:

(i) r-strongly monotone with respect to 4 if there exists a positive constant r such that
<T(x) -T(y), Ax) -AQy)> 2[x-y[" VxyeH
(ii) r-strongly monotone if there exists a positive constant r such that
<TE)-T(y),x-y> 2rlx—y|> VxyeH.
(iii) m-relaxed monotone if there is a positive constant m such that -
<TE)-T(y),xy> 2(-m)|x-yf VxyeH

(iv) (y,8)-relaxed cocoercive with respect to A4 if there exist positive constants y and s such
that

<T(x) -T(y), AX) -Ay)> 2 ()] TE)-TII* +slx—~ylI* V¥ xyeH
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Lemma 1. Let 4: H—> H be r-strongly monotone and M: H— P(H) be 4-monotone. Then
the resolvent operator J” 45, (u): H — H is [1/( r -pm)]-Lipschitz continuous for 0 < p <1/m,
where 1, p and m are positive constants.

Proof. For any u,veH, we have from the definition of the resolvent operator that

J? () = (4 + pM) " (u)

T4 (V)= (4 + pM)Y" (v).
It follows that

(1/p)[w -A e ()] € M7 431 ()

(Up)v -AU” 410 (V)] € M”41 (V).
Since M is 4-monotone (and hence m-relaxed monotone), it implies that

(Up)<u-AUJ” 430 W) [V -AT 40 VD], T anr @) - P00 (v) >
= (Up)<u-v-[AUJ 4u W) -AU 40 ON],  T2am (@) -J 400 (v) >

> (-m)|| S0 (W) T 0 (V).

As a result, we have

= Vil V2 g0 (@) 740 (D 2 <0 -V, TP a0 () - P00 (V>

> <A(JPA,M (U)) -A(JPA,M (V)), JPA,M (U) -JpA,M (V)>

- pm”JpA,M W) -J? 4 Wl :
> 1200 (@) T2 ape DI -pm0 (U240 (W) 2 DI

= (r-pm) || J 40 (W) T e (D).
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Lemma 2. Let M: H — P(H) be A-monotone. Then the resolvent operator J*; =
(I +pM)": H - H is [1/(1 -pm)]-Lipschitz continuous for 0 < p < 1/m, where p and m are
positive constants and I is the identity mapping.
Lemma 3. Let : H— H be r-strongly monotone and M: H — P(H) be H-monotone. Then
the resolvent operator J”g 3 (u): H — H is r-cocoercive
Proof. For any u,veH, we have from the definition of the resolvent operator that

I (W) = (H + pM)(w)

J P (V) = (H + pM) " (v).
It follows that

(1/p)u -H(J "0 (w))] € M 50 (w))
(1/p)v -H( e (V)] € M 1m (V).
Since M is H-monotone and H is r-strongly monotone, it implies that

(/p)<u -HJ” gar W) -[v -HU "5y OD1, T 1 @) T mpe (V) >

- (1/p)< u-v- [H(JPHM (ll)) -H(JpHM (V))], Jp]-LM (LI) -JPHM (V) > 20.

As a result, we have

<u-v,J’gu@) S g (V> 2<
H(J g W) -HT 5 V), I g ) - e (V)>

> 1 W mas (@) - s (VI
For H=1Iandr <1, J”y (W=(I + pM)" : H > H is 1-cocoercive.

Lemma 4. [2] Let H: H—H be r-strongly monotone and M: H — P(H) be H-monotone.
Then the resolvent operator J”y, : H — H is (1/r)-Lipschitz continuous for a positive
constant r.

Lemma 5. Let 4: H—> H be r-strongly monotone and M: H — P(H) be A-monotone. Then
the resolvent operator J”,,, : H = H is (r -pm)-cocoercive for 0 < p < r/m, where r, p and
m are positive constants

Proof. For any u,veH, we have from the definition of the resolvent operator that
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J a0 = (4 + pM) ()

Jam (V)= (A +pM)" (v).
It follows that

(/P -A(J 40 (W)] € M”41 (W)
(UP)V -AU 130 (V)] € MU 10 (V).
Since M is 4-monotone (and hence m-relaxed monotone), it implies that
(UpY< U =AU 42g @) -V AU 4se O] T a0 (@) T 4ar (¥) >
= (UP)< UV - [AU e @) AT are D] T e (@) < e (V) >
> (-m) || S0 (@) <700 (V).
As a result, we have
<u-v, J (W) S 400 (V)>

> <A am (@) AT arr V))s T ape (@) I u (V>

- pm U2 400 (W) -S4 V]|
21 P () T I -pm e (W) - s (V) ?
= (1 -pm) || J 40 () T P W

Example 1. [3, Lemma 7.11] Let X be a reflexive Banach space and X* its dual. Suppose that
A4; X 5X* is m-strongly monotone and f: X—R is locally Lipschitz such that of is a-relaxed
monotone. Then &f is 4-monotone (i.e., 4 + of is maximal monotone for m -o > 0, where m,
a > 0) for p = 1. Since A4 is m-strongly monotone and of is a-relaxed monotone, it
implies that 4 + of is (m -a)-strongly monotone. It further follows that A4 + of is
pseudomonotone and hence A4 + of is, in fact, maximal monotone.

Example 2. [5, Theorem 4.1] Let X be a reflexive Banach space and X* its dual. Let 4: X
—>X* be a-strongly monotone and B: X —X* be c-strongly Lipschitz continuous. Let f: X
—R be locally Lipschitz such that of is relaxed a-monotone. Then of is (4 -B)-monotone (i.e.
A -B+0f is maximal monotone fora-c-a>0) for p=1.
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Let Hbe a real Hilbert space and let A be a nonempty closed convex subset of H Let T:
H —H be a nonlinear mapping. Let 4: H—H and M: H ->P(H) be any mappings. Then the
problem of finding g e H such that

0 € T(a) + M(a) §))
is called the nonlinear variational inclusion (NVI) problem.
Let f: H >R be a locally Lipschitz continuous function and of:H —P(H) be m-relaxed
monotone.
Then for M = of, the NVI (1) problem reduces to: find an element acH such that

0 € T(a) + Of(a). 2
If f: H >R is proper, convex and lower semicontinuous, and ' (x) denotes the gradient of f at x

such that M(x) = of(x) for all xeH, then problem (1) reduces to: find an element a €A such
that

<T(a),x-a>+<f(a),x-a> =20 VxeH, 3)
where A is a nonempty closed convex subset of H.
It follows from (3) that

<T(a),x-a>+f(x)-f(a)> =20 VxeH. 4)

When M(x) = 0a(x) for all xeA, where A is a nonempty closed convex subset of and 8,
denotes the indicator function of A, the NVI (1) problem reduces to the problem: determine
an element a €A such that

<T(@),x-a> 20 VxeA. &)

Let f: H>RU{* o} be a functional on H. A functional x*<H is a subgradient of f at u iff
f{u) # 1 o and

fiv)2flu) +<x*,v-u> VveH.

The set of all subgradients of f at u, denoted df(u), is called the subdifferential at u. If there
exists no subgradients, then of(u) = &.
A function f: H 5RU{* o0} is said to be one-sided directional Gdteaux- differentiable at
x* if there is the f'(x*, h) such that
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lim, o [f(x* + ph) -f(x*)/u=f(x*,h) VheH.
If f is convex, then f is one-sided directional Gateaux-differentiable at every point xeH with

f(x) # . On the top of that, we have

f(x) - f(u) = f'(u, x -u) v xeH,
and

f'(u,x -u)>-f(u, -(x -u)) vV xeH.

A function f: H ->RU{+ o} is called locally Lipschitz at x if a neighborhood U of x exists
such that f'is finite on U and

[0 -fy) | <c[lx —y]| ¥ xeH,
where c is a positive constant depending on U.

Next we define the generalized directional differential (in the sense of Clarke) of f at x in
the direction y, denoted  (x,y), by

Bm ornoe  [HX +h+py) fx + h)/p =1 ().

The corresponding generalized gradient of f at x, denoted by af(;c ), is defined by

5f(x) = {x*: x*eH, ' (x, y x) > <x*, yx> VyeH},
where Of H —2". If we set M(x) = of(x) in (1), then it reduces to a constrained problem:
find an
element a €H such that
<T(a),x-a>+f0(a,x—a)> >0 VxeH, 6)
Let B(uy, r) denote the closed ball in H defined by

B(ug, 1) = {veH: |uy—v| <1 forr> 0},

where uo is the center and r is the radius. Let A be a closed and star-shaped subset of H with
respect to B(uy, 1). A is star-shaped with respect to B(uy, r) if

veA < Av + (1 -M)w €A for any A€[0, 1] and weB(uo, ).
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Let d4 : H =R denote the distance function of A defined by
da(v)=infwca |Iv—w| for veH.
Further more, let T4(u) denote Clarke’s tangent cone of A at u, which is defined by
Ta(u) = {keH : V u, >u, u, €A, V A, 0, there exists k,— k such that u, + Akn €A}

Note that T(u) is a closed convex cone and it always contains zero. Now if we set M(x)

88(Tx (x)), where 8(T4 ) denotes the indicator function of ~T(x), then the NVI (1) problem
reduces to: find an element ac A such that

<T(a),k> 20 Vke Ta(a). 0

Since A is not convex, the problem (7) is called a constrained hemivariational inequality
(NHI) problem. Clearly, the NHI (7) problem reduces to the NVI (5) problem when A is
convex.

Lemma 6. Let Hbea real Hilbert space, let 4: H—>H be strictly monotone, and M: H
— 2% be A-monotone. Then an element acH is a solution to the NVI (1) problem iff a
satisfies

a=J’4u[4(a)-pT(a)], ®)

where T: H —H is any mapping on H and p is a positive constant.

Theorem 1. Let H be a real Hilbert space. Let 4: H—>H be r-strongly monotone and
a-Lipschitz continuous. Let M: H —> P(H) be 4-monotone. Suppose that T: H—>H be a
mapping such that T is (s)-strongly mootone with respect to 4 and p-Lipschitz continuous. If,
in addition, there exists a constants p > 0 such that

Vo 2ps + p W’ < r-pm,
then the NVI (1) problem has a unique solution.
Proof. For u,veH, let us define a mapping A: H ->H by

AQ) =J? 41 (A) -pT(w)).
Then we have

IA@) -AW)]| = 740 (A(w) -pT(W)) - T’ 4.1 (A(w) -pT(W))]
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<[1/x -pm)] || (A(w) -pT(w)) -(4(w) -pT(u))-
It follows that

() -A(V) - p(T(w) -TW))|*
= [A() -AM)])* +p* IT(0) -TWII* -2p< A(w) -A(V), T(w) -T(v)>
< o fu-vif + p* i fju -vIf* -2ps u-v) > + 207 [T(W) -T(W) |1*
<o fu - vI* + p? i Ju -vI* 2ps flu -v) ||

= (o’ 2ps+p 1) lu-v[’.
Hence,

| Au) -A(v) | < [6/(r -pm)] lu-v

’

where 0= o’ 2ps + p’ u,z < r-pm

Hence, A: H —H is a contraction for 0 < p < r/m. This implies that there exists a unique
element acH such that

A(a) = a,
that means,

a= Ju(4(2)-pT(a).
It follows from Lemma 6 that a is a unique solution to the NVI (1) problem.

Corollary 1. Let H be a real Hilbert space. Let 4: H—>H be r-strongly monotone and
o-Lipschitz continuous. Let 8f: H — P(H) be A-monotone. Suppose that T: H—>Hbe a
mapping such that T is (s)-strongly monotone with respect to A and p-Lipschitz continuous.
If, in addition, there exists a constants p > 0 such that

\/aTZps + p2 u.z < r-pm,

then the NVI (2) problem has a unique solution.
Corollary 2. Let H be a real Hilbert space. Let H: H—>H be r-strongly monotone and

o-Lipschitz continuous. Let  M: H — P(H) be H-monotone. Suppose that T: H—>Hbe a
mapping such that T is
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(s)-strongly monotone with respect to H and p-Lipschitz continuous. If, in addition, there
exists a constants p > 0 such that

Vo 2ps +p < 1,

then the NVI (1) problem has a unique solution.

2. Convergence Analysis

In this section, we apply a projection-type iterative algorithm to approximate the unique
solution to the NVI (1) problem.

Algorithm 1. For an arbitrarily chosen initial point a’ eH, compute the sequence {ak}
such that
a"! = (1 -a)a* + of Py [4(2- pT(a")] for k 20,
where the sequence {ak} satisfies
0 <o<land Z*.-oaf=c0.

Theorem 2. Let H be a real Hilbert space. Let 4: H—H be r-strongly monotone with respect
to 4 and a-Lipschitz continuous. Let M: H — P(H) be 4-monotone. Suppose that T: H
—H be a mapping such that T is (s)-strongly monotone with respect to 4 and
u-Lipschitz continuous. If, in addition, there exists a constants p > 0 such that

VoZ2ps+p* < r-pmfor p< t/m,

and the sequence {a"} is generated by Algorithm 1, then the sequence {ak} converges to a
unique solution to the NVI (1) problem.

Proof. Since in Theorem 1, it is shown that an element acH is the unique solution to the,
NVI (1) problem, we have

o -ali=1| (1-a)a* + & Pop[A(a)- pT(@)] (1 -0")a - W ane [4(2)- PT(@)] |
<(1-0% || (2 -a) || + & [P 4 [A(2)- pT(@)] Lau[A(8)- pT() |

<(1-a || (2 -a) || + o /(r -pm) 4(a")- 4(a) - p(T(a") -T(@)) |
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< (1 -0 |} 2 -a) || + {a/(x -pm)}Vo® 2ps + p* * || (2" -a) |
= {1 o +[a"/(r-pm)]0}| (" -a) |

=[1-a* +(%r-pm))0] || (@ -a) |
= {11-0@)"}| (a“-a) |

< T {1-(1- @) ]| @°-a) || )
where O < 1 for ®= 0/(r -pm) and for

\/aZZps + p2 Hz < r-pm.
Since ® < 1 and Z%o0a" is divergent, it implies from [9] that
My e TT* = {1 -(1 - ©)cd } = 0.

Now it follows from (5) that the sequence {a"} converges to a, the unique solution to the
NVI (1) problem.
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