RINGS WITH MANY REGULAR ELEMENTS

Nahid Ashrafi and Ebrahim Nasibi

Abstract

In this paper we introduce rings that satisfy regular 1-stable range. These rings are left-right symmetric and are generalizations of unit 1 -stable range. We investigate characterizations of these kind of rings and show that these rings are closed under matrix rings and Morita Context rings.

1. Introduction

Let R be an associative ring with an identity. We say that R has stable range one provided that $a R+b R=R$ with $a, b \in R$ implies that there exists some $y \in R$ such that $a+b y \in U(R)$, where $U(R)$ denotes the set of all units in R. One of the most important features of stable range one is the cancellation of related modules from direct sums. Evans [15, Theorem 2] proved that if A, B, C are R-modules such that $A \oplus B \cong A \oplus C$, and $\operatorname{End}_{R}(A)$ has stable range one, then $B \cong C$. Stable range conditions have been studied in [1], [8], [9], [11], [14], [19] and [21]. Goodearl and Mental [16] defined the concept of unit 1 -stable range: we say that R satisfies unit 1 -stable range provided that for any $a, b \in R, a R+b R=R$ implies there exists a $y \in U(R)$ such that $a+b y \in U(R)$. Many authors have studied this class of rings such as [7], [12], [13] and [16]. Here we generalize this concept as bellow.

Definition 1.1. A ring R is said to satisfy regular 1 -stable range provided that for any $a, b \in R, a R+b R=R$ implies there exists a regular (von Neumann) element $r \in R$ such that $a+b r \in U(R)$.

Obviously, if R satisfies unit 1-stable range, then it satisfies regular 1-stable range. But the converse is not true in generally. For example, $\mathbb{Z} / 2 \mathbb{Z}$ (the ring of integers modulo 2) satisfies regular 1-stable range, while it does not satisfies unit 1 -stable range.

In this paper, we will prove that a ring satisfies regular 1 -stable range is left-right symmetric. In other words, a ring R satisfies regular 1 -stable range
if and only if whenever $R a+R b=R$, there exists a regular $r \in R$ such that $a+r b \in U(R)$.

A Morita context (A, B, M, N, ψ, ϕ) consists of two rings A and B, two bimodules ${ }_{A} N_{B}$ and ${ }_{B} M_{A}$, and a pair of bimodule homomorphisms $\psi: N \otimes_{B}$ $M \rightarrow A$ and $\phi: M \otimes_{A} N \rightarrow B$ which satisfy the following associativity:
$\psi(n \otimes m) n^{\prime}=n \phi\left(m \otimes n^{\prime}\right)$ and $\phi(m \otimes n) m^{\prime}=m \psi\left(n \otimes m^{\prime}\right)$ for any $m, m^{\prime} \in M$, $n, n^{\prime} \in N$. We can form $C=\left\{\left.\left(\begin{array}{cc}a & n \\ m & b\end{array}\right) \right\rvert\, a \in A, b \in B, n \in N, m \in M\right\}$, and define a multiplication on C as follows:

$$
\left(\begin{array}{cc}
a & n \\
m & b
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & n^{\prime} \\
m^{\prime} & b^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
a a^{\prime}+\psi\left(n \otimes m^{\prime}\right) & a n^{\prime}+n b^{\prime} \\
m a^{\prime}+b m^{\prime} & \phi\left(m \otimes n^{\prime}\right)+b b^{\prime}
\end{array}\right) .
$$

With this multiplication and entry-wise addition, C becomes an associative ring. We call C a Morita Context ring. Obviously, the class of the rings of Morita Contexts includes all 2×2 matrix rings and all formal triangular matrix rings. Many authors studied Morita Contexts such as [5], [10] and [17].

We characterize rings that satisfies regular 1-stable range and show that these kind of rings are closed under matrix rings and Morita Context rings. Finally, we prove that a ring R satisfies regular 1-stable range if and only if so does the ring of all $n \times n$ lower (resp., upper) triangular matrices over R.

Throughout this paper, R denotes an associative ring with unity, $U(R)$ the group of units, $I d(R)$ the set of idempotents, $J(R)$ the Jacobson radical of R and $M_{n}(R)$ the ring of all $n \times n$ matrices over R. Further $\operatorname{Reg}(R)=\{a \in R \mid$ a is regular (von Neumann) $\}$.

2. Main results

In this section we first give some properties of rings satisfy regular 1-stable range.

Proposition 2.1. The following statements are equivalent for any ring R :
(1) R satisfies regular 1 -stable range.
(2) Whenever $a, b \in R$ satisfy $a R+b R=R$, there exists $r \in \operatorname{Reg}(R)$ such that $a+b r$ is left invertible.
(3) Whenever $a, b \in R$ satisfy $a R+b R=R$, there exists $r \in \operatorname{Reg}(R)$ such that $a+b r$ is right invertible.

Proof. (1) $\Rightarrow(2)$ and (1) $\Rightarrow(3)$ are trivial.
$(2) \Rightarrow(1)$. Given $a R+b R=R$, then there exists $r \in \operatorname{Reg}(R)$ such that $a+b r=u$ is left invertible. Say $v u=1$ for some $v \in R$. Since $v R+0 R=R$, so there exists $r_{1} \in \operatorname{Reg}(R)$ such that $v+0 . r_{1}=v$ is left invertible. Therefore $a+b r \in U(R)$.
(3) \Rightarrow (1). Given $a R+b R=R$, then there exists $r \in \operatorname{Reg}(R)$ such that $a+b r=u$ is right invertible. Say $u v=1$ for some $v \in R$. Since $v R+(1-$ $v u) R=R$, so there exists $r_{1} \in \operatorname{Reg}(R)$ such that $v+(1-v u) r_{1}=r_{2}$ is right invertible. Hence $u r_{2}=u\left(v+(1-v u) r_{1}\right)=1$. Thus $r_{2} \in U(R)$. Therefore $a+b r \in U(R)$.

Lemma 2.1. If $r \in \operatorname{Reg}(R)$, then $r u \in \operatorname{Reg}(R)$ and $u r \in \operatorname{Reg}(R)$ for any $u \in U(R)$.
Proof. Since $r \in \operatorname{Reg}(R)$, so there exists $y \in R$ such that ryr $=r$. Hence $r u u^{-1} y r=r$ for any $u \in U(R)$. Thus $r u u^{-1} y r u=r u$. Therefore $r u \in \operatorname{Reg}(R)$. Also $u r y u^{-1} u r=u r$. So $u r \in \operatorname{Reg}(R)$.

The proofs of the following two lemmas are analogous to [22, Lemma 4.4 and Theorem 4.5].

Lemma 2.2. The following statements are equivalent for any ring R :
(1) R satisfies regular 1-stable range.
(2) Whenever $a, b \in R$ satisfy $a x+b=1$, there exists $r \in \operatorname{Reg}(R)$ such that $a+b r \in U(R)$.
(3) Whenever $a, b \in R$ satisfy $a x+b=1$, there exists $y \in R$ such that $a+b y \in U(R)$ and $1-x y \in \operatorname{Reg}(R)$.

Lemma 2.3. The following statements are equivalent for any ring R :
(1) Whenever $a, b \in R$ satisfy $a x+b=1$, there exists $r \in \operatorname{Reg}(R)$ such that $a+b r \in U(R)$.
(2) Whenever $a, b \in R$ satisfy $a x+b=1$, there exists $r \in \operatorname{Reg}(R)$ such that $x+r b \in U(R)$.

The opposite ring $R^{o p}$ consists of formal elements $\left\{a^{o p}: a \in R\right\}$ with addition and multiplication given by

$$
a^{o p}+b^{o p}=(a+b)^{o p}, a^{o p} \cdot b^{o p}=(b a)^{o p}
$$

From Lemma 2.3, we see that R satisfies regular 1-stable range if and only if so does $R^{o p}$. Hence a ring satisfies regular 1-stable range is left-right symmetric. Vaserstein [20] showed that a ring R has stable range one if and only if so does $R / J(R)$. Now, we consider the similar case for rings satisfying regular 1-stable range.

Lemma 2.4. Let I be an ideal of R with $I \subseteq J(R)$. If R satisfies regular 1 -stable range, then so does R / I.
Proof. Assume that $\overline{a x}+\bar{b}=\overline{1}$ in $\bar{R}=R / I$. Then $a x+b=1+k \in U(R)$ for some $k \in J(R)$. Hence $a x(1+k)^{-1}+b(1+k)^{-1}=1$. So there exists $r \in \operatorname{Reg}(R)$ such that $a+b(1+k)^{-1} r \in U(R)$. But $(1+k)^{-1} r \in \operatorname{Reg}(R)$ by Lemma 2.1. Hence $\overline{(1+k)^{-1} r} \in \operatorname{Reg}(\bar{R})$ and since $\bar{a}+\overline{b(1+k)^{-1} r} \in U(\bar{R})$, so \bar{R} satisfies regular 1-stable range.

Corollary 2.1. Let R be an abelian ring (all its idempotents are central) and idempotents can be lifted modulo $J(R)$. If I is any ideal of R with $I \subseteq J(R)$, then R satisfies regular 1 -stable range if and only if so does R / I.
Proof. One direction is trivial by Lemma 2.4. Conversely, suppose that R / I satisfies regular 1-stable range. Let $a x+b=1$ in R . Then $\overline{a x}+\bar{b}=\overline{1} \in \bar{R}=R / I$.

Thus there exists $\bar{r} \in \operatorname{Reg}(\bar{R})$ such that $\overline{a+b r}=\bar{v} \in U(\bar{R})$. But since \bar{R} is abelian, so $\bar{r}=\overline{e u}$ for some $\bar{e} \in I d(\bar{R})$ and $\bar{u} \in U(\bar{R})$. Now, as units and idempotents can be lifted modulo $J(R)$, so we assume that $e \in I d(R)$ and $u \in U(R)$. Hence $a+b r=v+k \in U(R)$ with $v \in U(R), k \in J(R)$ and $r=e u \in \operatorname{Reg}(R)$, as required.

Theorem 2.1. The following are equivalent for any ring R :
(1) R satisfies regular 1 -stable range.
(2) Whenever $a R+b R=d R$ with $a, b, d \in R$, there exist $u \in U(R)$ and $r \in \operatorname{Reg}(R)$ such that $a u+b r=d$.
(3) Whenever $a_{1} R+\cdots+a_{n} R=d R$ with $n \geqslant 2, a_{1}, \ldots, a_{n}, d \in R$, there exist $u_{1} \in U(R)$ and $r_{2}, \ldots, r_{n} \in \operatorname{Reg}(R)$ such that $a_{1} u_{1}+a_{2} r_{2}+\cdots+$ $a_{n} r_{n}=d$.

Proof. Both $(2) \Rightarrow(1)$ and $(3) \Rightarrow(2)$ are obvious.
$(1) \Rightarrow(2)$. Since R satisfies regular 1 -stable range, then R has stable range one. Given $a R+b R=d R$ with $a, b, d \in R$, the sets $\{a, b\}$ and $\{d, 0\}$ generate the same R-submodule of R^{2}. Therefore there exists $U=\left(u_{i j}\right) \in G L_{2}(R)$ such that $(a, b)=(d, 0) U$ by [8, Lemma 2.1]. Obviously, $u_{11} R+u_{12} R=R$. Thus there exists $r \in \operatorname{Reg}(R)$ such that $u_{11}+u_{12} r=v \in U(R)$. Hence $a+b r=d v$. Therefore $a v^{-1}+b r v^{-1}=d$, where $v^{-1} \in U(R)$ and $r v^{-1} \in \operatorname{Reg}(R)$ by Lemma 2.1.
(2) \Rightarrow (3). Given $a_{1} R+\cdots+a_{n} R=d R$ with $n \geqslant 2, a_{1}, \ldots, a_{n}, d \in$ R. If $n=2$, then the result follows from (2). Assume that the result holds for $n \leqslant k(k \geqslant 2)$. Let $n=k+1$. Then there exist $x_{1}, \ldots, x_{k+1} \in R$ such that $a_{1} x_{1}+\cdots+a_{k+1} x_{k+1}=d$. Thus $a_{1} R+\cdots+a_{k-1} R+\left(a_{k} x_{k}+\right.$ $\left.a_{k+1} x_{k+1}\right) R=d R$. Hence $a_{1} u_{1}+a_{2} r_{2}+\cdots+\left(a_{k} x_{k}+a_{k+1} x_{k+1}\right) r_{k}=d$ for some $u_{1} \in U(R), r_{2}, \ldots, r_{k} \in \operatorname{Reg}(R)$. Therefore $\left(a_{1} u_{1}+a_{2} r_{2}\right) R+\cdots+a_{k} R+a_{k+1} R=$ $d R$. Hence $\left(a_{1} u_{1}+a_{2} r_{2}\right) v_{1}+\cdots+a_{k} v_{k-1}+a_{k+1} v_{k}=a_{1} u_{1} v_{1}+a_{2} r_{2} v_{1}+\cdots+$ $a_{k} v_{k-1}+a_{k+1} v_{k}=d$ for some $v_{1} \in U(R), v_{2}, \ldots, v_{k} \in \operatorname{Reg}(R)$. Note that $u_{1} v_{1} \in U(R)$ and $r_{2} v_{1}, v_{2}, \ldots, v_{k} \in \operatorname{Reg}(R)$, thus we complete the proof.

Corollary 2.2. The following are equivalent for any ring R :
(1) R satisfies regular 1-stable range.
(2) Whenever $R a+R b=R d$ with $a, b, d \in R$, there exist $u \in U(R)$ and $r \in \operatorname{Reg}(R)$ such that $u a+r b=d$.
(3) Whenever $R a_{1}+\cdots+R a_{n}=d R$ with $n \geqslant 2, a_{1}, \ldots, a_{n}, d \in R$, there exist $u_{1} \in U(R)$ and $r_{2}, \ldots, r_{n} \in \operatorname{Reg}(R)$ such that $u_{1} a_{1}+r_{2} a_{2}+\cdots+$ $r_{n} a_{n}=d$.

Let

$$
B_{12}(*)=\left(\begin{array}{cc}
1 & * \\
0 & 1
\end{array}\right) \text { and } B_{21}(*)=\left(\begin{array}{cc}
1 & 0 \\
* & 1
\end{array}\right)
$$

We use $[u, v]$ to denote the diagonal matrix $\operatorname{diag}(u, v)$ with $u, v \in U(R)$.
Theorem 2.2. The following are equivalent for any ring R :
(1) R satisfies regular 1-stable range.
(2) For any $A \in G L_{2}(R)$, there exists $r \in \operatorname{Reg}(R)$ such that $A=[*, *] B_{21}(*) B_{12}(*) B_{21}(r)$.
(3) For any $A \in G L_{2}(R)$, there exists $r \in \operatorname{Reg}(R)$ such that $A=[*, *] B_{21}(r) B_{12}(*) B_{21}(*)$.

Proof. (1) \Rightarrow (2). Given $A=\left(a_{i j}\right) \in G L_{2}(R)$, then $a_{11} R+a_{12} R=R$ we have $u_{1} \in U(R)$ and $v_{1} \in \operatorname{Reg}(R)$ such that $a_{11} u_{1}+a_{12} v_{1}=1$ by Theorem 2.1. Hence $a_{11}+a_{12} v_{1} u_{1}^{-1}=u_{1}^{-1}$. Thus we have

$$
A B_{21}\left(v_{1} u_{1}^{-1}\right)=\left(\begin{array}{cc}
u_{1}^{-1} & a_{12} \\
a_{21}+a_{22} v_{1} u_{1}^{-1} & a_{22}
\end{array}\right) .
$$

Set $u=u_{1}^{-1}, v=a_{22}-\left(a_{21}+a_{22} v_{1} u_{1}^{-1}\right) u_{1}^{-1} a_{12}$ and $r=-v_{1} u_{1}^{-1}$. Then $A=[u, v] B_{21}(*) B_{12}(*) B_{21}(r)$, where $r \in \operatorname{Reg}(R)$ by Lemma 2.1.
$(2) \Rightarrow(3)$. Let $A=\left(a_{i j}\right) \in G L_{2}(R)$. Then $A^{-1} \in G L_{2}(R)$. Hence there are $u, v \in U(R)$ and $r \in \operatorname{Reg}(R)$ such that $A^{-1}=[u, v] B_{21}(*) B_{12}(*) B_{21}(r)$. Thus we have

$$
A=B_{21}(-r) B_{12}(*) B_{21}(*)\left[u^{-1}, v^{-1}\right]=\left[u^{-1}, v^{-1}\right] B_{21}\left(-v r u^{-1}\right) B_{12}(*) B_{21}(*)
$$

where $-v r u^{-1} \in \operatorname{Reg}(R)$ by Lemma 2.1.
(3) \Rightarrow (1). Let $a x+b=1$ in R. Then $\left(\begin{array}{cc}a & b \\ -1 & x\end{array}\right) \in G L_{2}(R)$. So there exists $u, v \in U(R)$ and $r \in \operatorname{Reg}(R)$ such that

$$
\left(\begin{array}{cc}
a & b \\
-1 & x
\end{array}\right)=[u, v] B_{21}(r) B_{12}(*) B_{21}(*) .
$$

Hence $B_{21}(-r)\left[u^{-1}, v^{-1}\right]\left(\begin{array}{cc}a & b \\ -1 & x\end{array}\right)=B_{12}(*) B_{21}(*)$. Thus $x-v r u^{-1} b=v \in$ $U(R)$, as required.

Corollary 2.3. The following are equivalent for any ring R :
(1) R satisfies regular 1 -stable range.
(2) For any $A \in G L_{2}(R)$, there exists $r \in \operatorname{Reg}(R)$ such that $A=[*, *] B_{12}(*) B_{21}(*) B_{12}(r)$.
(3) For any $A \in G L_{2}(R)$, there exists $r \in \operatorname{Reg}(R)$ such that $A=[*, *] B_{12}(r) B_{21}(*) B_{12}(*)$.

Proof. (1) \Rightarrow (2). Given any $A \in G L_{2}(R)$, then $\left(A^{T}\right)^{o} \in G L_{2}\left(R^{o p}\right)$. But by Theorem 2.2, there are $u, v \in U(R)$ and $r \in \operatorname{Reg}(R)$ such that $\left(A^{T}\right)^{o}=$ $\left[u^{o}, v^{o}\right] B_{21}\left(r^{o}\right) B_{12}\left(*^{o}\right) B_{21}\left(*^{o}\right)$. Therefore $A=[*, *] B_{12}(*) B_{21}(*) B_{12}(r)$ as required.
(2) $\Rightarrow(3)$. Given any $A=\left(a_{i j}\right) \in G L_{2}(R)$. Then $A^{-1} \in G L_{2}(R)$. Hence, there are $u, v \in U(R)$ and $r \in \operatorname{Reg}(R)$ such that $A^{-1}=[u, v] B_{12}(*) B_{21}(*)$ $B_{12}(r)$. Therefore

$$
A=B_{12}(-r) B_{21}(*) B_{12}(*)\left[u^{-1}, v^{-1}\right]=\left[u^{-1}, v^{-1}\right] B_{12}\left(-u r v^{-1}\right) B_{21}(*) B_{12}(*) .
$$

Thus we complete proof by Lemma 2.1.
(3) \Rightarrow (1). Given $a x+b=1$ in R, then $\left(\begin{array}{cc}x & -1 \\ b & a\end{array}\right) \in G L_{2}(R)$. Thus there are $u, v \in U(R)$ and $r \in \operatorname{Reg}(R)$ such that

$$
\left(\begin{array}{cc}
x & -1 \\
b & a
\end{array}\right)=[u, v] B_{12}(*) B_{21}(*) B_{12}(r)
$$

Therefore $a-b r=v \in U(R)$, as required.
Theorem 2.3. The following are equivalent for any ring R :
(1) R satisfies regular 1 -stable range.
(2) Whenever $a, b \in R$ generate a principal right ideal of R, there exists some $r \in \operatorname{Reg}(R)$ such that $a R+b R=(a+b r) R$.
(3) Whenever $a, b \in R$ generate a principal left ideal of R, there exists some $r \in \operatorname{Reg}(R)$ such that $R a+R b=R(a+r b)$.

Proof. (1) $\Rightarrow(2)$ is clear by Theorem 2.1.
$(2) \Rightarrow(1)$. Let $a R+b R=R$ with $a, b \in R$. Then there exists $r \in \operatorname{Reg}(R)$ such that $R=a R+b R=(a+b r) R$. Let $a+b r=w$. Then there exists $v \in R$ such that $w v=1$. Now, since $v R+(1-v w) R=R$, so $R=v R+(1-v w) R=$ $(v+(1-v w) t) R$ for some $t \in \operatorname{Reg}(R)$. Thus $(v+(1-v w) t) s=1$ for some $s \in R$. Therefore $w=w .1=w(v+(1-v w) t) s=s$. Thus $a+b r \in U(R)$.
$(1) \Leftrightarrow(3)$. Sufficient that applying (1) $\Leftrightarrow(2)$ to $R^{o p}$.
A ring R is called clean if every element of R can be written as the sum of a unit and an idempotent in R. For a positive integer n, a ring R is called n-clean if every element of R can be written as the sum of n units and an idempotent in R. By [23, Theorem 6], If R is an abelian clean ring, then R has stable range one.

Theorem 2.4. Let R be an abelian ring and R satisfy regular 1-stable range. Then R is 2-clean.

Proof. Let $a \in R$. Then $a R+(-1) R=R$. Thus there exists $r \in \operatorname{Reg}(R)$ such that $a+(-1) r=u \in U(R)$. So $a=r+u$. Now, since R is abelian, so $r=e v$ for some $e \in I d(R)$ and $v \in U(R)$. Set $f=1-e$. Then $r=f+(e v-f)$, where $w:=e v-f \in U(R)$ and $f \in I d(R)$. Hence $a=f+w+u$ is 2-clean.

We say that R satisfies unit regular 1-stable range one provided that for any $a, b \in R, a R+b R=R$ implies there exists a unit regular element $y \in R$ such that $a+b y \in U(R)$. Obviously, if R satisfies unit regular 1-stable range, then satisfies regular 1-stable range. Camillo and Yu [4, Theorem 3], proved that an exchange rings R has stable range one if and only if every regular element of R is unit-regular in R. Hence if R is an exchange ring that satisfies regular 1 -stable range, then satisfies unit regular 1-stable range. Therefore we have following result:

Proposition 2.2. Let R be an exchange ring. Then R satisfies regular 1-stable range if and only if R satisfies unit regular 1-stable range.

Lemma 2.5. Let $e \in \operatorname{Id}(R)$. If $w_{1} \in \operatorname{Reg}(e R e)$ and $w_{2} \in \operatorname{Reg}((1-e) R(1-e))$, then $\operatorname{diag}\left(w_{1}, w_{2}\right) \in \operatorname{Reg}(R)$.
Proof. Set $T=\left(\begin{array}{cc}e R e & e R(1-e) \\ (1-e) R e & (1-e) R(1-e)\end{array}\right)$. Clearly, we have a ring isomorphism φ : $R \cong T$ given by $\varphi(r)=\left(\begin{array}{cc}\text { ere } & e r(1-e) \\ (1-e) r e & (1-e) r(1-e)\end{array}\right)$ for every $r \in R$. But there exists $y_{1} \in e R e$ and $y_{2} \in(1-e) R(1-e)$ such that $w_{1} y_{1} w_{1}=w_{1}$ and $w_{2} y_{2} w_{2}=w_{2}$. Hence

$$
\operatorname{diag}\left(w_{1}, w_{2}\right) \operatorname{diag}\left(y_{1}, y_{2}\right) \operatorname{diag}\left(w_{1}, w_{2}\right)=\operatorname{diag}\left(w_{1}, w_{2}\right)
$$

Theorem 2.5. Let $e \in I d(R)$. If $e R e$ and $(1-e) R(1-e)$ are satisfies regular 1 -stable range, then so is R.

Proof. By using a technique similar to the proof of [22, Theorem 5.8] and Lemma 2.5 the result follows.

Corollary 2.4. Let R be a ring and $e_{1}, \ldots, e_{n} \in \operatorname{Id}(R)$. If $e_{1} R e_{1}, \ldots, e_{n} R e_{n}$ satisfies regular 1-stable range, then so does the following ring

$$
\left(\begin{array}{ccccc}
e_{1} R e_{1} & \cdot & \cdot & \cdot & e_{1} R e_{n} \\
\cdot & \cdot & & \cdot \\
\cdot & & \cdot & & \cdot \\
\cdot & & & \cdot & \cdot \\
e_{n} R e_{1} & \cdot & \cdot & \cdot & e_{n} R e_{n}
\end{array}\right)
$$

Proof. By Theorem 2.5 and induction.
Corollary 2.5. The following are equivalent for any ring R :
(1) R satisfies regular 1 -stable range.
(2) There exists a complete orthogonal set of idempotents, $\left\{e_{1}, \ldots, e_{n}\right\}$, such that all $e_{i} R e_{i}$ satisfies regular 1-stable range.
Corollary 2.6. Let M_{1}, \ldots, M_{n} be right R-modules. If $\operatorname{End}_{R}\left(M_{1}\right), \ldots$, $\operatorname{End}_{R}\left(M_{n}\right)$ satisfies regular 1 -stable range, then so does $\operatorname{End}_{R}\left(M_{1} \oplus \cdots \oplus M_{n}\right)$.
Corollary 2.7. (1) Let T be the ring of a Morita context $(A, B, M, N, \psi, \varphi)$. If A and B satisfy regular 1 -stable range, then so does T.
(2) If R satisfies regular 1 -stable range, then so does $M_{n}(R)$ for every $n \geqslant 1$. Proof. For the proof of (1), Set $e=\operatorname{diag}\left(1_{A}, 0\right)$. Since $e T e \cong A$ and $\left(1_{T}-\right.$ e) $T\left(1_{T}-e\right) \cong B$, the result follows from Theorem 2.5. The assertion in (2) follows from (1).

Theorem 2.6. Let R satisfies regular 1 -stable range. Then every $n \times n$ matrix over R is the sum of an invertible matrix and a regular matrix.
Proof. Let $A \in M_{n}(R)$. Since R satisfies regular 1-stable range, so does $M_{n}(R)$. But $A M_{n}(R)+I_{n} M_{n}(R)=M_{n}(R)$. Thus there exists $W \in \operatorname{Reg}\left(M_{n}(R)\right)$ such that $A+I_{n} W=U \in G L_{n}(R)$. Therefore $A=-W+U$ is the sum of an invertible matrix and a regular matrix.

Theorem 2.7. Let R be an abelian ring and $e \in \operatorname{Id}(R)$. If R satisfies regular 1 -stable range, then so does eRe.
Proof. Let $a, x, b \in e R e$ with $a x+b=e$. Since $a(1-e)=x(1-e)=0$, so $(a+1-e)(x+1-e)+b=1$. Hence there exists $r \in \operatorname{Reg}(R)$ such that $(a+1-e)+b r \in U(R)$. Thus $((a+1-e)+b r) v=v((a+1-e)+b r)=1$ for some $v \in R$. Now, since e is central, so $(a+b(e r e))(e v e)=((a+1-e)+b r) v e=e$ and $(e v e)(a+b(e r e))=e v((a+1-e)+b r)=e$. Let $y=e r e \in e R e$. Then $a+b y \in U(R)$ and it is easy to check that $y \in R e g(e R e)$, as required.

Theorem 2.8. The following are equivalent for any ring R :
(1) A_{1}, A_{2} and A_{3} satisfies regular 1-stable range.
(2) The formal triangular matrix ring $T=\left(\begin{array}{ccc}A_{1} & 0 & 0 \\ M_{21} & A_{2} & 0 \\ M_{31} & M_{32} & A_{3}\end{array}\right)$ satisfies regular 1 -stable range.
Proof. (1) $\Rightarrow(2)$. Set $B=\left(\begin{array}{cc}A_{2} & 0 \\ M_{32} & A_{3}\end{array}\right)$ and $M=\binom{M_{21}}{M_{32}}$. Since A_{2} and A_{3} satisfies regular 1 -stable range, so is the ring B by Corollary 2.7. Therefore $\left(\begin{array}{cc}A_{1} & 0 \\ M & B\end{array}\right)=T$ satisfies regular 1 -stable range by Corollary 2.7 again.
$(2) \Rightarrow(1)$. Given $a x+b=1$ in A_{1}, then $\operatorname{diag}(a, 0,0) \operatorname{diag}(x, 0,0)+\operatorname{diag}(b, 1,1)$ $=1_{T}$. Thus there exists $\left(\begin{array}{ccc}w_{1} & 0 & 0 \\ * & w_{2} & 0 \\ * & * & w_{3}\end{array}\right) \in \operatorname{Reg}(T)$ such that

$$
\operatorname{diag}(a, 0,0)+\operatorname{diag}(b, 1,1)\left(\begin{array}{ccc}
w_{1} & 0 & 0 \\
* & w_{2} & 0 \\
* & * & w_{3}
\end{array}\right)=\left(\begin{array}{ccc}
u_{1} & 0 & 0 \\
* & u_{2} & 0 \\
* & * & u_{3}
\end{array}\right) \in U(T) .
$$

Now, since $\left(\begin{array}{ccc}w_{1} & 0 & 0 \\ * & w_{2} & 0 \\ * & * & w_{3}\end{array}\right) \in \operatorname{Reg}(T)$, so
$\left(\begin{array}{ccc}w_{1} & 0 & 0 \\ * & w_{2} & 0 \\ * & * & w_{3}\end{array}\right)\left(\begin{array}{ccc}y_{1} & 0 & 0 \\ * & y_{2} & 0 \\ * & * & y_{3}\end{array}\right)\left(\begin{array}{ccc}w_{1} & 0 & 0 \\ * & w_{2} & 0 \\ * & * & w_{3}\end{array}\right)=\left(\begin{array}{ccc}w_{1} & 0 & 0 \\ * & w_{2} & 0 \\ * & * & w_{3}\end{array}\right)$
for some $\left(\begin{array}{ccc}y_{1} & 0 & 0 \\ * & y_{2} & 0 \\ * & * & y_{3}\end{array}\right) \in T$. Hence $w_{1} y_{1} w_{1}=w_{1}$. So $w_{1} \in \operatorname{Reg}\left(A_{1}\right)$. Clearly, $U(T)=\left(\begin{array}{ccc}U\left(A_{1}\right) & 0 & 0 \\ * & U\left(A_{2}\right) & 0 \\ * & * & U\left(A_{3}\right)\end{array}\right)$. Thus $a+b w_{1}=u_{1} \in U\left(A_{1}\right)$. Therefore A_{1} satisfies regular 1-stable range. Likewise, A_{2} and A_{3} satisfies regular 1-stable range.

Corollary 2.8. A ring R satisfies regular 1-stable range if and only if so does the ring of all $n \times n$ lower (resp., upper) triangular matrices over R.

An element $a \in R$ is said to be r-clean if $a=e+r$, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. We introduced r-clean rings and gave some properties of this kind of rings in [2] and [3].

Proposition 2.3. Every abelian r-clean ring R satisfies regular 1-stable range.

Proof. As R is exchange the result is clear by [6, Theorem 12].
Now, we give a non abelian r-clean ring, while it indeed satisfies regular 1 -stable range.
Example 2.1. Let $R=\left(\begin{array}{c}\mathbb{Z} / 2 \mathbb{Z} \mathbb{Z} / 2 \mathbb{Z} \\ 0 \\ \mathbb{Z} / 2 \mathbb{Z}\end{array}\right)$. Since $\mathbb{Z} / 2 \mathbb{Z}$ is an r-clean ring, so R is an r-clean ring by [3, Theorem 2.14]. It is clear that R is not abelian. Also as $\mathbb{Z} / 2 \mathbb{Z}$ satisfies regular 1 -stable range, so R satisfies regular 1 -stable range by Corollary 2.8.

Let M be an R - R-bimodule. The trivial extension of R by M is the ring $T(R, M)$ of pairs (r, m), where $r \in R$ and $m \in M$, and with the usual addition and multiplication given by $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)$ for $r_{1}, r_{2} \in$ R and $m_{1}, m_{2} \in M$.

Theorem 2.9. Let R be a ring and M be an R - R-bimodule. Then $T(R, M)$ satisfies regular 1-stable range if and only if so does R.
Proof. Assume that $T(R, M)$ satisfies regular 1-stable range. Given $a x+b=1$ in R, then $(a, 0)(x, 0)+(b, 0)=(1,0)$ in $T(R, M)$. So there exists $\left(r_{1}, r_{2}\right) \in$ $\operatorname{Reg}(T(R, M))$ such that $(a, 0)+(b, 0)\left(r_{1}, r_{2}\right)=\left(a+b r_{1}, b r_{2}\right) \in U(T(R, M))$. But as $\left(r_{1}, r_{2}\right) \in \operatorname{Reg}(T(R, M))$, so $\left(r_{1}, r_{2}\right)\left(y_{1}, y_{2}\right)\left(r_{1}, r_{2}\right)=\left(r_{1}, r_{2}\right)$ for some $\left(y_{1}, y_{2}\right) \in T(R, M)$. Hence $r_{1} \in \operatorname{Reg}(R)$. Now, since $a+b r_{1} \in U(R)$, so R satisfies regular 1-stable range.

Conversely, let R satisfy regular 1 -stable range. Given $(a, m)(x, n)+(b, p)=$ $(1,0)$ in $T(R, M)$, then $a x+b=1$ in R. So there exists $r \in \operatorname{Reg}(R)$ such that $a+$ $b r=u \in U(R)$. Hence $(a, m)+(b, p)(r, 0)=(u, m+p r)$. Now, as $r_{1} \in \operatorname{Reg}(R)$, so there exists $y \in R$ such that ryr $=r$. Thus $(r, 0)(y, 0)(r, 0)=(r, 0)$. Hence $(r, 0) \in \operatorname{Reg}(T(R, M))$. But $u v=v u=1$ for some $v \in R$. Therefore $(u, m+$ $p r)(v,-v(m+p r) v)=(v,-v(m+p r) v)(u, m+p r)=(1,0)$. Thus $(a, m)+$ $(b, p)(r, 0) \in U(T(R, M))$, where $(r, 0) \in \operatorname{Reg}(T(R, M))$, as required.

References

[1] P. Ara, Strongly П-regular rings have stable range one, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3293-3298.
[2] N. Ashrafi and E. Nasibi, r-clean rings, Math. Rep. (Bucur.) 15 (65) (2013), no. 2, 125-132.
[3] , Rings in which elements are the sum of an idempotent and a regular element, Bull. Iranian Math. Soc. 39 (2013), no. 3, 579-588.
[4] V. P. Camillo and H. P. Yu, Stable range one for rings with many idempotents, Trans. Amer. Math. Soc. 347 (1995), no. 8, 3141-3147.
[5] M. C. Campany, M. G. Lozano, and M. S. Molina, Exchange Morita rings, Comm. Algebra 29 (2001), no. 2, 907-925.
[6] H. Chen, Rings with many idempotents, Int. J. Math. Math. Sci. 22 (1999), no. 3, 547-558.
[7] , Exchange rings satisfying unit 1-stable range, Kyushu J. Math. 54 (2000), no.] $\xrightarrow{1,1-6 .}$, On stable range conditions, Comm. Algebra 28 (2000), no. 8, 3913-3924.
[9] , Units, idempotents, and stable range conditions, Comm. Algebra 29 (2001), no. 2, 703-717.
[10] \qquad , Morita contexts with many units, Comm. Algebra 30 (2002), no. 3, 1499-1512.
[11] , Exchange rings having stable range one, Chinese J. Contemp. Math. 29 (2008), no. 1, 95-102.
[12] H. Chen and M. Chen, On unit 1-stable range, J. Appl. Algebra Discrete Struct. 1 (2003), no. 3, 189-196.
[13] , Unit 1-stable range for ideals, Int. J. Math. Math. Sci. 2004 (2004), no. 45-48, 2477-2482.
[14] H. Chen and F. Li, Rings with many unit-regular elements, Chinese J. Contemp. Math. 21 (2000), no. 1, 33-38.
[15] E. G. Evans, Krull-Schmidt and cancellation over local rings, Pacifica J. Math. 46 (1973), 115-121.
[16] K. R. Goodearl and P. Mental, Stable range one for rings with many units, J. Pure Appl. Algebra 54 (1988), no. 2-3, 261-287.
[17] A. Haghany, Hopfcity and co-Hopfcity for Morita contexts, Comm. Algebra 27 (1999), no. 1, 477-492.
[18] W. K. Nicholson, Lifting idempotent and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278.
[19] , Strongly clean rings and fittings lemma, Comm. Algebra 27 (1999), no. 8, 3583-3592.
[20] L. N. Vaserstein, Bass's first stable range condition, J. Pure Appl. Algebra 34 (1984), no. 2-3, 319-330.
[21] R. B. Warfield, Jr., Cancellation of modules and groups and stable range of endomorphism rings, Pacific J. Math. 91 (1980), no. 2, 457-485.
[22] G. Xiao and W. Tong, n-clean rings and weakly unit stable range rings, Comm. Algebra 33 (2005), no. 5, 1501-1517.
[23] H. P. Yu, Stable range one for exchange rings, J. Pure Appl. Algebra 98 (1995), no. 1, 105-109.

Nahid Ashrafi
Faculty of Mathematics
Statistics and Computer Science
Semnan University
Semnan, Iran
E-mail address: nashrafi@semnan.ac.ir
Ebrahim Nasibi
Shahreza University
P.O. Box: 86149-56841

Shahreza, Iran
E-mail address: enasibi@gmail.com

