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RINGS WITH MANY REGULAR ELEMENTS

Nahid Ashrafi and Ebrahim Nasibi

Abstract. In this paper we introduce rings that satisfy regular 1-stable
range. These rings are left-right symmetric and are generalizations of unit
1-stable range. We investigate characterizations of these kind of rings and
show that these rings are closed under matrix rings and Morita Context
rings.

1. Introduction

Let R be an associative ring with an identity. We say that R has stable
range one provided that aR + bR = R with a, b ∈ R implies that there exists
some y ∈ R such that a+by ∈ U(R), where U(R) denotes the set of all units in
R. One of the most important features of stable range one is the cancellation
of related modules from direct sums. Evans [15, Theorem 2] proved that if
A,B,C are R-modules such that A ⊕ B ∼= A ⊕ C, and EndR(A) has stable
range one, then B ∼= C. Stable range conditions have been studied in [1], [8],
[9], [11], [14], [19] and [21]. Goodearl and Mental [16] defined the concept of
unit 1-stable range: we say that R satisfies unit 1-stable range provided that
for any a, b ∈ R, aR + bR = R implies there exists a y ∈ U(R) such that
a+ by ∈ U(R). Many authors have studied this class of rings such as [7], [12],
[13] and [16]. Here we generalize this concept as bellow.

Definition 1.1. A ring R is said to satisfy regular 1-stable range provided that
for any a, b ∈ R, aR + bR = R implies there exists a regular (von Neumann)
element r ∈ R such that a+ br ∈ U(R).

Obviously, if R satisfies unit 1-stable range, then it satisfies regular 1-stable
range. But the converse is not true in generally. For example, Z/2Z (the ring
of integers modulo 2) satisfies regular 1-stable range, while it does not satisfies
unit 1-stable range.

In this paper, we will prove that a ring satisfies regular 1-stable range is
left-right symmetric. In other words, a ring R satisfies regular 1-stable range
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if and only if whenever Ra + Rb = R, there exists a regular r ∈ R such that
a+ rb ∈ U(R).

A Morita context (A,B,M,N, ψ, φ) consists of two rings A and B, two
bimodules ANB and BMA, and a pair of bimodule homomorphisms ψ : N ⊗B

M → A and φ :M ⊗A N → B which satisfy the following associativity:
ψ(n⊗m)n′ = nφ(m⊗n′) and φ(m⊗n)m′ = mψ(n⊗m′) for anym,m′ ∈M ,

n, n′ ∈ N . We can form C = {( a n
m b ) | a ∈ A, b ∈ B, n ∈ N,m ∈M}, and define

a multiplication on C as follows:
(

a n
m b

)(

a′ n′

m′ b′

)

=

(

aa′ + ψ(n⊗m′) an′ + nb′

ma′ + bm′ φ(m⊗ n′) + bb′

)

.

With this multiplication and entry-wise addition, C becomes an associative
ring. We call C a Morita Context ring. Obviously, the class of the rings of
Morita Contexts includes all 2×2 matrix rings and all formal triangular matrix
rings. Many authors studied Morita Contexts such as [5], [10] and [17].

We characterize rings that satisfies regular 1-stable range and show that
these kind of rings are closed under matrix rings and Morita Context rings.
Finally, we prove that a ring R satisfies regular 1-stable range if and only if so
does the ring of all n× n lower (resp., upper) triangular matrices over R.

Throughout this paper, R denotes an associative ring with unity, U(R) the
group of units, Id(R) the set of idempotents, J(R) the Jacobson radical of R
and Mn(R) the ring of all n× n matrices over R. Further Reg(R) = {a ∈ R |
a is regular (von Neumann)}.

2. Main results

In this section we first give some properties of rings satisfy regular 1-stable
range.

Proposition 2.1. The following statements are equivalent for any ring R:

(1) R satisfies regular 1-stable range.

(2) Whenever a, b ∈ R satisfy aR+ bR = R, there exists r ∈ Reg(R) such
that a+ br is left invertible.

(3) Whenever a, b ∈ R satisfy aR+ bR = R, there exists r ∈ Reg(R) such
that a+ br is right invertible.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are trivial.
(2) ⇒ (1). Given aR + bR = R, then there exists r ∈ Reg(R) such that

a+ br = u is left invertible. Say vu = 1 for some v ∈ R. Since vR + 0R = R,
so there exists r1 ∈ Reg(R) such that v + 0.r1 = v is left invertible. Therefore
a+ br ∈ U(R).

(3) ⇒ (1). Given aR + bR = R, then there exists r ∈ Reg(R) such that
a + br = u is right invertible. Say uv = 1 for some v ∈ R. Since vR + (1 −
vu)R = R, so there exists r1 ∈ Reg(R) such that v + (1 − vu)r1 = r2 is right
invertible. Hence ur2 = u(v + (1 − vu)r1) = 1. Thus r2 ∈ U(R). Therefore
a+ br ∈ U(R). �
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Lemma 2.1. If r ∈ Reg(R), then ru ∈ Reg(R) and ur ∈ Reg(R) for any

u ∈ U(R).

Proof. Since r ∈ Reg(R), so there exists y ∈ R such that ryr = r. Hence
ruu−1yr = r for any u ∈ U(R). Thus ruu−1yru = ru. Therefore ru ∈ Reg(R).
Also uryu−1ur = ur. So ur ∈ Reg(R). �

The proofs of the following two lemmas are analogous to [22, Lemma 4.4
and Theorem 4.5].

Lemma 2.2. The following statements are equivalent for any ring R:

(1) R satisfies regular 1-stable range.

(2) Whenever a, b ∈ R satisfy ax + b = 1, there exists r ∈ Reg(R) such

that a+ br ∈ U(R).
(3) Whenever a, b ∈ R satisfy ax + b = 1, there exists y ∈ R such that

a+ by ∈ U(R) and 1− xy ∈ Reg(R).

Lemma 2.3. The following statements are equivalent for any ring R:

(1) Whenever a, b ∈ R satisfy ax + b = 1, there exists r ∈ Reg(R) such

that a+ br ∈ U(R).
(2) Whenever a, b ∈ R satisfy ax + b = 1, there exists r ∈ Reg(R) such

that x+ rb ∈ U(R).

The opposite ring Rop consists of formal elements {aop : a ∈ R} with addi-
tion and multiplication given by

aop + bop = (a+ b)op, aop.bop = (ba)op.

From Lemma 2.3, we see that R satisfies regular 1-stable range if and only if so
does Rop. Hence a ring satisfies regular 1-stable range is left-right symmetric.
Vaserstein [20] showed that a ring R has stable range one if and only if so does
R/J(R). Now, we consider the similar case for rings satisfying regular 1-stable
range.

Lemma 2.4. Let I be an ideal of R with I ⊆ J(R). If R satisfies regular

1-stable range, then so does R/I.

Proof. Assume that ax + b = 1 in R = R/I. Then ax+ b = 1 + k ∈ U(R) for
some k ∈ J(R). Hence ax(1+k)−1+b(1+k)−1 = 1. So there exists r ∈ Reg(R)
such that a + b(1 + k)−1r ∈ U(R). But (1 + k)−1r ∈ Reg(R) by Lemma 2.1.

Hence (1 + k)−1r ∈ Reg(R) and since a + b(1 + k)−1r ∈ U(R), so R satisfies
regular 1-stable range. �

Corollary 2.1. Let R be an abelian ring (all its idempotents are central) and
idempotents can be lifted modulo J(R). If I is any ideal of R with I ⊆ J(R),
then R satisfies regular 1-stable range if and only if so does R/I.

Proof. One direction is trivial by Lemma 2.4. Conversely, suppose that R/I

satisfies regular 1-stable range. Let ax+b = 1 in R. Then ax+b = 1 ∈ R = R/I.
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Thus there exists r ∈ Reg(R) such that a+ br = v ∈ U(R). But since R is
abelian, so r = eu for some e ∈ Id(R) and u ∈ U(R). Now, as units and
idempotents can be lifted modulo J(R), so we assume that e ∈ Id(R) and
u ∈ U(R). Hence a + br = v + k ∈ U(R) with v ∈ U(R), k ∈ J(R) and
r = eu ∈ Reg(R), as required. �

Theorem 2.1. The following are equivalent for any ring R:

(1) R satisfies regular 1-stable range.

(2) Whenever aR + bR = dR with a, b, d ∈ R, there exist u ∈ U(R) and

r ∈ Reg(R) such that au+ br = d.
(3) Whenever a1R + · · · + anR = dR with n > 2, a1, . . . , an, d ∈ R, there

exist u1 ∈ U(R) and r2, . . . , rn ∈ Reg(R) such that a1u1 + a2r2 + · · ·+
anrn = d.

Proof. Both (2) ⇒ (1) and (3) ⇒ (2) are obvious.
(1) ⇒ (2). Since R satisfies regular 1-stable range, then R has stable range

one. Given aR+ bR = dR with a, b, d ∈ R, the sets {a, b} and {d, 0} generate
the same R-submodule of R2. Therefore there exists U = (uij) ∈ GL2(R) such
that (a, b) = (d, 0)U by [8, Lemma 2.1]. Obviously, u11R + u12R = R. Thus
there exists r ∈ Reg(R) such that u11 + u12r = v ∈ U(R). Hence a+ br = dv.
Therefore av−1+brv−1 = d, where v−1 ∈ U(R) and rv−1 ∈ Reg(R) by Lemma
2.1.

(2) ⇒ (3). Given a1R + · · · + anR = dR with n > 2, a1, . . . , an, d ∈
R. If n = 2, then the result follows from (2). Assume that the result holds
for n 6 k (k > 2). Let n = k + 1. Then there exist x1, . . . , xk+1 ∈ R
such that a1x1 + · · · + ak+1xk+1 = d. Thus a1R + · · · + ak−1R + (akxk +
ak+1xk+1)R = dR. Hence a1u1+a2r2+ · · ·+(akxk+ak+1xk+1)rk = d for some
u1 ∈ U(R), r2, . . . , rk ∈ Reg(R). Therefore (a1u1+a2r2)R+· · ·+akR+ak+1R =
dR. Hence (a1u1 + a2r2)v1 + · · ·+ akvk−1 + ak+1vk = a1u1v1 + a2r2v1 + · · ·+
akvk−1 + ak+1vk = d for some v1 ∈ U(R), v2, . . . , vk ∈ Reg(R). Note that
u1v1 ∈ U(R) and r2v1, v2, . . . , vk ∈ Reg(R), thus we complete the proof. �

Corollary 2.2. The following are equivalent for any ring R:

(1) R satisfies regular 1-stable range.

(2) Whenever Ra + Rb = Rd with a, b, d ∈ R, there exist u ∈ U(R) and

r ∈ Reg(R) such that ua+ rb = d.
(3) Whenever Ra1 + · · · + Ran = dR with n > 2, a1, . . . , an, d ∈ R, there

exist u1 ∈ U(R) and r2, . . . , rn ∈ Reg(R) such that u1a1 + r2a2 + · · ·+
rnan = d.

Let

B12(∗) =

(

1 ∗
0 1

)

and B21(∗) =

(

1 0
∗ 1

)

.

We use [u, v] to denote the diagonal matrix diag(u, v) with u, v ∈ U(R).

Theorem 2.2. The following are equivalent for any ring R:
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(1) R satisfies regular 1-stable range.

(2) For any A ∈ GL2(R), there exists r ∈ Reg(R) such that

A = [∗, ∗]B21(∗)B12(∗)B21(r).
(3) For any A ∈ GL2(R), there exists r ∈ Reg(R) such that

A = [∗, ∗]B21(r)B12(∗)B21(∗).

Proof. (1) ⇒ (2). Given A = (aij) ∈ GL2(R), then a11R + a12R = R we have
u1 ∈ U(R) and v1 ∈ Reg(R) such that a11u1 + a12v1 = 1 by Theorem 2.1.
Hence a11 + a12v1u

−1
1 = u−1

1 . Thus we have

AB21(v1u
−1
1 ) =

(

u−1
1 a12

a21 + a22v1u
−1
1 a22

)

.

Set u = u−1
1 , v = a22 − (a21 + a22v1u

−1
1 )u−1

1 a12 and r = −v1u
−1
1 . Then

A = [u, v]B21(∗)B12(∗)B21(r), where r ∈ Reg(R) by Lemma 2.1.
(2) ⇒ (3). Let A = (aij) ∈ GL2(R). Then A

−1 ∈ GL2(R). Hence there are
u, v ∈ U(R) and r ∈ Reg(R) such that A−1 = [u, v]B21(∗)B12(∗)B21(r). Thus
we have

A = B21(−r)B12(∗)B21(∗)[u
−1, v−1] = [u−1, v−1]B21(−vru

−1)B12(∗)B21(∗),

where −vru−1 ∈ Reg(R) by Lemma 2.1.
(3) ⇒ (1). Let ax + b = 1 in R. Then

(

a b
−1 x

)

∈ GL2(R). So there exists
u, v ∈ U(R) and r ∈ Reg(R) such that

(

a b
−1 x

)

= [u, v]B21(r)B12(∗)B21(∗).

Hence B21(−r)[u−1, v−1]
(

a b
−1 x

)

= B12(∗)B21(∗). Thus x − vru−1b = v ∈
U(R), as required. �

Corollary 2.3. The following are equivalent for any ring R:

(1) R satisfies regular 1-stable range.

(2) For any A ∈ GL2(R), there exists r ∈ Reg(R) such that

A = [∗, ∗]B12(∗)B21(∗)B12(r).
(3) For any A ∈ GL2(R), there exists r ∈ Reg(R) such that

A = [∗, ∗]B12(r)B21(∗)B12(∗).

Proof. (1) ⇒ (2). Given any A ∈ GL2(R), then (AT )o ∈ GL2(R
op). But

by Theorem 2.2, there are u, v ∈ U(R) and r ∈ Reg(R) such that (AT )o =
[uo, vo]B21(r

o)B12(∗
o)B21(∗

o). Therefore A = [∗, ∗]B12(∗)B21(∗)B12(r) as re-
quired.

(2) ⇒ (3). Given any A = (aij) ∈ GL2(R). Then A−1 ∈ GL2(R). Hence,
there are u, v ∈ U(R) and r ∈ Reg(R) such that A−1 = [u, v]B12(∗)B21(∗)
B12(r). Therefore

A = B12(−r)B21(∗)B12(∗)[u
−1, v−1] = [u−1, v−1]B12(−urv

−1)B21(∗)B12(∗).

Thus we complete proof by Lemma 2.1.
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(3) ⇒ (1). Given ax + b = 1 in R, then
(

x −1
b a

)

∈ GL2(R). Thus there are
u, v ∈ U(R) and r ∈ Reg(R) such that

(

x −1
b a

)

= [u, v]B12(∗)B21(∗)B12(r).

Therefore a− br = v ∈ U(R), as required. �

Theorem 2.3. The following are equivalent for any ring R:

(1) R satisfies regular 1-stable range.

(2) Whenever a, b ∈ R generate a principal right ideal of R, there exists

some r ∈ Reg(R) such that aR+ bR = (a+ br)R.
(3) Whenever a, b ∈ R generate a principal left ideal of R, there exists some

r ∈ Reg(R) such that Ra+Rb = R(a+ rb).

Proof. (1) ⇒ (2) is clear by Theorem 2.1.
(2) ⇒ (1). Let aR + bR = R with a, b ∈ R. Then there exists r ∈ Reg(R)

such that R = aR+ bR = (a+ br)R. Let a+ br = w. Then there exists v ∈ R
such that wv = 1. Now, since vR+ (1− vw)R = R, so R = vR+ (1− vw)R =
(v + (1 − vw)t)R for some t ∈ Reg(R). Thus (v + (1 − vw)t)s = 1 for some
s ∈ R. Therefore w = w.1 = w(v + (1 − vw)t)s = s. Thus a+ br ∈ U(R).

(1) ⇔ (3). Sufficient that applying (1) ⇔ (2) to Rop. �

A ring R is called clean if every element of R can be written as the sum of a
unit and an idempotent in R. For a positive integer n, a ring R is called n-clean
if every element of R can be written as the sum of n units and an idempotent
in R. By [23, Theorem 6], If R is an abelian clean ring, then R has stable range
one.

Theorem 2.4. Let R be an abelian ring and R satisfy regular 1-stable range.

Then R is 2-clean.

Proof. Let a ∈ R. Then aR+ (−1)R = R. Thus there exists r ∈ Reg(R) such
that a+ (−1)r = u ∈ U(R). So a = r + u. Now, since R is abelian, so r = ev
for some e ∈ Id(R) and v ∈ U(R). Set f = 1− e. Then r = f +(ev− f), where
w := ev − f ∈ U(R) and f ∈ Id(R). Hence a = f + w + u is 2-clean. �

We say that R satisfies unit regular 1-stable range one provided that for any
a, b ∈ R, aR + bR = R implies there exists a unit regular element y ∈ R such
that a+ by ∈ U(R). Obviously, if R satisfies unit regular 1-stable range, then
satisfies regular 1-stable range. Camillo and Yu [4, Theorem 3], proved that
an exchange rings R has stable range one if and only if every regular element
of R is unit-regular in R. Hence if R is an exchange ring that satisfies regular
1-stable range, then satisfies unit regular 1-stable range. Therefore we have
following result:

Proposition 2.2. Let R be an exchange ring. Then R satisfies regular 1-stable
range if and only if R satisfies unit regular 1-stable range.
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Lemma 2.5. Let e ∈ Id(R). If w1 ∈ Reg(eRe) and w2 ∈ Reg((1−e)R(1−e)),
then diag(w1, w2) ∈ Reg(R).

Proof. Set T =
(

eRe eR(1−e)
(1−e)Re (1−e)R(1−e)

)

. Clearly, we have a ring isomorphism ϕ :

R ∼= T given by ϕ(r) =
(

ere er(1−e)
(1−e)re (1−e)r(1−e)

)

for every r ∈ R. But there exists

y1 ∈ eRe and y2 ∈ (1 − e)R(1 − e) such that w1y1w1 = w1 and w2y2w2 = w2.
Hence

diag(w1, w2)diag(y1, y2)diag(w1, w2) = diag(w1, w2). �

Theorem 2.5. Let e ∈ Id(R). If eRe and (1− e)R(1− e) are satisfies regular

1-stable range, then so is R.

Proof. By using a technique similar to the proof of [22, Theorem 5.8] and
Lemma 2.5 the result follows. �

Corollary 2.4. Let R be a ring and e1, . . . , en ∈ Id(R). If e1Re1, . . . , enRen
satisfies regular 1-stable range, then so does the following ring













e1Re1 . . . e1Ren
. . .
. . .
. . .

enRe1 . . . enRen













.

Proof. By Theorem 2.5 and induction. �

Corollary 2.5. The following are equivalent for any ring R:

(1) R satisfies regular 1-stable range.

(2) There exists a complete orthogonal set of idempotents, {e1, . . . , en},
such that all eiRei satisfies regular 1-stable range.

Corollary 2.6. Let M1, . . . , Mn be right R-modules. If EndR(M1), . . . ,

EndR(Mn) satisfies regular 1-stable range, then so does EndR(M1⊕ · · ·⊕Mn).

Corollary 2.7. (1) Let T be the ring of a Morita context (A,B,M,N, ψ, ϕ).
If A and B satisfy regular 1-stable range, then so does T .

(2) If R satisfies regular 1-stable range, then so does Mn(R) for every n > 1.

Proof. For the proof of (1), Set e = diag(1A, 0). Since eT e ∼= A and (1T −
e)T (1T − e) ∼= B, the result follows from Theorem 2.5. The assertion in (2)
follows from (1). �

Theorem 2.6. Let R satisfies regular 1-stable range. Then every n×n matrix

over R is the sum of an invertible matrix and a regular matrix.

Proof. Let A ∈Mn(R). Since R satisfies regular 1-stable range, so doesMn(R).
But AMn(R) + InMn(R) =Mn(R). Thus there exists W ∈ Reg(Mn(R)) such
that A + InW = U ∈ GLn(R). Therefore A = −W + U is the sum of an
invertible matrix and a regular matrix. �



274 N. ASHRAFI AND E. NASIBI

Theorem 2.7. Let R be an abelian ring and e ∈ Id(R). If R satisfies regular

1-stable range, then so does eRe.

Proof. Let a, x, b ∈ eRe with ax + b = e. Since a(1 − e) = x(1 − e) = 0,
so (a + 1 − e)(x + 1 − e) + b = 1. Hence there exists r ∈ Reg(R) such that
(a+1−e)+br ∈ U(R). Thus ((a+1−e)+br)v = v((a+1−e)+br) = 1 for some
v ∈ R. Now, since e is central, so (a+ b(ere))(eve) = ((a+ 1− e) + br)ve = e
and (eve)(a + b(ere)) = ev((a + 1 − e) + br) = e. Let y = ere ∈ eRe. Then
a+ by ∈ U(R) and it is easy to check that y ∈ Reg(eRe), as required. �

Theorem 2.8. The following are equivalent for any ring R:

(1) A1, A2 and A3 satisfies regular 1-stable range.

(2) The formal triangular matrix ring T =

(

A1 0 0
M21 A2 0
M31 M32 A3

)

satisfies regular

1-stable range.

Proof. (1) ⇒ (2). Set B =
(

A2 0
M32 A3

)

and M =
(

M21

M32

)

. Since A2 and A3

satisfies regular 1-stable range, so is the ring B by Corollary 2.7. Therefore
(

A1 0
M B

)

= T satisfies regular 1-stable range by Corollary 2.7 again.
(2) ⇒ (1). Given ax+b = 1 in A1, then diag(a, 0, 0)diag(x, 0, 0)+diag(b, 1, 1)

= 1T . Thus there exists
(

w1 0 0
∗ w2 0
∗ ∗ w3

)

∈ Reg(T ) such that

diag(a, 0, 0) + diag(b, 1, 1)





w1 0 0
∗ w2 0
∗ ∗ w3



 =





u1 0 0
∗ u2 0
∗ ∗ u3



 ∈ U(T ).

Now, since
(

w1 0 0
∗ w2 0
∗ ∗ w3

)

∈ Reg(T ), so





w1 0 0
∗ w2 0
∗ ∗ w3









y1 0 0
∗ y2 0
∗ ∗ y3









w1 0 0
∗ w2 0
∗ ∗ w3



 =





w1 0 0
∗ w2 0
∗ ∗ w3





for some
(

y1 0 0
∗ y2 0
∗ ∗ y3

)

∈ T . Hence w1y1w1 = w1. So w1 ∈ Reg(A1). Clearly,

U(T ) =

(

U(A1) 0 0
∗ U(A2) 0
∗ ∗ U(A3)

)

. Thus a + bw1 = u1 ∈ U(A1). Therefore A1

satisfies regular 1-stable range. Likewise, A2 and A3 satisfies regular 1-stable
range. �

Corollary 2.8. A ring R satisfies regular 1-stable range if and only if so does

the ring of all n× n lower (resp., upper) triangular matrices over R.

An element a ∈ R is said to be r-clean if a = e+ r, where e is an idempotent
and r is a regular (von Neumann) element in R. If every element of R is r-clean,
then R is called an r-clean ring. We introduced r-clean rings and gave some
properties of this kind of rings in [2] and [3].

Proposition 2.3. Every abelian r-clean ring R satisfies regular 1-stable range.
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Proof. As R is exchange the result is clear by [6, Theorem 12]. �

Now, we give a non abelian r-clean ring, while it indeed satisfies regular
1-stable range.

Example 2.1. Let R =
(

Z/2Z Z/2Z
0 Z/2Z

)

. Since Z/2Z is an r-clean ring, so R is

an r-clean ring by [3, Theorem 2.14]. It is clear that R is not abelian. Also as
Z/2Z satisfies regular 1-stable range, so R satisfies regular 1-stable range by
Corollary 2.8.

Let M be an R-R-bimodule. The trivial extension of R by M is the ring
T (R,M) of pairs (r,m), where r ∈ R and m ∈M , and with the usual addition
and multiplication given by (r1,m1)(r2,m2) = (r1r2, r1m2 +m1r2) for r1, r2 ∈
R and m1,m2 ∈M .

Theorem 2.9. Let R be a ring and M be an R-R-bimodule. Then T (R,M)
satisfies regular 1-stable range if and only if so does R.

Proof. Assume that T (R,M) satisfies regular 1-stable range. Given ax+ b = 1
in R, then (a, 0)(x, 0) + (b, 0) = (1, 0) in T (R,M). So there exists (r1, r2) ∈
Reg(T (R,M)) such that (a, 0) + (b, 0)(r1, r2) = (a + br1, br2) ∈ U(T (R,M)).
But as (r1, r2) ∈ Reg(T (R,M)), so (r1, r2)(y1, y2)(r1, r2) = (r1, r2) for some
(y1, y2) ∈ T (R,M). Hence r1 ∈ Reg(R). Now, since a + br1 ∈ U(R), so R
satisfies regular 1-stable range.

Conversely, let R satisfy regular 1-stable range. Given (a,m)(x, n)+(b, p) =
(1, 0) in T (R,M), then ax+b = 1 in R. So there exists r ∈ Reg(R) such that a+
br = u ∈ U(R). Hence (a,m)+(b, p)(r, 0) = (u,m+pr). Now, as r1 ∈ Reg(R),
so there exists y ∈ R such that ryr = r. Thus (r, 0)(y, 0)(r, 0) = (r, 0). Hence
(r, 0) ∈ Reg(T (R,M)). But uv = vu = 1 for some v ∈ R. Therefore (u,m +
pr)(v,−v(m + pr)v) = (v,−v(m + pr)v)(u,m + pr) = (1, 0). Thus (a,m) +
(b, p)(r, 0) ∈ U(T (R,M)), where (r, 0) ∈ Reg(T (R,M)), as required. �
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