Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.1.1

Highly ordered TiO2 nanotubes; Synthesis and applications  

Yoo, JeongEun (Department of Chemistry and Chemical Engineering, Inha University)
Lee, Kiyoung (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.1, 2022 , pp. 1-8 More about this Journal
Abstract
Titanium dioxide (TiO2) is one of the most intensively investigated materials in materials science. Mostly, TiO2 has been used in the form of nanoparticles, but recently new highly ordered TiO2 nanotubes (U-tube) has been introduced and applied to various applications due to their one-dimensional charge path way. In the present paper, we described the formation process and physical properties of U-tube then, gave examples of applications in sequence. Firstly, in photocatalysis, U-tube was used with Au/Pt co-catalysts and showed enhanced photogenerated H2 efficiency compared to bare TiO2. Secondly, photoelectrochemical performance of U-tube was evaluated with different heat-treatment temperatures. As a further application, two different types of electrical cell (Ti-TiO2-Pt and Ti-TiO2-PtNP) was configurated to observe memristive behavior of U-tube. Both cells behaved as switching electrodes and follow a memristive movement in the high and low resistance state extremely well with high reproducibility.
Keywords
Anodization; $TiO_2$ nanotubes; Photocatalysis; Memristor; Photoelectrochemistry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (1998) 31603163.
2 K. Y. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanatials Nanotubes, Chem. Rev. 114 (2014) 93859454.
3 J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuk, Smooth anodic TiO2 nanotubes, Angew. Chem. Int. Ed. 44 (2005) 74637465.
4 J. E. Yoo, K. Y. Lee, M. Altomare, E. Selli, P. Schmuki, Self-organized arrays of single-metal catalyst particles in TiO2 cavities: a highly efficient photocatalytic system, Angew. Chem. Int. Ed. 52 (2013) 75147517.
5 J. E. Yoo, K. Y. Lee, P. Schmuki, Dewetted Au films form a highly active photocatalytic system on TiO2 nanotube-stumps, Electrochem. Commun. 34 (2013) 351355.
6 J. E. Yoo, P. Schmuki, Critical factors in the anodic formation of extremely ordered titania nanocavities, J. Electrochem. Soc. 166 (2019) C3389-C3398.   DOI
7 S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim. Acta 51 (2005) 827833.
8 A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735758
9 J. E. Yoo, M. Altomare, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, A. Mazare, P. Schmuki, Photocatalytic H2 generation using dewetted Pt-decorated TiO2 nanotubes: Optimized dewetting and oxide crystallization by a multiple annealing process, J. Phys. Chem. C 120 (2016) 1588415892
10 A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 3738.
11 A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures, Chem. Commun. 20 (2009) 2791.
12 F. Mohammadpour, M. Moradi, K. Y. Lee, G. H. Cha, S. So, A. Kahnt, D. M. Guldi, M. Altomare, P. Schmuki, Enhanced performance of dye-sensitized solar cells based on TiO2 nanotube membranes using an optimized annealing profile, Chem. Commun. 51 (2015) 1631163
13 J. E. Yoo, K. Y. Lee, A. Tighineanu, P. Schmuki, Highly ordered TiO2 nanotube-stumps with memristive response, Electrochem. Commun. 34 (2013) 177-180.   DOI
14 J. E. Yoo, Ph.D thesis, Formation of highly ordered self-organized nanotubes and their use as templates for noble-metal dewetting, Erlangen (2019).
15 J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO2 nanotube layers as highly efficient photocatalysts, Small 3 (2007) 300304.
16 P. Salvador, Hole diffusion length in n-TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis, J. Appl. Phys. 55 (1984) 29772985.   DOI
17 E. Hendry, M. Koeberg, B. O'Regan, M. Bonn, Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy, Nano Lett. 6 (2006) 755759.
18 M. Law, J. Goldberger, P. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res. 34 (2004) 83122.
19 J. Y. Moon, M. Kemell, B. K. Park, A. Suominen, E. Mkil, R. Punkkinen, H. P. Hedman, H. Kim, L. V. Lassila, A. Tuominen, The correlation between the interference colour and growth procedure of anodic titanium dioxide nanotube arrays, Color. Technol. 130 (2014) 17.
20 S. D. Mo, W. Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B 51 (1995) 1302313032.
21 A. Chung, J. Deen, J. S. Lee, M. Meyyappan, Nanoscale memory devices, Nanotechnology 21 (2010) 412001.   DOI
22 D. B. Strukov, G. S. Snider, D. R. Stewart & R. S. Williams, The missing memristor found, Nature 453 (2008) 8083.
23 B. O'Regan, M. Grtzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737740.
24 I. Paramasivam, H. Jha, N. Liu, P. Schmuki, A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures, Small 20 (2012) 30733103.
25 R. Marschall, Photocatalysis: Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity, Adv. Funct. Mater. 24 (2014) 24212440.
26 J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, R. S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices, Nat. Nanotechnol. 3 (2008) 429433.
27 P. Roy, D. H. Kim, K. Y. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells, Nanoscale 2 (2010) 4559.