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NONNEGATIVE INTEGRAL MATRICES HAVING

GENERALIZED INVERSES

Kyung-Tae Kang, LeRoy B. Beasley, Luis Hernandez Encinas,
and Seok-Zun Song

Abstract. For an m×n nonnegative integral matrix A, a generalized in-

verse of A is an n×m nonnegative integral matrix G satisfying AGA = A.
In this paper, we characterize nonnegative integral matrices having gen-
eralized inverses using the structure of nonnegative integral idempotent
matrices. We also define a space decomposition of a nonnegative integral
matrix, and prove that a nonnegative integral matrix has a generalized
inverse if and only if it has a space decomposition. Using this decom-
position, we characterize nonnegative integral matrices having reflexive
generalized inverses. And we obtain conditions to have various types of
generalized inverses.

1. Introduction

Given an m× n matrix A over a set S, consider an n×m matrix G over S
in the equations

(1) AGA = A (2) GAG = G (3) (AG)t = AG (4) (GA)t = GA,

where At denotes the transpose of A. A matrix G satisfying (1) is called a
generalized inverse (simply, g-inverse) of A. In this case, we call A regular. If
G satisfies (1) and (2), then it is called a reflexive g-inverse of A. If G satisfies
(1) and (3), then it is called a {1, 3}-inverse of A. Also G is called a {1, 4}-
inverse of A if G satisfies (1) and (4). Finally, if G satisfies from (1) to (4), then
it is called a Moore-Penrose inverse of A. We note that if A has a g-inverse,
then A always has a reflexive g-inverse: for, if G is a g-inverse of A, then we
can easily show that GAG is a reflexive g-inverse of A.

There are many papers ([1]-[6]) on characterizing matrices having general-
ized inverses over various sets. Prasad [5] characterized regular matrices over
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commutative rings and Bapat [1] characterized generalized inverses of nonneg-
ative real matrices.

In this paper, we investigate nonnegative integral regular matrices and their
generalized inverses. Many of our results are counterparts to results on non-
negative real matrices ([1], [4]). A sectional summary is as follows: In Section
2, some definitions and preliminary results are presented. In Section 3, we
characterize nonnegative integral idempotent matrices. In Section 4, we obtain
the general form of nonnegative integral regular matrices applying the char-
acterization of nonnegative integral idempotent matrices. Also, we define a
space decomposition of a nonnegative integral matrix, and prove that a matrix
is regular if and only if it has a space decomposition. Furthermore, using this
decomposition, we characterize nonnegative integral matrices having reflexive
g-inverses. In the final section, we establish necessary and sufficient conditions
for an nonnegative integral regular matrix to possess various types of g-inverses
including a Moore-Penrose inverse.

2. Preliminaries and some results

Let Z+ be the set of all nonnegative integers, and let Mm,n(Z+) denote the
set of all m × n matrices with entries in Z+. If m = n, we use the notation
Mn(Z+) instead of Mn,n(Z+). Addition, multiplication by scalars, and the
product of matrices are defined as if Z+ were a field. Algebraic concepts such
as zero matrix (denoted by O), identity matrix of order n (denoted by In),
transpose and symmetry are defined in usual way.

If V is a nonempty subset of Zn
+ ≡ Mn,1(Z+) that is closed under addition

and multiplication by scalars, V is called a vector space over Z+. The notions
of subspace and spanning sets are defined as if Z+ were a field. A subset Ω of
a vector space V is called a basis if it spans V and no proper subset of Ω spans
V.

A set Φ of vectors over Z+ is linearly dependent if there is a vector x ∈ Φ
such that x is a linear combination of the vectors in Φ \ {x}. Otherwise Φ is
linearly independent. Thus a linearly independent set cannot contain a zero
vector. Also a basis of a vector space is linearly independent.

For matrices A and B in Mm,n(Z+), we use the notation A ≤ B or B ≥ A

if ai,j ≤ bi,j for all i and j.

Theorem 2.1. If Ω1 = {x1, . . . ,xp} and Ω2 = {y1, . . . ,yq} are bases of a

vector space V over Z+, then Ω1 = Ω2.

Proof. Let xk be arbitrary in Ω1. Then xk is a linear combination of vectors
in Ω2, each of which is a linear combination of vectors in Ω1. Thus we have

(2.1) xk =

q
∑

i=1

αiyi and yi =

p
∑

j=1

βi,jxj
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for some scalars αi and βi,j in Z+, equivalently

xk =

q
∑

i=1

αi





p
∑

j=1

βi,jxj



 =

(

q
∑

i=1

αiβi,k

)

xk +

p
∑

j 6=k

(

q
∑

i=1

αiβi,j

)

xj .

Since Ω1 is linearly independent, we have 0 6=
∑q

i=1 αiβi,k and hence αhβh,k 6= 0
for some h ∈ {1, . . . , q}. By (2.1), we have xk ≥ αhyh and yh ≥ βh,kxk so that
xk ≥ αhβh,kxk ≥ xk. Hence we have αh = βh,k = 1. It follows that xk = yh.

A parallel argument shows that if yk is arbitrary in Ω2, then yk = xh for
some h ∈ {1, . . . , p}. Therefore we have established that Ω1 = Ω2. �

If V is a vector space over Z+ that has a finite spanning subset, then Theorem
2.1 shows that it has a unique basis. The cardinality of the basis is called the
dimension of V, and is denoted by dim(V).

The column space of a matrix A ∈ Mm,n(Z+) is the subspace spanned by its
columns and is denoted by C(A); the row space of A is the subspace spanned
by its rows and is denoted by R(A). The column rank, c(A) is dim(C(A));
the row rank, r(A) is dim(R(A)). In particular, we say that A has rank r if
c(A) = r(A) = r. Generally the column rank and row rank of a matrix over
Z+ need not be equal. For example, consider the 2 × 2 matrix A = [ 2 3

4 6 ] over
Z+. Then c(A) = 2, while r(A) = 1.

For any matrix A in Mm,n(Z+), let ai∗ and a∗j denote the ith row and the
jth column of A, respectively.

Lemma 2.2. For a matrix A in Mm,n(Z+),
(i) if c(A) = r, then there are r columns a∗j1 , . . . ,a∗jr of A such that

{a∗j1 , . . . ,a∗jr} is the basis of C(A);
(ii) if r(A) = r, then there are r rows ai1∗, . . . ,air∗ of A such that {ai1∗, . . .,

air∗} is the basis of R(A).

Proof. Assume that c(A) = r. Notice that {a∗1, . . . ,a∗n} spans C(A). Thus
there are k linearly independent columns a∗j1 , . . . ,a∗jk of A such that

(2.2) {a∗j1 , . . . ,a∗jk} spans C(A).

Here we may assume that k is the minimum number satisfying (2.2). Thus,
{a∗j1 , . . . ,a∗jk} is the basis of C(A), and hence k = r by Theorem 2.1. Thus
(i) is satisfied. By a parallel argument, (ii) is satisfied. �

Corollary 2.3. Let A ∈ Mm,n(Z+) and B ∈ Mm,q(Z+) be matrices with

C(A) = C(B). If c(A) = r and the first r columns of A compose the basis

of C(A), then there are a permutation matrix Q of order q, and matrices,

X ∈ Mr,q−r(Z+) and Y ∈ Mn−r,q−r(Z+), such that B = A
[

Ir X
O Y

]

Q.

Proof. Since c(B) = c(A) = r, by Lemma 2.2, there are r columns b∗j1 , . . . , b∗jr
of B such that {b∗j1 , . . . , b∗jr} is the basis of C(B). But then it follows from
Theorem 2.1 that without loss of generality, we may assume that b∗j1 = a∗1,
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b∗j2 = a∗2, . . ., b∗jr = a∗r. Thus there is a permutation matrix Q1 of order q
such that

BQ1 =
[

a∗1 · · · a∗r b∗jr+1
· · · b∗jq

]

= A

[

Ir X

O Y

]

,

where X ∈ Mr,q−r(Z+) and Y ∈ Mn−r,q−r(Z+). If we take Q = Qt
1, the result

follows. �

A matrix A in Mn(Z+) is said to be idempotent if A2 = A.

Lemma 2.4. For A ∈ Mm,n(Z+) and G ∈ Mn,m(Z+), the following are

equivalent:

(i) AGA = A;
(ii) AG is idempotent in Mm(Z+) and C(A) = C(AG);
(iii) GA is idempotent in Mn(Z+) and R(A) = R(GA).

Proof. (i)⇒(ii): Assume (i). Then AGAG = AG and hence AG is idempotent.
Now, we will show that C(A) = C(AG). If y is an arbitrary vector in C(AG),
then there is a vector x such that y = AGx so that y = A(Gx) ∈ C(A). Hence
C(AG) ⊆ C(A). Let z be arbitrary in C(A) so that z = Ax′ for some vector
x′. It follows from AGA = A that

z = AGAx′ = (AG)(Ax′) ∈ C(AG),

and hence C(A) ⊆ C(AG). Thus C(A) = C(AG). Therefore (ii) is satisfied.
(ii)⇒(i): Assume (ii). Then A = AGX for some X ∈ Mm,n(Z+) because

C(A) = C(AG). Since AG is idempotent, we have that AGA = AGAGX =
AGX = A. Therefore (i) is satisfied.

By a parallel argument, we can easily show that (i)⇔(iii). �

3. Nonnegative integral idempotent matrices

In this section, we characterize nonnegative integral idempotent matrices. If
A is an idempotent matrix in Mn(Z+), then we can easily check that all main
diagonal entries of A are 0 or 1.

Proposition 3.1. If A ∈ Mn(Z+) is nonzero and ai,i = 0 for all i, then A is

not idempotent.

Proof. If A is any real idempotent matrix, and ai,i = 0 for all i, then the trace
of A is 0. Thus, the sum of the eigenvalues of A is 0, and hence, all eigenvalues
of A are zero (idempotent matrices have only eigenvalues of 0 or 1). That is A
is both nilpotent and idempotent. It follows that A = O. �

The following lemma is easily established by multiplying each side of A2 = A

by A−1.

Lemma 3.2. If A ∈ Mn(Z+) is idempotent and has rank n, then A = In.
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Proposition 3.1 shows that if A ∈ Mn(Z+) is idempotent and nonzero, then
A has at least one nonzero main diagonal entry.

Theorem 3.3. Suppose that A ∈ Mn(Z+) has r(≥ 1) nonzero main diagonal

entries. Then A is idempotent if and only if there is a permutation matrix

P of order n such that A = P
[

Ir C
D DC

]

P t, where C ∈ Mr,n−r(Z+), D ∈
Mn−r,r(Z+) and CD = O.

Proof. Let P be a permutation matrix such that B = P tAP has bi,i 6= 0 for
1 = 1, . . . , r and bj,j = 0 for j > r. Partition B so that B = [M C

D Z ] where M is
r × r so that zj,j = 0 for all j. Since A, and hence B, is idempotent,

(3.1)

[

M C

D Z

]

=

[

M C

D Z

]2

=

[

M2 + CD MC + CZ

DM + ZD DC + Z2

]

.

Since mi,i 6= 0 for all i, MC has nonzero entries everywhere that C does.
Since MC+CZ = C (from the (1,2) entry of (3.1)), it follows (since arithmetic
is in Z+) that

(3.2) MC = C and CZ = O.

Similarly (from the (2,1) entry of (3.1)), we have

(3.3) DM = D and ZD = O.

Now consider the (1,1) entry of (3.1): M2 + CD = M . Multiplying by M

we get M3+MCD = M2, and by (3.2) we have M3+CD = M2. Adding CD

we get M3+2CD = M2+CD = M . Repeating this process we obtain for any
k ≥ 1 that

Mk+1 + kCD = M.

If the (i, j) entry of CD is nonzero, then for sufficiently large k, the (i, j) entry
of kCD is strictly greater than mi,j , a contradiction. Thus, CD = O and
M2 = M . Since all the diagonal entries of M are positive, the trace of M is at
least r, and all eigenvalues of M are 0 or 1 (M is idempotent), so the trace of
M is at most r. That is, M has rank r and by Lemma 3.2,

(3.4) M = Ir.

Now consider the (2,2) entry of (3.1): DC + Z2 = Z. Multiply by Z to get
ZDC +Z3 = Z2, so that by (3.3) we have Z3 = Z2. Thus all eigenvalues of Z
are 0 or 1. Since the trace of Z is zero, we have all eigenvalues of Z are 0, and
since Z3 = Z2, we have that

(3.5) Z2 = O.

From (3.4) and (3.5) we have that

B =

[

Ir C

D DC

]

.

The converse is obvious. �
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In Theorem 3.3, we note that c(A) = r(A) = r and hence A has rank r.
Thus the following Corollary is obtained:

Corollary 3.4. If A ∈ Mn(Z+) is idempotent, then c(A) = r(A).

Theorem 3.5. A ∈ Mn(Z+) is a symmetric idempotent matrix of rank r if and

only if there is a permutation matrix P of order n such that A = P
[

Ir O
O O

]

P t.

Proof. Suppose that A is a symmetric idempotent matrix of rank r. By Theo-

rem 3.3, there is a permutation matrix P of order n such that A =
[

Ir C

Ct CtC

]

P t,

where C ∈ Mr,n−r(Z+) and CCt = O. It follows from CCt = O that C = O.
Therefore we have A = P

[

Ir O
O O

]

P t. The converse is obvious. �

4. Nonnegative integral regular matrices

In this section, we give a characterization of nonnegative integral regular
matrices using Theorem 3.3. Also, we define a space decomposition of a non-
negative integral matrix, and prove that a nonnegative integral matrix A is
regular if and only if it has a space decomposition. Furthermore, using this
decomposition, we characterize nonnegative integral matrices having reflexive
g-inverses.

Theorem 4.1. Let A be a matrix in Mm,n(Z+). Then A is regular if and only

if there are permutation matrices P and Q of orders m and n, respectively such

that

A = P

[

Ir N

D DN

]

Q,

where r(≥ 0) is an integer; N ∈ Mr,n−r(Z+) and D ∈ Mm−r,r(Z+).

Proof. Suppose that A is regular. Then A has a g-inverse G ∈ Mn,m(Z+) so
that AGA = A. By Lemma 2.4, AG ∈ Mm(Z+) is idempotent and C(A) =
C(AG). Let AG have the rank r. By Theorem 3.3, there is a permutation
matrix P of order m such that AG = P

[

Ir C
D DC

]

P t, where C ∈ Mr,m−r(Z+),

D ∈ Mm−r,r(Z+) and CD = O. Notice that C(P tA) = C(P tAG) = C(P tAGP )
and the first r columns of P tAGP compose the basis of C(P tAGP ). Thus by
Corollary 2.3, there are a permutation matrix Q of order n, and matrices
X ∈ Mr,n−r(Z+) and Y ∈ Mm−r,n−r(Z+) such that P tA = P tAGP

[

Ir X
O Y

]

Q,

equivalently A = AGP
[

Ir X
O Y

]

Q. Since AGP = P
[

Ir C
D DC

]

, we have

A = P

[

Ir C

D DC

] [

Ir X

O Y

]

Q = P

[

Ir N

D DN

]

Q,

where N = X + CY .
The converse is obvious. In fact, Qt

[

Ir O
O O

]

P t is a g-inverse of A. �

Furthermore, we have c(A) = r(A) = r and hence A has rank r. Thus we
obtain the following:

Corollary 4.2. If A ∈ Mm,n(Z+) is regular, then c(A) = r(A).
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For any A ∈ Mm,n(Z+), we notice that A is regular if and only if At

is regular because G ∈ Mn,m(Z+) is a g-inverse of A if and only if Gt ∈
Mm,n(Z+) is a g-inverse of At.

Corollary 4.3. For matrices A and B in Mm,n(Z+), let A be regular. If

C(A) = C(B) or R(A) = R(B), then B is regular.

Proof. Suppose that C(A) = C(B) with c(A) = r. Since A is regular, by
Theorem 4.1, there are permutation matrices P and Q of orders m and n,
respectively such that A = P

[

Ir N
D DN

]

Q, where N ∈ Mr,n−r(Z+) and D ∈
Mm−r,r(Z+). Clearly C(P tAQt) = C(P tA) = C(P tB) and hence by Corol-
lary 2.3, there are a permutation matrix Q1 of order n, and matrices X ∈
Mr,n−r(Z+) and Y ∈ Mn−r,n−r(Z+) such that P tB = P tAQt

[

Ir X
O Y

]

Q1,

equivalently B = AQt
[

Ir X
O Y

]

Q1. It follows from A = P
[

Ir N
D DN

]

Q that

B = P
[

Ir M
D DM

]

Q1, where M = X +NY . Thus by Theorem 4.1, B is regular.

Next, suppose that R(A) = R(B). Then C(At) = C(Bt). Since At is regular,
by the above argument, Bt is regular and hence B is regular. �

Consider the matrix A =
[

1 0 2
0 1 3
1 0 2

]

over Z+. By Theorem 4.1, A is regular

with a g-inverse G =
[

1 0 0
0 1 0
0 0 0

]

. On the other hand, we can easily check that

G′ =
[

0 0 1
0 1 0
0 0 0

]

is also a g-inverse of A. Generally the following holds:

Proposition 4.4. Let A =
[

Ir N
D DN

]

∈ Mm,n(Z+). Then
[

G1 G2

G3 G4

]

∈Mn,m(Z+)
is a g-inverse of A if and only if Ir = G1 +NG3 +G2D +NG4D.

Theorem 4.5. Let G1, G2 ∈ Mn,m(Z+) be any two g-inverses of a regular

matrix A ∈ Mm,n(Z+).

(i) If r(A) = m, then AG1 = AG2;
(ii) If c(A) = n, then G1A = G2A.

Proof. (i) By Lemma 2.4, AG1 and AG2 are idempotent in Mm(Z+) and
C(AG1) = C(A) = C(AG2). Furthermore both AG1 and AG2 have the rank m

by Corollary 3.4. Thus by Lemma 3.2, AG1 = Im = AG2.
(ii) Notice that Gt

1 and Gt
2 are g-inverses of At. If c(A) = n, then r(At) = n.

Thus by (i), AtGt
1 = AtGt

2 and hence G1A = G2A. �

A nonzero matrix A ∈ Mm,n(Z+) is said to be space decomposable if for
some r, there are two matrices L ∈ Mm,r(Z+) and R ∈ Mr,n(Z+) such that

(4.1) A = LR, C(A) = C(L) and R(A) = R(R).

The decomposition LR is called a space decomposition of A of order r.

Theorem 4.6. For a nonzero matrix A ∈ Mm,n(Z+), A is regular if and only

if A has a space decomposition.
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Proof. Suppose that A is regular and has rank r. By Theorem 4.1, there
are permutation matrices P and Q of orders m and n, respectively such that
A = P

[

Ir N
D DN

]

Q, where N ∈ Mr,n−r(Z+) and D ∈ Mm−r,r(Z+). Let

(4.2) LA = P

[

Ir
D

]

and RA =
[

Ir N
]

Q.

Then we can easily show that (4.2) satisfies the condition (4.1). Therefore A

has a space decomposition.
Conversely assume that A has a space decomposition of order q. Then we

can assume the condition (4.1) so that L = AX and R = Y A for some matrices
X ∈ Mn,q(Z+) and Y ∈ Mq,m(Z+). Then A = LR = A(XY )A and hence A

is regular. �

Theorem 4.6 implies that the rank of a regular matrix is the smallest integer
r such that r can be taken in the definition of its space decomposition.

Theorem 4.7. Let A be a nonzero matrix in Mm,n(Z+) of rank r. Let LARA

be a space decomposition of order r of A as in (4.2). Then LR is also a space

decomposition of A of order r if and only if there is a permutation matrix P1

of order r such that L = LAP1 and R = P t
1RA.

Proof. Suppose that LR is a space decomposition of A of order r. By definition,
we have C(L) = C(A) = C(LA) and R(R) = R(A) = R(RA). Thus there are
permutation matrices P1 and P2 of order r such that L = LAP1 and R = P2RA.
Then we have

A = P

[

Ir N

D DN

]

Q = P

[

Ir
D

]

P1P2

[

Ir N
]

Q,

and hence Ir = IrP1P2Ir so that P1P2 = Ir, equivalently P2 = P t
1 .

The converse is obvious. �

Corollary 4.8. Let LR be an arbitrary space decomposition of order r of a

regular matrix A ∈ Mm,n(Z+) of rank r(≥ 1). Then L and R have g-inverses.

Proof. By Theorem 4.7, we have L = LAP1 and R = P t
1RA for some per-

mutation matrix P1 of order r, where LA and RA are of the form in (4.2).
Then

(4.3) LG = P t
1

[

Ir O
]

P t and RG = Qt

[

Ir
O

]

P1

are g-inverses of L and R, respectively. �

Theorem 4.9. Let LR be a space decomposition of order r of a regular matrix

A ∈ Mm,n(Z+) of rank r(≥ 1), and G ∈ Mn,m(Z+) be a g-inverse of A. If L′

and R′ are arbitrary g-inverses of L and R, respectively, then

(i) L′L = RR′ = Ir;
(ii) L′A = R and AR′ = L;
(iii) R′L′ is a g-inverse of A;
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(iv) RG and GL are reflexive g-inverses of L and R, respectively.

Proof. Since A is a regular matrix of rank r, we assume condition (4.2). Thus,
by Theorem 4.7, we have L = P

[

Ir
D

]

P1 and R = P t
1

[

Ir N
]

Q for some
permutation matrix P1 of order r. Notice that LG and RG in (4.3) are g-
inverses of L and R, respectively. Let L′ and R′ be arbitrary g-inverses of L
and R, respectively. By Theorem 4.5, we have

(4.4) LGL = L′L and RRG = RR′.

By a simple calculation, we have LGL = Ir = RRG and hence L′L = RR′ = Ir
by (4.4). Thus (i) holds. It follows that L′A = L′LR = R and AR′ = LRR′ =
L. Thus (ii) is satisfied. But then A(R′L′)A = AR′L′A = LR = A and hence
(iii) holds.

Now, we will prove (iv). Since AGA = A, LL′L = L and RR′R = R, it
follows from (ii) that

(4.5) L(RG)L = LL′AGAR′ = LL′AR′ = LL′L = L

and

(4.6) (RG)L(RG) = (L′A)G(AR′)(RG) = L′AR′RG = RR′RG = RG.

Therefore RG is a reflexive g-inverse of L by (4.5) and (4.6). Notice that RtLt

is a space decomposition of At and Gt is a g-inverse of At. By the above result,
LtGt is a reflexive g-inverse of Rt, equivalently GL is a reflexive g-inverse of
R. Thus (iv) holds. �

The following is a characterization of reflexive g-inverses of a nonnegative
integral regular matrix.

Theorem 4.10. Let LR be a space decomposition of order r of a regular matrix

A ∈ Mm,n(Z+) of rank r(≥ 1). Then G ∈ Mn,m(Z+) is a reflexive g-inverse

of A if and only if there are g-inverses L′ and R′ of L and R, respectively, such

that G = R′L′.

Proof. Suppose that G is a reflexive g-inverse of A. Let L′ = RG and R′ = GL.
Then L′ and R′ are reflexive g-inverses of L and R, respectively, by Theorem
4.9(iv). But then G = GAG = GLRG = R′L′.

Conversely, assume that there are g-inverses L′ and R′ of L and R, re-
spectively such that G = R′L′. Then G = R′L′ is a g-inverse of A by
Theorem 4.9(iii). Furthermore it follows from Theorem 4.9(i) that GAG =
R′L′LRR′L′ = R′IrIrL

′ = R′L′ = G, and hence G is a reflexive g-inverse of
A. �

5. Other types of g-inverses

In this section, we obtain necessary and sufficient conditions for a matrix
A ∈ Mm,n(Z+) to have various types of g-inverses.

Recall that G ∈ Mn,m(Z+) is a {1, 3}-inverse of A ∈ Mm,n(Z+) if and only
if AGA = A and (AG)t = AG.
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Theorem 5.1. For a matrix A in Mm,n(Z+), the following are equivalent:

(i) A has a {1, 3}-inverse;
(ii) There are permutation matrices P and Q of orders m and n, respec-

tively such that A = P
[

Ir X
O O

]

Q, where r(≥ 0) is an integer and

X ∈ Mr,n−r(Z+);
(iii) A is regular and R(A) = R(AtA);
(iv) There is a matrix G in Mn,m(Z+) such that AtAG = At.

Proof. (i)⇒(ii): Suppose that the rank of A is r and G ∈ Mn,m(Z+) is a {1, 3}-
inverse of A. Then AG ∈ Mm(Z+) is symmetric. Further, C(A) = C(AG) and
AG is idempotent by Lemma 2.4. Thus, by Theorem 3.5, there is a permutation
matrix P of order m such that AG = P

[

Ir O
O O

]

P t. Notice that C(P tA) =
C(P tAG) = C(P tAGP ). Hence by Corollary 2.3, there are a permutation
matrix Q of order n, and matrices X ∈ Mr,n−r(Z+) and Y ∈ Mm−r,n−r(Z+)
such that P tA = P tAGP

[

Ir X
O Y

]

Q, equivalently A = AGP
[

Ir X
O Y

]

Q. Thus we
have

A = AGP

[

Ir X

O Y

]

Q = P

[

Ir O

O O

] [

Ir X

O Y

]

Q = P

[

Ir X

O O

]

Q.

(ii)⇒(iii): Clear because AtA = Qt
[

Ir X

Xt XtX

]

Q.

(iii)⇒(iv): Assume that A is regular and R(A) = R(AtA). Then A = Y AtA

for some Y ∈ Mm,n(Z+). Furthermore it follows from Corollary 4.3 that
AtA ∈ Mn(Z+) is also regular and hence (AtA)G1(A

tA) = AtA for some
G1 ∈ Mn(Z+). Take G = G1A

t. Then it follows from At = AtAY t that
AtAG = AtAG1A

t = (AtA)G1(A
tA)Y t = AtAY t = At.

(iv)⇒(i): Suppose that AtAG = At for some G ∈ Mn,m(Z+), equivalently
A = GtAtA. Then we have (AG)t = GtAt = GtAtAG = AG and AGA =
(AG)tA = GtAtA = A. Therefore G is a {1, 3}-inverse of A. �

Recall that G ∈ Mn,m(Z+) is a {1, 4}-inverse of A ∈ Mm,n(Z+) if and only
if AGA = A and (GA)t = GA. For any matrix A in Mm,n(Z+), we note
that A has a {1, 3}-inverse G if and only if At has a {1, 4}-inverse Gt. Thus,
by applying this result in Theorem 5.1, we obtain the following Theorem, and
omit the proof:

Theorem 5.2. For a matrix A in Mm,n(Z+), the following are equivalent:

(i) A has a {1, 4}-inverse;
(ii) There are permutation matrices P and Q of orders m and n, respec-

tively such that A = P
[

Ir O
X O

]

Q, where r(≥ 0) is an integer and

X ∈ Mm−r,r(Z+);
(iii) A is regular and C(A) = C(AAt);
(iv) There is a matrix G in Mn,m(Z+) such that GAAt = At.

Finally, in the following, we characterize nonnegative integral matrices hav-
ing Moore-Penrose inverses. The proof only depends on the above two Theo-
rems, and we omit the proof:
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Theorem 5.3. For a matrix A in Mm,n(Z+), it has a Moore-Penrose inverse

if and only if there are permutation matrices P and Q of orders m and n,

respectively such that

A = P

[

Ir O

O O

]

Q,

where r(≥ 0) is an integer.
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