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ABSTRACT

It is well known that design matrix X for any factorial design can be
represented by a product X = TX, where T is replication matrix and X,
is the corresponding balanced design matrix. Since X, consists of regular
arrangement of 0’s and 1’s, we can easily find the spectral decomposition of
X'!X,. Also using this we propose an efficient algorithm for computing the
orthogonal projection matrix for a balanced factorial design.

KEYWORDS: Orthogonal projection matrix, Moore-Penrose inverse, spec-
tral decomposition.

1. INTRODUCTION

When a linear model y = X 3 + e is given, the total sum of squares y'y can be
decomposed into

Yy=yPxy+y'(I— Px)y (1.1)

where Py = X(X'X)" X' and (X'X)” is a generalized inverse of X'X. y'Pxy

denotes the model sum of squares and y’(I — Px)y denotes the error sum of squares.
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The other sums of squares can be expressed as the quadratic form of y. The matrix
X(X'X)~ X', denoted by Py, is called the orthogonal projection matrix and plays
an important role in analyzing the linear model. Also Px can be expressed as Px =
X X* where X+ is the Moore-Penrose inverse of a matrix X because Py is unique
for any choice of generalized inverse of X' X. In this point of view, it is important to
find the Moore-Penrose inverse of design matrix. In the statistical areas of analysis
of variance and regression, the characteristic of this matrix is the basis for much
of the modern development. Many statisticians [e.g., Kempthrone(1980), Kennedy
and Gentle(1980), and Lowerre(1982)] contributed to deriving the Moore-Penrose
inverse X * for the special statistical models. More recently, Kim and Lee(1986) have
found the explicit form of the Moore-Penrose inverse of the design matrix for one-
and two-way classification models. Kim and Sunwoo(1989) found the explicit form
of the Moore-Penrose inverse X+ of the design matrix of the model y = X3 + e
for the balanced model with no interactions using the relationship between the
Moore-Penrose inverse and the minimum norm least squares solution. Also Kim
and Sunwoo(1990) derived the iterative method for computing the Moore-Penrose
inverse of design matrix for a balanced factorial design with interactions and from
this the orthogonal projection matrix is computed. But Xt is not easy to compute,
especially when X has many columns, and by this reason, the type of X+ used in
ANOVA is not known up to now. To avoid this difficulty, we shall find (X'X)*
instead of X* in obtaining Px whether there are interactions or not, because X’'X
is symmetric positive semi-definite and thus it is easy to compute (X’'X)* from the
spectral decomposition of X! X, for the corresponding balanced model.

In this paper we will suggest an efficient procedure for computing Px for a
balanced model using the nonzero eigenvalues and eigenvectors of X! X,. In section
2 we describe the explicit form of the nonzero eigenvalues of X! X, and some matrix
that is decisive in obtaining Px in cases with and without interaction effects, and
using this derive the explicit form of the projection matrix for a balanced model. In
addition, some examples will be given. In section 3, as application, a simple method
for computing F-statistic for testing a general linear hypothesis is proposed.

2. THE ORTHOGONAL PROJECTION MATRIX FOR
THE BALANCED MODEL

In this article we consider the model

y=XB+e (2.1)

where
y: an N X 1 vector of observations
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B: a p x 1 vector of unknown parameters

X: an N x p design matrix consisting of 0’s and 1’s
N: the total number of observations (= nm)

n: the number of replications in each cell

m: the total number of cells.

For model (2.1) the corresponding balanced model is defined as the model that
contains exactly one observation in each cell and design matrix of the model is
denoted by X,. It is well known that X = TX, holds, where T' is replication
matrix of the form T = I, ® 1, using Kronecker product. It is clear that T'T =
nl,. Hence it suffices to compute Px, of X, because of Py = X(X'X)*X' =
TX,(nX!X,)*X!T" = (1/n)TPx,T'.

Put r = rank(X,). Let X.X, = @,A,Q, be a spectral decomposition of X X,
where A, is a diagonal matrix of positive eigenvalues of XX, and @, 1s a p x r
matrix whose columns are orthonormalized eigenvectors corresponding to positive

eigenvalues. From this (X’ X,)* = Q,A'Q" holds. Now let Z = X,Q,A; /2. Then

Px, =22 (2.2)

is an obvious result once a spectral decomposition is applied to X! X,.

From (2.2) the orthogonal projection matrix of a balanced model can be easily
computed using Z. Kim and Park(1992) derived the explicit form of A, and Z for
multi-way factorial design in two cases: with and without interaction effects. The
nonzero eigenvalues A;’s of X! X, and the form of Z for k-way factorial design depend
on only the number of levels of main effects. The eigenvalues and Z are as follows.
The numbers in brackets are multiplicities of the corresponding eigenvalues.

(i) Case without interaction effects: Let m; be the number of levels of jth main
effects and let Z = [zo Z1--- Zy] where Z; = (2, Zm,-1), J = 1,...,k. Then for
Z(]) = 1,...,m]- -1

k m m
Ao m+j§=l J_ 1], A j [m; — 1],
_ 1
Zo———*\/__

Zi(5) =

o
V7 g
Vi [i()EG) + 1]
i)
In, ®-® (—i(j)ef(j)+1+ > eku)) ® @ lm,

k(3)=1
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where 1,, is an m x 1 vector of unities and (—2(7)e;(;)41 +Zk €k(j))m, is an m; x 1
vector having 1 as first through i(j)th components, -1(]) s (i E 3+1)th component and
zero elsewhere.

(ii) Case with ¢ interaction effects: Let S; be the index set of main factors
which are contained in jth interaction effect and d; = [lses; ms. Also let Z =
(20 21+ Zk Zk4r - Zyto|, where Z; = [z, -+ Z,_1] and Zi,; is the matrix whose
columns are 2zy),’s. Then for I(z) = 1,...,m; — 1, and {(s) = 1,...,m, — 1 for each
s c Sj

k(i)=1

1(3)
[1m1®®( l()el(z)+l+ Zek(z) ®®1mk

E

Zi(s5y, — ®f= B,'
O [T es, 5)U(5) + 1) Lo
where
b = m/d; ifi€S; ¢ m/d, ifS;CS,
7710 ifeg¢gS; > T 10 ifS; ¢85,
I(d)
B — —l(i)e, +1 T Z €x(i) ifze S

k(i)=1

1. 1fz¢5]-

Next, because of ZZ' = Px, and Z'Z = I., Z is the matrix whose columns
are orthonormalized eigenvectors corresponding to eigenvalue 1 of Px,. This fact is
available to extend the orthogonal projection matrix for an unbalanced model(Kim
and Park(1992)). Also in view of (2.2), it is interesting to note that the decomposi-
tions of the projectors hold as shown in the following corollaries.

1

Corollary 2.1. Let X, = [1,, X, --- X] be the corresponding balanced design
matrix for k-way factorial design without interactions, where X; is the incidence
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matrix for ¢th main effect. Then

Px, =Px, +---+ Px, —(k—1)Py
where Py = 1,,(1/ 1,,)711/ .

Proof. From the fact that X;’s can be expressed as Kronecker products of iden-
tity matrix and column vectors of unities(Rogers(1984)), that is, X; =1,,, ® --- ®
I, ® - ®1,,, we have

Py, = X:(X!X:)* X! = 2 X x1.
m
By (2.2)
k
Px,=22"= 22y + Y Z;Z;.
=1

Then

m

1
ZoZy = ;1m1;n =1,(11,,)7'1 = Py

and for y =1,2,....k

mj—1

ZiZ; = Y %2y

i(7)=1

m;—1 :
m,
= — Im ®"'®* ®"'®Jm]
m (;[ O O Gy 1] *
m;—1
=—2\J, ®-- ®Z Hi; ® @ Jm,
= {0 + 1
where Hy;y =1 --- 1 —2(3)0 -~ O][L --- 1 —¢(3) 0 --- 0] and Jp,; is an m; X m;

my—1

matrix of unities. Let H = ZZ(J) L WHi(j) and h;; be the (¢, 7)th element of

H. Then we have
- L ifi=y
hij:{ lmJ 1 ‘7 .
o if1#£7

Hence we have H = I, — mLJJm] and Z;7Z] = %LX]-XJ'- — %Jm = Px, — Py. This

completes the proof.
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Corollary 2.2. Let X, = [1,, U, V,] be the corresponding balanced design
matrix for the model with k£ main effects and ¢ interaction effects, where U, and V,
are the incidence matrices for the main and interaction effects, respectively. Then

Px, = Py + Py, — PyPy,
where U = [1,, U,).

Proof. Since X, = [U V,] we get

U’ uu u'yv,
! - _ 0
XoXo_ I:‘/Ol] [U V;,]—— [V'OIU V;/‘/O:I
and
vuv uv'v,1T v’
PXo - [U Vo] |:VOIU VOIVO:I |:V;I:|

See Marsaglia and Styan(1974) or Searle(1982) on a generalized inverse of the
partitioned matrix. Also it can be easily shown that Py Py, is symmetric. The proof
follows from the two results.

We introduce some examples to find the orthogonal projection matrix Py,.

Example 1. Consider a three-way model

y=1luu+ Xia+ X380+ X5y +e

with m; = my = m3 = 2. For the model we would have

= e b b e e e
e 2 OO OO
OO e (O =
-0 O =0 O
O = O = O = O
— o = O = O O

OO O O e e =

Then appropriate matrices are as follows:
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101 11
1 1 1 -1
20 1 1 -1 1
4 1 {1 1 -1 -1
Ar = 4 2= 227/2 |1 -1 1 1
4 1 -1 1 -1
1 -1 -1 1
1 -1 -1 -1,
Hence from (2.2) Px, becomes
2 1 1 0 1 0 0 —17
1 2 0 1 0 1 -1 0
1 0 2 1 0 -1 1 0
po 10 1 1 2 -1 0 0 1
=401 0 0o -1 2 1 1 0
o 1 -1 o0 1 2 o0 1
o -1 1 0 1 o0 2 1
-1 0 0 1 0 1 1 2]

Example 2. Consider the three-way model with o interaction effect

y =1+ Xia+ XoB+ Xy + V(aB) + e

having m; = my = my = 2. For the model we would get S; = {1,2},d; = mimz =4
and

1
J

1101010 1000
1101001 1000
1100110 0100
|l 100101 0100
°“lt 011010 0010
10110071 0010
1010110 0001
1010101 0001

Also as in example 1 appropriate matrices are given by
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1 1 1 1 1
1 1 1 -1 1
22 6 1 1 -1 1 -1
1 |1 1 -1 -1 -1
Ar = 6 A ’ Z_Q\/ﬁ 1 -1 1 1 -1
) 1 -1 1 -1 -1
1 -1 -1 1 1
1 -1 -1 -1 1]
By (2.2) Px, becomes
5 3 1 -1 1 -1 1 =1]
3 05 -1 1 -1 1 -1 1
1 -1 5 3 1 -1 —1
p _L[-1 1 3 -1 1 -1 1
=gl1 -1 1 -1 5 3 1 -1
-1 1 -1 3 5 -1 1
1 -1 1 -1 1 -1 5 3
-1 1 -1 1 -1 1 3 5]

3. AN APPLICATION

It is important to compute various sums of squares that are necessary for analyz-
ing the model. In this point of view, the orthogonal projection matrix is useful. As
an application, using this Px we describe the computing procedure for F-statistic

for testing a general linear hypothesis. Now the general hypothesis is taken to be of
the form

H:LB=q (3.1)

where L’ is of full row rank. Under the normality assumption of y, that is, y ~
N(XB,02I), the F-statistic for testing H : L'8 = q is

pon = &A= q)'ri'gg;wﬁ -q)

(3.2)

where B is a solution of the normal equations, GG is a generalized inverse of X'X,
and

52 — SSE _ y' (I — Px)y .

N —rank(X) N —rank(X)

(3.3)
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Note that A is a solution of the normal equations among the possible solutions.
So we can take a generalized inverse of X'X as (X'X)*. Hence for a balanced model,
L'GL and L'B can be easily computed as follows:

L'GL = M'PxM, (3.4)
L'B = M'Pxy (3.5)

where L' = M'X for some M.

4. CONCLUSIONS

From (2.2) we can easily obtain the orthogonal projection matrix for a given
balanced model by computing Z. Also since the explicit form of Z depends on
only the number of levels of main effects, it is simple to find Z whether there are
interactions or not. Hence we can reduce much computation which is necessary for
obtaining Px. This Z is also useful to obtain the explicit form of the orthogonal
projection matrix for an unbalanced model. Besides, this result can be applied
to compute not only the minimum norm generalized least squares solution of the
normal equation, but also the best linear unbiased estimator of X in the general
model E(y) = X3, Cov(y) = 02H for a symmetric positive definite matrix.
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