DOI QR코드

DOI QR Code

Highly ordered TiO2 nanotubes; Synthesis and applications

고도로 정렬된 TiO2 나노튜브의 제조와 활용

  • Yoo, JeongEun (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Kiyoung (Department of Chemistry and Chemical Engineering, Inha University)
  • 유정은 (인하대학교 화학 화학공학융합학과) ;
  • 이기영 (인하대학교 화학 화학공학융합학과)
  • Received : 2022.02.24
  • Accepted : 2022.02.28
  • Published : 2022.02.28

Abstract

Titanium dioxide (TiO2) is one of the most intensively investigated materials in materials science. Mostly, TiO2 has been used in the form of nanoparticles, but recently new highly ordered TiO2 nanotubes (U-tube) has been introduced and applied to various applications due to their one-dimensional charge path way. In the present paper, we described the formation process and physical properties of U-tube then, gave examples of applications in sequence. Firstly, in photocatalysis, U-tube was used with Au/Pt co-catalysts and showed enhanced photogenerated H2 efficiency compared to bare TiO2. Secondly, photoelectrochemical performance of U-tube was evaluated with different heat-treatment temperatures. As a further application, two different types of electrical cell (Ti-TiO2-Pt and Ti-TiO2-PtNP) was configurated to observe memristive behavior of U-tube. Both cells behaved as switching electrodes and follow a memristive movement in the high and low resistance state extremely well with high reproducibility.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1l1A3A01041454).

References

  1. B. O'Regan, M. Grtzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737740.
  2. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 3738.
  3. I. Paramasivam, H. Jha, N. Liu, P. Schmuki, A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures, Small 20 (2012) 30733103.
  4. R. Marschall, Photocatalysis: Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity, Adv. Funct. Mater. 24 (2014) 24212440.
  5. A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures, Chem. Commun. 20 (2009) 2791.
  6. M. Law, J. Goldberger, P. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res. 34 (2004) 83122.
  7. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (1998) 31603163.
  8. P. Roy, D. H. Kim, K. Y. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells, Nanoscale 2 (2010) 4559.
  9. K. Y. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanatials Nanotubes, Chem. Rev. 114 (2014) 93859454.
  10. J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuk, Smooth anodic TiO2 nanotubes, Angew. Chem. Int. Ed. 44 (2005) 74637465.
  11. F. Mohammadpour, M. Moradi, K. Y. Lee, G. H. Cha, S. So, A. Kahnt, D. M. Guldi, M. Altomare, P. Schmuki, Enhanced performance of dye-sensitized solar cells based on TiO2 nanotube membranes using an optimized annealing profile, Chem. Commun. 51 (2015) 1631163
  12. J. E. Yoo, K. Y. Lee, M. Altomare, E. Selli, P. Schmuki, Self-organized arrays of single-metal catalyst particles in TiO2 cavities: a highly efficient photocatalytic system, Angew. Chem. Int. Ed. 52 (2013) 75147517.
  13. J. E. Yoo, K. Y. Lee, P. Schmuki, Dewetted Au films form a highly active photocatalytic system on TiO2 nanotube-stumps, Electrochem. Commun. 34 (2013) 351355.
  14. J. E. Yoo, K. Y. Lee, A. Tighineanu, P. Schmuki, Highly ordered TiO2 nanotube-stumps with memristive response, Electrochem. Commun. 34 (2013) 177-180. https://doi.org/10.1016/j.elecom.2013.05.038
  15. J. E. Yoo, P. Schmuki, Critical factors in the anodic formation of extremely ordered titania nanocavities, J. Electrochem. Soc. 166 (2019) C3389-C3398. https://doi.org/10.1149/2.0381911jes
  16. S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim. Acta 51 (2005) 827833.
  17. J. E. Yoo, Ph.D thesis, Formation of highly ordered self-organized nanotubes and their use as templates for noble-metal dewetting, Erlangen (2019).
  18. J. Y. Moon, M. Kemell, B. K. Park, A. Suominen, E. Mkil, R. Punkkinen, H. P. Hedman, H. Kim, L. V. Lassila, A. Tuominen, The correlation between the interference colour and growth procedure of anodic titanium dioxide nanotube arrays, Color. Technol. 130 (2014) 17.
  19. A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735758
  20. P. Salvador, Hole diffusion length in n-TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis, J. Appl. Phys. 55 (1984) 29772985. https://doi.org/10.1063/1.333358
  21. J. E. Yoo, M. Altomare, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, A. Mazare, P. Schmuki, Photocatalytic H2 generation using dewetted Pt-decorated TiO2 nanotubes: Optimized dewetting and oxide crystallization by a multiple annealing process, J. Phys. Chem. C 120 (2016) 1588415892
  22. E. Hendry, M. Koeberg, B. O'Regan, M. Bonn, Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy, Nano Lett. 6 (2006) 755759.
  23. S. D. Mo, W. Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B 51 (1995) 1302313032.
  24. J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO2 nanotube layers as highly efficient photocatalysts, Small 3 (2007) 300304.
  25. A. Chung, J. Deen, J. S. Lee, M. Meyyappan, Nanoscale memory devices, Nanotechnology 21 (2010) 412001. https://doi.org/10.1088/0957-4484/21/41/412001
  26. D. B. Strukov, G. S. Snider, D. R. Stewart & R. S. Williams, The missing memristor found, Nature 453 (2008) 8083.
  27. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, R. S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices, Nat. Nanotechnol. 3 (2008) 429433.