• Title/Summary/Keyword: Resistance switching

Search Result 367, Processing Time 0.027 seconds

The Analysis of Oxidization Characteristics according to the shapes of RCD contacts (RCD 접점형태에 따른 산화특성 분석)

  • Kim, Dong-Woo;Kim, Hyang-Kon;Gil, Hyoung-Jun;Han, Woon-Kim;Choi, Chung-Seog
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.576-577
    • /
    • 2005
  • In this paper, the oxidization characteristics were analyzed according to the shapes of Residual Current Protective Device(RCD) contacts. RCD is an electrical safety device specially designed to immediately switch the electricity off when electric leakage is detected at a level harmful to a person using electrical equipment. The shapes of RCD contacts are a little bit different according to the models. When RCD is turned on, stationary and moving contact do not fit together. So, it can cause the increase of contact resistance. To discover the deterioration characteristics of RCD contacts by switching repetition, the contacts were analyzed by stereo microscope, Scanning Electron Microscope(SEM) and Energy Dispersive X-ray Spectrometer(EDS).

  • PDF

Improvement of Fatigue Properties in Ferroelectric Dy-Doped Bismuth Titanate(BDT) Thin Films Deposited by Liquid Delivery MOCVD System (Liquid Delivery MOCVD로 증착된 강유전체 BDT 박막의 피로 특성 향상)

  • Kang, Dong-Kyun;Park, Won-Tae;Kim, Byong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.171-171
    • /
    • 2007
  • Dysprosium-doped bismuth titanate (BDT) thin films were successfully deposited on Pt(111)/Ti/$SiO_2$/Si(100) substrates by liquid delivery MOCVD process and their structural and ferroelectric properties were characterized. Fabricated BDT thin films were found to be random orientations, which were confirmed by X-ray diffraction experiment and scanning electron microscope analysis. The crystallinity of the BDT films was improved and the average grain size increased as the crystallization temperature increased from 600 to $720^{\circ}C$ at an interval of $40^{\circ}C$. The BDT thin film annealed at $720^{\circ}C$ showed a large remanent polarization (2Pr) of $52.27\;{\mu}C/cm^2$ at an applied voltage of 5V. The BDT thin film exhibits a good fatigue resistance up to $1.0{\times}10^{11}$ switching cycles at a frequency of 1 MHz with applied pulse of ${\pm}5\;V$. These results indicate that the randomly oriented BDT thin film is a promising candidate among ferroelectric materials useti비 in lead-free nonvolatile ferroelectric random access memory applications.

  • PDF

Design and Verification of Improved Cascaded Multilevel Inverter Topology with Asymmetric DC Sources

  • Tarmizi, Tarmizi;Taib, Soib;Desa, M.K. Mat
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1074-1086
    • /
    • 2019
  • This paper presents the design and implementation of an improved cascaded multilevel inverter topology with asymmetric DC sources. This experimental inverter topology is a stand-alone system with simulations and experiments performed using resistance loads. The topology uses four asymmetric binary DC sources that are independent from each other and one H-bridge. The topology was simulated using PSIM software before an actual prototype circuit was tested. The proposed topology was shown to be very efficient. It was able to generate a smooth output waveform up to 31 levels with only eight switches. The obtained simulation and experimental results are almost identical. In a 1,200W ($48.3{\Omega}$) resistive load application, the THDv and efficiency of the topology were found to be 1.7% and 97%, respectively. In inductive load applications, the THDv values were 1.1% and 1.3% for an inductive load ($R=54{\Omega}$ dan L=146mH) and a 36W fluorescent lamp load with a capacitor connected at the dc bus.

Time-resolved polarization and depolarization tracking on reaction pathway of calcium carbonates in a view of non-classical nucleation theory (비전통핵생성 이론 관점에서 탄산칼슘의 반응경로에 대한 시간분해 분극 및 탈분극 추적)

  • Kim, Gwangmok
    • Journal of Urban Science
    • /
    • v.9 no.2
    • /
    • pp.45-50
    • /
    • 2020
  • The formation characteristics of calcium carbonates are closely related to the durability and mechanical properties of cement-based materials. In this regard, a deep understanding of the reaction pathway of calcium carbonates is critical. Recently, non-classical nucleation theory was summarized and it was presumed that prenucleation clusters are present. The formation of the prenucleation cluster at undersaturated condition (≈ 0.1 ml) in the present study was investigated via electrical characteristics of an electrolytic solution. Calcium chloride dihydrate (CaCl2·2H2O) and sodium carbonate (Na2CO3) were used as starting materials to supply calcium and carbonate sources, respectively. Furthermore, the reaction pathway of calcium carbonates was investigated by time-resolved polarization and depolarization characteristics of the electrolytic solution. The time-resolved polarization and depolarization tests were conducted by switching polarity with an interval of 20 seconds for 1 hr and by measuring the variation of electrical resistance. It can be inferred from the results obtained in the present study that the reactive constituent for the formation of calcium carbonates was mostly consumed in the period possibly associated with the prenucleation and the reaction pathways may be governed by the monomer-addition mechanism.

Highly ordered TiO2 nanotubes; Synthesis and applications (고도로 정렬된 TiO2 나노튜브의 제조와 활용)

  • Yoo, JeongEun;Lee, Kiyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Titanium dioxide (TiO2) is one of the most intensively investigated materials in materials science. Mostly, TiO2 has been used in the form of nanoparticles, but recently new highly ordered TiO2 nanotubes (U-tube) has been introduced and applied to various applications due to their one-dimensional charge path way. In the present paper, we described the formation process and physical properties of U-tube then, gave examples of applications in sequence. Firstly, in photocatalysis, U-tube was used with Au/Pt co-catalysts and showed enhanced photogenerated H2 efficiency compared to bare TiO2. Secondly, photoelectrochemical performance of U-tube was evaluated with different heat-treatment temperatures. As a further application, two different types of electrical cell (Ti-TiO2-Pt and Ti-TiO2-PtNP) was configurated to observe memristive behavior of U-tube. Both cells behaved as switching electrodes and follow a memristive movement in the high and low resistance state extremely well with high reproducibility.

Analyzed Model of The Active Filter combined with SMES

  • Kim A-Rong;Kim Jae-Ho;Kim Hae-Jong;Kim Seok-Ho;Seong Ki-Chul;Park Min-Won;Yu In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.20-24
    • /
    • 2006
  • Recently, utility network is becoming more and more complicated and huge due to IT and OA devices. In addition to, demands of power conversion devices which have non-linear switching devices are getting more and more increased. Consequently, because of the non-linear power semiconductor devices, current harmonics are unavoidable. Sometimes those current harmonics flow back to utility network and become one of the main reasons which can make the voltage distortion. Also, it makes noise and heat loss. On the other hands, voltage sag from sudden increasing loads is also one of the terrible problems inside of utility network. In order to compensate the current harmonics and voltage sag problem, AF(active filter) systems could be a good solution method. SMES is a very good promising source due to it's high response time of charge and discharge. Therefore, the combined AF and SMES system can be a wonderful device to compensate both harmonics current and voltage sag. However, SMES needs a superconducting magnetic coil. Because of using this superconducting magnetic coil, quench problem caused by unexpected reasons have always been unavoidable. Therefore, to solve out mentioned above, this paper presents a decisive method using shunt and series active filter system combined with SMES. Especially, authors analyzed the change of original energy capacity of SMES regarding to the size of resistance caused by quench of superconducting magnetic coil.

Analysis of the Gate Bias Effects of the Cascode Structure for Class-E CMOS Power Amplifier (CMOS Class-E 전력증폭기의 Cascode 구조에 대한 게이트바이어스 효과 분석)

  • Seo, Donghwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.435-443
    • /
    • 2017
  • In this study, we analyzed the effects of the common-gate transistor bias of a switching mode CMOS power amplifier. Although the most earier works occured on the transistor sizes of the cascode structure, we showed that the gate bias of the common-gate transistor also influences the overall efficiency of the power amplifier. To investigate the effect of the gate bias, we analyzed the DC power consumption according to the gate bias and hence the efficiency of the power amplifier. From the analyzed results, the optimized gate bias for the maximum efficiency is lower than the supply voltage of the power amplifier. We also found that an excessively low gate bias may degrade the output power and efficiency owing to the effects of the on-resistance of the cascode structure. To verify the analyzed results, we designed a 1.9 GHz switching mode power amplifier using $0.18{\mu}m$ RF CMOS technology. As predicted in the analysis, the maximum efficiency is obtained at 2.5 V, while the supply voltage of power amplifier is 3.3 V. The measured maximum efficiency is 31.5 % with an output power of 29.1 dBm. From the measureed results, we successfully verified the analysis.

Improved breakdown characteristics of Ga2O3 Schottky barrier diode using floating metal guard ring structure (플로팅 금속 가드링 구조를 이용한 Ga2O3 쇼트키 장벽 다이오드의 항복 특성 개선 연구)

  • Choi, June-Heang;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.193-199
    • /
    • 2019
  • In this study, we have proposed a floating metal guard ring structure based on TCAD simulation in order to enhance the breakdown voltage characteristics of gallium oxide ($Ga_2O_3$) vertical high voltage switching Schottky barrier diode. Unlike conventional guard ring structures, the floating metal guard rings do not require an ion implantation process. The locally enhanced high electric field at the anode corner was successfully suppressed by the metal guard rings, resulting in breakdown voltage enhancement. The number of guard rings and their width and spacing were varied for structural optimization during which the current-voltage characteristics and internal electric field and potential distributions were carefully investigated. For an n-type drift layer with a doping concentration of $5{\times}10^{16}cm^{-3}$ and a thickness of $5{\mu}m$, the optimum guard ring structure had 5 guard rings with an individual ring width of $1.5{\mu}m$ and a spacing of $0.2{\mu}m$ between rings. The breakdown voltage was increased from 940 V to 2000 V without degradation of on-resistance by employing the optimum guard ring structure. The proposed floating metal guard ring structure can improve the device performance without requiring an additional fabrication step.

Current Sensing Trench Gate Power MOSFET for Motor Driver Applications (모터구동 회로 응용을 위한 대전력 전류 센싱 트렌치 게이트 MOSFET)

  • Kim, Sang-Gi;Park, Hoon-Soo;Won, Jong-Il;Koo, Jin-Gun;Roh, Tae-Moon;Yang, Yil-Suk;Park, Jong-Moon
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.220-225
    • /
    • 2016
  • In this paer, low on-resistance and high-power trench gate MOSFET (Metal-Oxide-Silicon Field Effect Transistor) incorporating current sensing FET (Field Effect Transistor) is proposed and evaluated. The trench gate power MOSFET was fabricated with $0.6{\mu}m$ trench width and $3.0{\mu}m$ cell pitch. Compared with the main switching MOSFET, the on-chip current sensing FET has the same device structure and geometry. In order to improve cell density and device reliability, self-aligned trench etching and hydrogen annealing techniques were performed. Moreover, maintaining low threshold voltage and simultaneously improving gate oxide relialility, the stacked gate oxide structure combining thermal and CVD (chemical vapor deposition) oxides was adopted. The on-resistance and breakdown voltage of the high density trench gate device were evaluated $24m{\Omega}$ and 100 V, respectively. The measured current sensing ratio and it's variation depending on the gate voltage were approximately 70:1 and less than 5.6 %.

Study on the Method of Analyzing the Plasticizer of Petrochemical Products using MD-GC/MS (MD-GC/MS를 활용한 석유화학제품의 가소제(DOA, DOP) 분석방법 연구)

  • Doe, Jin-woo;Youn, Ju-min;Kang, Hyung-kyu;Hwang, In-ha;Ha, Jong-han;Na, Byung-ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.1085-1093
    • /
    • 2017
  • Plasticizers are materials added to give softness and elasticity to plastics having rigid properties to give soft properties as products, and they are mainly added to high molecular materials to give flexibility to improve workability and to improve cold resistance, resistance to volatility and electrical properties. It is used for the purpose. Most plasticizers are inert liquids, similar in function to solvents but with high molecular weight and no volatility. In addition, when dissolved in petrochemical products, only the plasticizer is separated by the matrix effect with other compounds, and qualitative and quantitative analysis. In this study, qualitative and quantitative analysis of DOA and DOP, which are representative components of petrochemical products, were conducted using MD-GC/MS and developed an optimal plasticizer analysis method.