• 제목/요약/키워드: Regular matrix

검색결과 165건 처리시간 0.019초

Structure of the Double Four-spiral Semigroup

  • CHANDRASEKARAN, V.M.;LOGANATHAN, M.
    • Kyungpook Mathematical Journal
    • /
    • 제43권4호
    • /
    • pp.503-512
    • /
    • 2003
  • In this paper, we first give an alternative description of the fundamental orthodox semigroup $\bar{A}$(1, 2). We then use this to represent the double four-spiral semigroup $DSp_4$ as a regular Rees matrix semigroup over $\bar{A}$(1, 2).

  • PDF

A Note on Spliced Sequences and A-density of Points with respect to a Non-negative Matrix

  • Bose, Kumardipta;Sengupta, Sayan
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.47-63
    • /
    • 2019
  • For $y{\in}{\mathbb{R}}$, a sequence $x=(x_n){\in}{\ell}^{\infty}$, and a non-negative regular matrix A, Bartoszewicz et. al., in 2015, defined the notion of the A-density ${\delta}_A(y)$ of the indices of those $x_n$ that are close to y. Their main result states that if the set of limit points of ($x_n$) is countable and density ${\delta}_A(y)$ exists for any $y{\in}\mathbb{R}$ where A is a non-negative regular matrix, then ${\lim}_{n{\rightarrow}{\infty}}(Ax)_n={\sum}_{y{\in}{\mathbb{R}}}{\delta}_A(y){\cdot}y$. In this note we first show that the result can be extended to a more general class of matrices and then consider a conjecture which naturally arises from our investigations.

An Efficient Computing Method of the Orthogonal Projection Matrix for the Balanced Factorial Design

  • Kim, Byung-Chun;Park, Jong-Tae
    • Journal of the Korean Statistical Society
    • /
    • 제22권2호
    • /
    • pp.249-258
    • /
    • 1993
  • It is well known that design matrix X for any factorial design can be represented by a product $X = TX_o$ where T is replication matrix and $X_o$ is the corresponding balanced design matrix. Since $X_o$ consists of regular arrangement of 0's and 1's, we can easily find the spectral decomposition of $X_o',X_o$. Also using this we propose an efficient algorithm for computing the orthogonal projection matrix for a balanced factorial design.

  • PDF

ON WEAKLY LOCAL RINGS

  • Piao, Zhelin;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • 제28권1호
    • /
    • pp.65-73
    • /
    • 2020
  • This article concerns a property of local rings and domains. A ring R is called weakly local if for every a ∈ R, a is regular or 1-a is regular, where a regular element means a non-zero-divisor. We study the structure of weakly local rings in relation to several kinds of factor rings and ring extensions that play roles in ring theory. We prove that the characteristic of a weakly local ring is either zero or a power of a prime number. It is also shown that the weakly local property can go up to polynomial (power series) rings and a kind of Abelian matrix rings.

PARALLEL BLOCK ILU PRECONDITIONERS FOR A BLOCK-TRIDIAGONAL M-MATRIX

  • Yun, Jae-Heon;Kim, Sang-Wook
    • 대한수학회지
    • /
    • 제36권1호
    • /
    • pp.209-227
    • /
    • 1999
  • We propose new parallel block ILU (Incomplete LU) factorization preconditioners for a nonsymmetric block-tridiagonal M-matrix. Theoretial properties of these block preconditioners are studied to see the convergence rate of the preconditioned iterative methods, Lastly, numerical results of the right preconditioned GMRES and BiCGSTAB methods using the block ILU preconditioners are compared with those of these two iterative methods using a standard ILU preconditioner to see the effectiveness of the block ILU preconditioners.

  • PDF

RINGS WITH MANY REGULAR ELEMENTS

  • Ashrafi, Nahid;Nasibi, Ebrahim
    • 대한수학회논문집
    • /
    • 제32권2호
    • /
    • pp.267-276
    • /
    • 2017
  • In this paper we introduce rings that satisfy regular 1-stable range. These rings are left-right symmetric and are generalizations of unit 1-stable range. We investigate characterizations of these kind of rings and show that these rings are closed under matrix rings and Morita Context rings.

AN UPPER BOUND ON THE CHEEGER CONSTANT OF A DISTANCE-REGULAR GRAPH

  • Kim, Gil Chun;Lee, Yoonjin
    • 대한수학회보
    • /
    • 제54권2호
    • /
    • pp.507-519
    • /
    • 2017
  • We present an upper bound on the Cheeger constant of a distance-regular graph. Recently, the authors found an upper bound on the Cheeger constant of distance-regular graph under a certain restriction in their previous work. Our new bound in the current paper is much better than the previous bound, and it is a general bound with no restriction. We point out that our bound is explicitly computable by using the valencies and the intersection matrix of a distance-regular graph. As a major tool, we use the discrete Green's function, which is defined as the inverse of ${\beta}$-Laplacian for some positive real number ${\beta}$. We present some examples of distance-regular graphs, where we compute our upper bound on their Cheeger constants.

A KIND OF NORMALITY RELATED TO REGULAR ELEMENTS

  • Huang, Juan;Piao, Zhelin
    • 호남수학학술지
    • /
    • 제42권1호
    • /
    • pp.93-103
    • /
    • 2020
  • This article concerns a property of Abelain π-regular rings. A ring R shall be called right quasi-DR if for every a ∈ R there exists n ≥ 1 such that C(R)an ⊆ aR, where C(R) means the monoid of regular elements in R. The relations between the right quasi-DR property and near ring theoretic properties are investigated. We next show that the class of right quasi-DR rings is quite large.

NONNEGATIVE INTEGRAL MATRICES HAVING GENERALIZED INVERSES

  • Kang, Kyung-Tae;Beasley, LeRoy B.;Encinas, Luis Hernandez;Song, Seok-Zun
    • 대한수학회논문집
    • /
    • 제29권2호
    • /
    • pp.227-237
    • /
    • 2014
  • For an $m{\times}n$ nonnegative integral matrix A, a generalized inverse of A is an $n{\times}m$ nonnegative integral matrix G satisfying AGA = A. In this paper, we characterize nonnegative integral matrices having generalized inverses using the structure of nonnegative integral idempotent matrices. We also define a space decomposition of a nonnegative integral matrix, and prove that a nonnegative integral matrix has a generalized inverse if and only if it has a space decomposition. Using this decomposition, we characterize nonnegative integral matrices having reflexive generalized inverses. And we obtain conditions to have various types of generalized inverses.

An Accurate Method to Estimate Traffic Matrices from Link Loads for QoS Provision

  • Wang, Xingwei;Jiang, Dingde;Xu, Zhengzheng;Chen, Zhenhua
    • Journal of Communications and Networks
    • /
    • 제12권6호
    • /
    • pp.624-631
    • /
    • 2010
  • Effective traffic matrix estimation is the basis of efficient traffic engineering, and therefore, quality of service provision support in IP networks. In this study, traffic matrix estimation is investigated in IP networks and an Elman neural network-based traffic matrix inference (ENNTMI) method is proposed. In ENNTMI, the conventional Elman neural network is modified to capture the spatio-temporal correlations and the time-varying property, and certain side information is introduced to help estimate traffic matrix in a network accurately. The regular parameter is further introduced into the optimal equation. Thus, the highly ill-posed nature of traffic matrix estimation is overcome effectively and efficiently.