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Abstract 

 

This paper presents the design and implementation of an improved cascaded multilevel inverter topology with asymmetric DC 
sources. This experimental inverter topology is a stand-alone system with simulations and experiments performed using resistance 
loads. The topology uses four asymmetric binary DC sources that are independent from each other and one H-bridge. The topology 
was simulated using PSIM software before an actual prototype circuit was tested. The proposed topology was shown to be very 
efficient. It was able to generate a smooth output waveform up to 31 levels with only eight switches. The obtained simulation and 

experimental results are almost identical. In a 1,200W (48.3) resistive load application, the THDv and efficiency of the topology 
were found to be 1.7% and 97%, respectively. In inductive load applications, the THDv values were 1.1% and 1.3% for an inductive 

load (R=54 dan L=146mH) and a 36W fluorescent lamp load with a capacitor connected at the dc bus. 
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I. INTRODUCTION 

There are many types of inverter technologies available, 
such as the voltage source inverter (VSI) and the current 
source inverter (CSI), depending on the DC-link energy storage 
component. VSIs are classified into two-level inverters and 
multilevel inverters (MLI) [1]. The first MLI was introduced 
in 1981 by Nabae. It was a three-level inverter using the 
neutral point of the DC line. This topology is referred to as 
Neutral-Point-Clamped (NPC) [2]. Furthermore, the MLI fly 
capacitor topology [3]-[6] and the cascaded H-bridge [5]-[8] 
topology were proposed in the nineties. 

In addition, some modulation and switching control 
techniques as well as those in two-level inverters are used by 
MLIs such as multilevel sinusoidal pulse width modulation 
(PWM), multilevel selective harmonic elimination, and space- 
vector modulation (SVM). The MLI type inverter is gaining 

popularity due to its better harmonic performance, high 
efficiency, lower electromagnetic interference, lower voltage 
stress and lower dv/dt ratio [9]-[16]. 

The cascaded H-bridge (CHB) is a recent MLI variant. 
With this topology, a higher number of output voltage levels 
can be achieved with fewer switches. The use of an H-bridge 
makes the circuit easy to modulate and easy to pack (making 
them faster and cheaper to build). However, the main 
disadvantage of the CHB-MLI is that a separate DC source is 
required [17]. The CHB-MLI is suitable for energy applications 
such as multi-panels PV systems, where the panels are 
connected as separate sources of the configuration. 

Recently, there have been many proposed designs for reduced 
device count multilevel inverters (RDC-MLIs), especially H- 
bridge inverters such as the cascaded half-bridge-based 
multilevel DC-link (MLDCL) inverter, switched series/parallel 
sources (SSPS)-based MLI, series-connected switched sources 
(SCSS)-based MLI, multilevel module (MLM)-based MLI, 
reversing voltage (RV) topology, two-switch enabled level- 
generation (2SELG) based MLI and cascaded multilevel 
inverter minimum number of switches (MLI-MNS) [18], [19]. 

The MLDCL topology uses six symmetric DC sources, 12 
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switches at the generation level and 4 switches on the 
H-bridge sections. This topology obtained a result wave of 13 
output levels, and harmonics (THDv) below 5% after using a 
low pass filter (LPF) [20], [21]. The MLI-MNS has the same 
topology as the MLDCL. The difference is in the number of 
DC sources and the number of switches at the generation 
level. It uses five symmetric DC sources and 10 switch 
sources on the generation level portion. The number of output 
wave levels is lower at only 11 levels [19]. 

A single-phase multilevel inverter using switched series/ 
parallel DC voltage sources has been presented [22], [23]. In 
this topology, the switch is operated in series and parallel to 
the DC source. In practice, with three symmetrical DC sources 
and 12 switches, 11-levels of output voltage waveform were 
obtained. The drawback of this topology is that it required a 
low pass filter to keep harmonics below 5%. 

A new multilevel inverter topology has been presented in 
[24], [25], which is called reversing voltage (RV). This 
topology uses symmetrical DC sources, where 10 switches are 
required to obtain 7 levels of output voltage. The disadvantages 
of this topology include the use of PWM switching and a low 
pass filter to keep the THD below 5%. 

A new cascaded multilevel inverter topology with a 
minimum number of switching has been described in [26]. In 
this topology, the number of switches is the number of DC 
sources plus five for resistive loads. For 41 levels of output 
voltage, 25 switches were used for resistive loads with 20 DC 
sources, where a THDv of 2% was obtained. However, it was 
found that a high number of sources and DC switches were 
required. 

CHB type inverters can be operated as symmetric and 
asymmetric DC sources. In asymmetrical operation, the 
configuration ratios of the DC source voltages for each 
H-bridge are not equal. The first asymmetric CHB topology 
was proposed by Manjrekar. A DC input source that is not 
equal as a 1: 2 ratio that reaches  is called an 
asymmetric binary configuration [27], [28]. Lai and Shu 
proposed a symmetrical topology with a DC ratio of a 1:3 
input source, which is referred to as a trinary asymmetric 
configuration [29]. 

The topology in this paper is based on [16]-[18]. It uses an 
asymmetric DC source with a reduced number of switches. 
The topology proposed in this paper subtracts the switch at 
the generation level (eliminating the reverse switch) and uses 
an asymmetry DC source. 

The proposed topology was first simulated using PSIM 
followed by a prototype circuit. Verification of the topology 
was conducted through laboratory experiments on resistive 
loads. Experiments were performed at a maximum power of 
1,200W. 

The contribution of this study is a comparison with papers 
[16]-[18]. For the same number of sources, the output wave 
level is higher and the THD is lower without using a low pass  

 
 

Fig. 1. Proposed multilevel inverter with a reduced number of 
switches.  
 
filter (LPF). The number of switches is lower so that the 
conduction loss and switching power loss are lower. Thus, a 
higher efficiency can be obtained. A lower the number of 
switches means lower manufacturing costs. 

 

II. TOPOLOGY, PRINCIPLE OF OPERATION AND 

DEGREE SWITCHING 

A. Topology 

This MLI topology reduces the number of switches used 
and four DC sources are asymmetric (not equal) voltage 
levels. The topology of the proposed multilevel inverter is 
shown in Fig. 1, which shows the number of switches used, 
four asymmetric DC sources voltage levels, generation levels 
(S1-S4 & D1-D4) and H-bridges (S5-S8). Level generation 
produces a multilevel wave of a half wave during a positive 
period and the H-bridge inverts the waveform for a complete 
one period waveform (positive and negative period). 

The VS1-VS4 source voltages are asymmetric binary, where 
VS1 is the least significant bit and VS4 is the most significant 

bit. Then the values VS1 , VS2 , VS3  

and VS4 . Therefore. the ratio of the source voltage is 

VS1: VS2: VS3: VS4 = VS1: 2VS1: 4VS1: 8VS1. 
The number of DC sources and switches at the generation 

level will determine the waveform output level. This can be 
calculated according to the equation below: 

                  (1) 

Where Lvo is output level voltage and n is the number of DC 
sources. Based on equation (1) this multilevel inverter 
topology produces 31 levels. 
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TABLE I 
SWITCH CONDUCTION DURING HALF A PERIOD AND VOLTAGE AT VBUS 

Mod 
Operation 

Time 
Conduction 

Switch Conduction Voltage at Vbus(max) Voltage Drop in Switch (VSW) 

1 t0-t1 D1,D2,D3,D4,S5,S6 V0=0 4VF(diode)+2VCE(ON) 

2 t1-t2 S1,D2,D3, D4,S5,S6 V1=VS1 3VF(diode)+3VCE(ON) 

3 t2-t3 D1,S2,D3, D4,S5,S6 V2=VS2 3VF(diode)+3VCE(ON) 

4 t3-t4 S1,S2,D3,D4,S5,S6 V3=VS1+VS2 2VF(diode)+4VCE(ON) 

5 t4-t5 D1,D2,S3,D4,S5,S6 V4=VS3 3VF(diode)+3VCE(ON) 

6 t5-t6 S1,D2,S3,D4,S5,S6 V5=VS1+VS3 2VF(diode)+4VCE(ON) 

7 t6-t7 D1,S2,S3,D4,S5,S6 V6=VS2+VS3 2VF(diode)+4VCE(ON) 

8 t7-t8 S1, S2,S3,D4,S5,S6 V7=VS1+VS2+VS3 1VF(diode)+5VCE(ON) 

9 t8-t9 D1,D2,D3,S4,S5,S6 V8=VS4 3VF(diode)+3VCE(ON) 

10 t9-t10 S1,D2,D3,S4,S5,S6 V9=VS1+VS4 2VF(diode)+4VCE(ON) 

11 t10-t11 D1,S2,D3,S4,S5,S6 V10=VS2+VS4 2VF(diode)+4VCE(ON) 

12 t11-t12 S1,S2,D3,S4,S5,S6 V11=VS1+VS2+VS4 1VF(diode)+5VCE(ON) 

13 t12-t13 D1,D2,S3,S4,S5,S6 V12=VS3+VS4 2VF(diode)+4VCE(ON) 

14 t13-t14 S1,D2,S3,S4,S5,S6 V13=VS1+VS3+VS4 1VF(diode)+5VCE(ON) 

15 t14-t15 D1,S2,S3,S4,S5,S6 V14=VS2+VS3+VS4 1VF(diode)+5VCE(ON) 

16 t15-t16 S1, S2, S3, S4,S5,S6 V15=VS1+VS2+VS3+VS4 6VCE(ON) 

17 t16-t17 D1,S2,S3,S4,S5,S6 V16=VS2+VS3+VS4 1VF(diode)+5VCE(ON) 

18 t17-t18 S1,D2,S3,S4,S5,S6 V17=VS1+VS3+VS4 1VF(diode)+5VCE(ON) 

19 t18-t19 D1,D2,S3,S4,S5,S6 V18=VS3+VS4 2VF(diode)+4VCE(ON) 

20 t20-t21 S1,S2,D3,S4,S5,S6 V19=VS1+VS2+VS4 1VF(diode)+5VCE(ON) 

21 t21-t22 D1,S2,D3,S4,S5,S6 V20=VS2+VS4 2VF(diode)+4VCE(ON) 

22 t22-t23 D1,S2,D3,S4,S5,S6 V21=VS2+VS4 2VF(diode)+4VCE(ON) 

23 t23-t24 D1,D2,D3,S4,S5,S6 V22=VS4 3VF(diode)+3VCE(ON) 

24 t24-t25 S1, S2,S3,D4,S5,S6 V23=VS1+VS2+VS3 1VF(diode)+5VCE(ON) 

25 t25-t26 D1,S2,S3,D4,S5,S6 V24=VS2+VS3 2VF(diode)+4VCE(ON) 

26 t26-t27 S1,D2,S3,D4,S5,S6 V25=VS1+VS3 2VF(diode)+4VCE(ON) 

27 t27-t28 D1,D2,S3,D4,S5,S6 V26=VS3 3VF(diode)+3VCE(ON) 

28 t28-t29 S1,S2,D3,D4,S5,S6 V27=VS1+VS2 2VF(diode)+4VCE(ON) 

29 t29-t30 D1,S2,D3,D4,S5,S6 V28=VS2 3VF(diode)+3VCE(ON) 

30 t30-t31 S1,D2,D3, D4,S5,S6 V29=VS1 3VF(diode)+3VCE(ON) 

31 t31-t32 D1,D2,D3,D4,S5,S6 V30=0 4VF(diode)+2VCE(ON) 

 
The sequence for the switches S1-S8 for half of a period 

(t0-t31/mode operation 1-31), the instantaneous voltage at the 
output generation level (Vbus) and voltage drop in the switch 
(VSW) are shown in Table I. 

The S5-S6 switches are ON for half a period, for the next 
half S7-S8 are ON so that the flow is opposite the load. 

The maximum voltage at Vbus is calculated based on the 
following equation: 

         (2) 

The output RMS voltage is given by: 

                (3) 

The voltage sources Vs1-Vs4 are each calculated by the 
following equations: 

             (4) 

        (5) 

        (6) 

         (7) 

where  is the RMS output voltage, and is 

the total voltage drop during switching. Based on Table I, 
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(a) (b) (c) (d) 

    
(e) (f) 

Fig. 2. Operation modes 1 to 6. (a) Mode 1 conduction period t0-t1. (b) Mode 2 conduction period t1-t2. (c) Mode 3 conduction period 
t2-t3. (d) Mode 4 conduction period t3-t4. (e) Mode 5 conduction period t4-t5. (f) Mode 6 conduction period t5-t6. 

 

          
(a) (b) (c) (d) 

          
(e) (f) (g) (h) 

    
(i) (j) 

Fig. 3. Operation modes 7 to 16. (a) Mode 7 conduction period t6-t7. (b) Mode 8 conduction period t7-t8. (c) Mode 9 conduction period 
t8-t9. (d) Mode 10 conduction period t9-t10. (e) Mode 11 conduction period t10-t11. (f) Mode 12 conduction period t11-t12. (g) Mode 13 
conduction period t12-t13. (h) Mode 14 conduction period t13-t14. (i) Mode 15 conduction period t14-t15. (j) Mode 16 conduction period 
t15-t16. 

 

      (8) 

B. Principle of Operation 

The principle of operation of the multilevel inverter in Fig. 
1 is divided into 31 modes, where each mode forms one level. 
The operation modes from 1 to 31 half cycles starting at t0 to 
t31 are shown in Fig. 2-5. 
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(e) (f) (g) (h) 

    
(i) (j) 

Fig. 4. Operation modes 17 to 26. (a) Mode 17 conduction period t16-t17. (b) Mode 18 conduction period t17-t18. (c) Mode 19 conduction 
period t18-t19. (d) Mode 20 conduction period t19-t20. (e) Mode 21 conduction period t20-t21. (f) Mode 22 conduction period t21-t22. (g) 
Mode 23 conduction period t22-t23. (h) Mode 24 conduction period t23-t24. (i) Mode 25 conduction period t24-t25. (j) Mode 26 conduction 
period t25-t26. 

 

    
(a) (b) 

    
(c) (d) 

 
(e) 

Fig. 5. Operation modes 27 to 31. (a) Mode 27 conduction period 
t26-t27. (b) Mode 28 conduction period t27-t28. (c) Mode 29 
conduction period t28-t29. (d) Mode 30 conduction period t29-t30. 
(e) Mode 31 conduction period t30-t31. 

 
Fig. 6. Output waveforms. (a) Output level generation (Vbus). (b) 
Output of the inverter (Vo). 

 

A waveform of Vbus for one period (t0-t62) is shown in Fig. 
6(a) and an output waveform is shown in Fig. 6(b). 

C. Switching Degree 

The switching signal form for the generation level during t0 
- t31 (0 - T/2) is shown in Fig. 7. The switching signal repeats 
for half a period (T/2 - T, T-3T/2, 3T/2 - 2T, etc.). 

The degree of the switching signal () is obtained using 
equations (9), (10) and (11). 
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Fig. 7. Signal switching generation level. (a) Switch S1. (b) 
Switch S2. (c) Switch S3. (d) Switch S4. 

 

           (9) 

      (10) 

Here, Vm is the maximum voltage from the inverter output, 
which is 339.41V. In addition, Ln is the nth level, which is 
level 1 to 16, and Vkp is the voltage rise level, which is level 
17 to 31. The value of Vkp is calculated using equation 11, and 
nL is the number of levels of the output voltage, which is 31. 
Therefore, Vkp is 22.63V. 

                (11) 

The middle values of the degree of signal switching () 
can be obtained from equations 9 and 10. For generating 

waves, as shown in Fig. 6 and Fig. 7,  starts from the rise 
time (rising time degree) and the fall time (falling time 

degrees). For the switch S1; 1=t1-t2, 2=t3-t4, 3=t5-t6, 

4=t7-t8, 5=t9-t10, 6=t11-t12, 7=t13-t14, 8=t15-t16, 9=t17-t18, 

10=t19-t20, 11=t21-t22, 12=t23-t24, 13=t25-t26, 14=t27-t28 and 

15=t29-t30. For the switch S2; 1=t2-t4, 2=t6-t8, 3=t10-t12, 

4=t14-t17, 5=t19-t21, 6=t23-t25 and 7=t27-t29. For the switch 

S3; 1=t4-t8, 2=t12-t19 and 3=t23-t27. For the switch S4; 

1=t8-t23. The degrees of the rise time and the fall time can be 
calculated by equation 12. 

             (12) 

Where: 

 dan    = Degree rises time to n 
 dbn    = Degree down time to n 
 dtn    = Degree middle time to n 
 dtn+1   = Degree time middle to n + 1 

TABLE II 
SWITCHING DEGREE OF THE SWITCHES S1-S4  

(LEVEL GENERATION) 

No Switch Degree  

1 S1 1=3.8-11.5,2=19.2-27.0,     
3=19.2-27.0, 4=51.4-60.0,    

5=69.1-78.7, 6=89.0-100.3, 
7=113.2-129.0, 8=159.0-201.0,  

9=231.0-246.8, 10=259.7-271.0, 
11=281.3-290.9,12=300.0-308.6, 
13=317.0-325.1, 14=333.0-340.8, 

15=348.5-356.2 
2 S2 1=11.5-27.0, 2=43.0-60.0,   

3=78.7-100.3, 4=159.0-231.0, 
5=259.7-281.3, 6=300.0-317.0, 

7=333.0-348.5 
3 S3 1=27.0-60.0, 2=100.3-259.7, 

3=300.0-333.0   
4 S4 1=60-300 

 
TABLE III 

 VOLTAGE SOURCE VS1-VS4 

Source Comparison Voltage (V) 

VS1 VS1 22.63 

VS2 2VS1 45.25 

VS3 4VS1 90.51 

VS4 8VS1 181.02 

 
In the initial start, the lower degree value is 0 and the upper 

degree is 3.8. The value of the upper degree becomes the 
lower-grade in the 2nd degree. Then the degree value of the 
2nd degree becomes the lower-grade on the 3rd degree and so 
on. From the width-degree calculation, the switching degrees 
for the S1-S4 switches are shown in Table II. 

The source voltage Vs1-Vs4 is calculated based on the 
maximum voltage (Vm) of the output, namely: 

           (13) 

The effective voltage (Vrms) of the inverter output is 240V. 
Then Vm=339.41V. Based on equation 13, the voltage source 
VS1-VS4 is given in Table III. 

 

III. EXPERIMENTAL CIRCUIT 

The experiment circuit is based on the topology in Fig. 1, 
as shown in Fig. 8, where Fig. 8(a) is a power circuit and Fig. 
8(b) is a control circuit. The maximum current flow in the 
switching device can be calculated with equation 14 for the 

output power (PO) 1200W, assuming an efficiency of =0.94% 

and an output voltage of VO = 240V. Then the following 
relationship is obtained: 
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(a) 

 
(b) 

Fig. 8. Experimental circuits. (a) Power circuit. (b) Drives and 
switching control circuit. 

 

              (14) 

TABLE IV 
 COMPONENTS OF SNUBBER CIRCUITS 

Snubber 
Switch

Dsn Csn (nF) Rsn () 

S1 MUR 410 1.2 330 

S2 MUR 420 1.1 330 

S3 MUR 430 1 330 

S4 MUR 440 0.9 330 

S5-S8 MUR 460 12.9 470 

 
The output voltage is 240V. Therefore, the max voltage 

(Vmak) is 339.4V and the maximum switch current is 5.3A. 
Based on these parameters, the S1-S8 switches use the 
IRFP460 MOSFET, which has a specifications of VDS 500 V, 

ID 20 A, RDS(on) 0.27, tr 120ns and tf 98ns. 
The switching signal in Fig. 6 has the shortest time from t1 

to t3, which are t1 = 10.6µs and t3 = 53.3µs. Then the reverse 
recovery time diode D1-D4 is: 

          (15) 

In this case, the fast recovery type diode D1 - D4 (MUR 
1560) can be used for the diode D1 - D4. This diode has 
specifications of VRMS 600 V, IFRMS 25 A and trr 35ns. 

The snubber circuit consists of diodes (Dsn), capacitors (Csn) 
and resistors (Rsn). Their values are given in Table IV. The 
Csn and Rsn values are calculated by the following equations: 

                   (16) 

                 (17) 

The port VS1 + until VS4 + is a positive port voltage, while 
the port VS1- until VS4- refers to a negative port DC source. 
The port VS1- until VS4 is separated from other ports (not 
unified). The port + G1 to + G8 and the port - G1 to -G8 make 
up the input switching signal from the circuit driver. 

The drive circuit rated the generation of the S1- S4 switches 
using the TLP250 integrated circuit. These four integrated 
circuits use separate 18V power supplies. This is done so that 
the S1 - S4 switches become a floating earth point. The drive 
circuit for the H-bridge (S5-S8 switches) uses two IR210 
integrated circuits. Both of these integrated circuits get an 
18V supply. The switching control circuit for the switches 
S1-S8 uses a PIC 16F877 microcontroller and programming 
made using Basic Pro software. The power supply for this 
microcontroller circuit is from the same source as the 
H-bridge drive circuit. The experimental setup for the circuit 
in Fig. 8 is shown in Fig. 9. 

 

IV. RESULTS AND DISCUSSION 

This inverter topology is designed for stand-alone systems 
with resistive and inductive loads. Simulations were carried  
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Fig. 9. Experimental setup for the proposed circuit. 

 

 
(a) 

 
(b) 

Fig. 10. Switching level generation. (a) Simulation. (b) Experiment. 
 
out using PSIM software. For the prototype circuit, a fluke 
43B dan scope Agilent DSOX 2012A was used for 
measurements. 

A. Switching and DC Bus Wave 

Simulation and experimental results at the generation level 
(switches S1, S2, S3, S4) are shown in Fig. 10(a) (simulation) 
and Fig. 10(b) (experiment), respectively. The simulated and 
experimental signals have the same shape and the ton-toff 
degree period for each signal (switch S1-S4) is given in Table 
II. This switching signal determines the output waveform of 
the multilevel inverter. 

Simulation and experimental results for output voltage  

 
(a) 

 
(b) 

Fig 11. Output waveform at Vbus. (a) Simulation. (b) Experiment. 
 

 
Fig. 12. Simulation output waveforms at a resistive load of 48.3. 
 
waveforms at the generation level (Vbus) are shown in Fig. 
11(a) and Fig. 11(b), respectively. These simulated and 
experimental waveforms show a good agreement. This 
corresponds to the waveform in operation modes 1 to 62 
(during the t0-t62 interval) as shown in Fig. 6(a). The 
waveforms consist of 31 voltage levels from V0 to V30, as 
given in Table I. 

B. Resistive Loads 

Voltage and current output waveforms simulation results 

for load of R = 48.3 (1200 watts of output power) are 
shown in Fig. 12, where a 240Vrms voltage and a 5.01A rms 
current were obtained. For comparison, experimental results 
as shown in Fig. 13, where a 240Vrms voltage and a 4.95A rms 
current were obtained. The experiment results agreed with the 
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Fig. 13. Experiment output waveforms at a resistive load of 48.3. 

 

   
(a) (b) 

Fig. 14. Output waveforms at a resistive load of 48.3. (a) 
Power values. (b) Voltage and current values. 

 

   
(a) (b) 

Fig. 15. Harmonic spectrum at a resistive load of 48.3. (a) 
THDi. (b) THDv. 

 

 
Fig. 16. Effect on THDv from changes in the load resistance 
from 48.3 to 576. 

 

simulation for the resistance load analysis. 

Waveforms of the voltage and current at a 48.3 resistive 
load are then measured with a Fluke 34B Power Quality as 
shown in Fig. 14. Fig. 14(a) shows a voltage waveform, a 
current wave and a power value display of 1.20kW, with a 
power factor of 1.00PF and a frequency of 50Hz. Meanwhile, 
Fig. 14(b) is also a voltage waveform, current wave with a  

 
Fig. 17. Experimental output waveforms at an inductive load 
(R=54 dan L=146mH) without a capacitor. 
 

 
Fig. 18. Experimental output waveforms at an inductive load 
(R=54 dan L=146mH) using a capacitor 22uF.   
 
240.4V voltage value display, a 4.951A current value and a 
50 Hz frequency. 

The harmonic spectrums of the THDi and THDv at a 

48.3 resistive load are shown in Fig. 15(a) and 15(b), 
respectively. The values of the obtained THDi and THDv are 
1.7% and 1.6%, respectively. 

Experimental results for the effect of load changes from 

48.3 to 576  on the THDv are shown in Fig. 16, while the 
voltage is held constant at 240V. 

C. Inductive Load 

In inductive loads, a spike voltage occurs due to self- 
induced emf (back emf). This spike voltage can be overcome 
(removed) by using a capacitor on the dc bus. The experimental 

voltage and output current R=54 and L= 146mH before the 
use of capacitors are shown in Fig. 17, and they are shown in 
Fig. 18 after the use of 22uF capacitors on the dc buses. 

Harmonic spectrums of the THDi and THDv at an R=54 
and L=146mH inductive load are shown in Fig. 19 and Fig. 
20, respectively. The values of the THDi and THDv without a 
capacitor are 10.5% and 30.7% as shown in Fig. 19(a) and 
19(b), respectively. 

The values of the THDi and THDv using a capacitor 22uF 
on the dc bus are 2.4% and 1.1% as shown in Fig. 20(a) and 
20(b), respectively. 

The application of the inverter prototype on 36W 
fluorescent lamps is shown in Fig. 21-23. Current and voltage 
waveforms before and after the use of capacitors 3uF on the  
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(a) (b) 

Fig. 19. Harmonic spectrum at an inductive load (R=54 and 
L=146mH) without a capacitor. (a) THDi. (b) THDv. 

 

    
(a) (b) 

Fig. 20. Harmonic spectrum at an inductive load (R=54 and 
L=146mH) using a capacitor 22Uf. (a) THDi. (b) THDv. 

 

 
(a) 

 
(b) 

Fig. 21. Experimental output waveforms with a 36W fluorescent 
lamp. (a) Without a capacitor. (b) Using a capacitor 3uF. 

 
dc bus are shown in Fig. 21(a) and in Fig. 21(b), respectively. 

The harmonic spectrum of the THDi and THDv for a 36W 
fluorescent lamp are shown in Fig. 22 and 23, respectively. 
The values of the THDi and THDv are 10.5% and 30.7%, 
respectively. This can be seen in Fig. 22(a) and Fig. 22(b). 

The values of the THDi and THDv using a capacitor 3uF 
on the dc bus obtained are 9.2% and 1.3% as shown in Fig. 
23(a) and Fig. 23(b), respectively. Here, the THDi value does 
not fall below 9.2%. This is caused by harmonics rather than 
the fluorescent lights which have a natural harmonic content 
(THDi). 

    
(a) (b) 

Fig. 22. Harmonic spectrum with a 36W fluorescent lamp without 
capacitor. (a) THDi. (b) THDv. 

 

    
(a) (b) 

Fig. 23. Harmonic spectrum with a 36W fluorescent lamp using a 
capacitor 3uF. (a) THDi. (b) THDv. 

 
The size of the capacitor value is determined based on the 

reactive power of the load produced by an inductive load. 
The capacitor value is calculated by the following equation: 

               (18) 

The power distributions at the PS1-PS4 input are not the 
same. The highest power on VS4 flows through the S4 switch 
and the lowest power on PS1 flows through the switch S1. The 

power distribution at a 48.3 resistive load is shown in Fig. 
24(a). The total input power (Pts) of 1272W is distributed 
67W (5%) on PS1, 150W (12%) on PS2, 316W (25%) on PS3 
and 738W (58%) on PS4. The power losses (Plos) are 72W 
(6%) and the output power (Po) is 1200W (94%). The MLI 
efficiency that uses an IRFP460 MOSFET on the S1-S8 
switches in the range from 100W to 1200W is shown in Fig. 
24(b). The maximum efficiency was 97.02% at a 600W load, 
and it decreases to 94.37% at a 1200W load. Meanwhile, the 
optimum efficiency simulation result is 99.84%. This efficiency 
decrease was proportional to the load power increase of 
97.28% at a 1200W load. 

The THD value obtained from the proposed topology was 
better than that of the CMLI-RDC topology [19]-[26], [30]- 
[32]. The higher the number of output wave levels the lower 
the THD value. When compared with the CMLI-RDC 
inverter, the MSMLI topology has better performance based 
on the ratio of the output wave levels to the number of switches 
(L/NoS), as shown in Table V. The proposed MSMLI-CC 
topology has the highest L/NoS value of 3.87. In terms of the 
number of conduction switches, this topology is equivalent to  
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TABLE V 
COMPARISON OF MSMLI AND CMLI-RDC RESULTS 

Topology of RDC-MLI DC Source 
Switch 

Output wave level L/NoS 
Amount Conduction 

MLI-DC Link [20, 21] 4 12 3-6 9 0.75 

CMLI-MNS [19] 4 12 3-6 9 0.75 

MLI-SSPS [22, 23] 4 13 3-6 9 0.69 

MLI-SCSS [30] 4 12 3-6 9 0.75 

MLM [31] 4 14 3-6 9 0.64 

MLI-RV [24, 25] 4 12 4-7 9 0.75 

MLI-2SELG [32] 4 12 4 9 0.75 

CMLI-MNCS [26] 4 12 3 7 0.58 

MSMLI (proposed) 4 8 3-6 31 3.87 

 

 
(a) 

 
(b) 

Fig. 24. Characteristics at a resistive load of 48.3. (a) Source 
power distribution. (b) Efficiency. 

 
the CMLI-RDC topology, and the number of switches 
determines the efficiency of the inverter. 

The use of a MLI with an asymmetric source is possible in 
PVs, especially in large power systems, due to the large 
number of PV panels that can be attached to asymmetric 
sources and the large number of sources for a MLI. While the 
number of switches used in a converter might be low, it 
should also be noted that some of the switches require a 
higher voltage rating in order to block the full DC link 
voltage. Thus, this should be taken into consideration when 
designing the converter. 

V. CONCLUSION 

The cascaded multilevel inverter proposed in this paper 
obtained fairly good results when compared with other 
topologies for certain power ranges. The proposed topology 
can generate 31 wave levels with only eight switches and four 
asymmetric DC sources. Results show that with a resistive 

load of 48.3 and an output power of 1200W, the total 
harmonic distortion THDv is 1.7%, the THDi is 1.6% and the 
efficiency is found to be 94.37%. In practice, a maximum 
efficiency of 97.02% was obtained at 600W of load power. 
One drawback of this topology is the occurrence of voltage 
surges in the inductive load due to the emf effect. However, 
by using capacitors on the dc bus, the emf effect can be 
minimized. The size of the capacitor used should be 
proportional to the reactive power of the load. Nevertheless, 
the proposed inverter can achieve high output levels with a 
minimal number of switches. 
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