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AN UPPER BOUND ON THE CHEEGER CONSTANT OF

A DISTANCE-REGULAR GRAPH

Gil Chun Kim and Yoonjin Lee

Abstract. We present an upper bound on the Cheeger constant of a
distance-regular graph. Recently, the authors found an upper bound on
the Cheeger constant of distance-regular graph under a certain restriction
in their previous work. Our new bound in the current paper is much better
than the previous bound, and it is a general bound with no restriction. We
point out that our bound is explicitly computable by using the valencies
and the intersection matrix of a distance-regular graph. As a major tool,
we use the discrete Green’s function, which is defined as the inverse of

β-Laplacian for some positive real number β. We present some examples
of distance-regular graphs, where we compute our upper bound on their
Cheeger constants.

1. Introduction

A notion of the Cheeger constant of a graph has an important geometric
meaning in graph theory. The Cheeger constant of a graph is closely related
to the problem of separating a graph into two large components by making a
small edge-cut. In fact, the Cheeger constant of a connected graph is strictly
positive. If the Cheeger constant of a connected graph is “small”, then it means
that there are two large sets of vertices with “few” edges between them. On
the other hand, if a graph has “large” Cheeger constant, then it indicates that
there are two sets of vertices with “many” edges between these two subsets. In
general, computation of the Cheeger constant of a graph is a hard task. Only
limited research has been done for finding the Cheeger constant of a graph. We
are interested in finding bounds of Cheeger constants of graphs.

We begin with introducing some definitions in graph theory. Let Γ = (V,E)
be a simple and connected graph, where V is the vertex set of Γ and E is the
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edge set of Γ. Let S be a nonempty subset of V . The edge boundary of S,
denoted by ∂S, is defined as follows:

∂S = {{x, y} ∈ E | x ∈ S and y ∈ V − S}.
The volume of S, denoted by vol(S), is defined as follows:

vol(S) =
∑

u∈S

ku,

where ku is the valency of u in Γ. The Cheeger ratio of S, denoted by hS , is
defined as

hS =
|∂S|

min{vol(S), vol(Γ)− vol(S)} .

The Cheeger constant of Γ, denoted by hΓ, is defined as

hΓ = min{hS | S ⊆ V }.
Recent developments in [3, 4, 14] regarding distance-regular graphs show

that there is a close connection between the Cheeger constant and vertex (or
edge) connectivity. From Propositions A, B, and C we see that, for a distance-
regular graph, there are close connections between the Cheeger constant and
vertex and edge connectivity.

Proposition A ([3]). Let Γ be a distance-regular graph with more than one

vertex. Then its edge-connectivity equals its valency k, and the only discon-

necting sets of k edges are the sets of edges incident with a single vertex.

Proposition B ([4]). Let Γ be a non-complete distance-regular graph of valency

k > 2. Then the vertex-connectivity κ(Γ) equals k, and the only disconnecting

sets of vertices of size not more than k are the point neighbourhoods.

Proposition C ([14]). Let Γ = (V,E) be a simple graph with the vertex-

connectivity κ(Γ) and the edge-connectivity λ(Γ). Then

2κ(Γ)

|V | ≤ 2λ(Γ)

|V | ≤ inf
|∂S|
|S| ≤ κ(Γ) ≤ λ(Γ),

where S is a subset of V with |S| ≤ |V |
2 .

The Cheeger constants [9, 15] are related to the eigenvalues of the Laplacians
of distance-regular graphs, and their eigenvalues are also involved with the in-

tersection numbers of distance-regular graphs [13, 16]. However, in general, it
is a hard task to compute the Cheeger constant of a distance-regular graph.
Distance-regular graphs introduced by Biggs [2] are connected with coding the-
ory and design theory; well-known examples of distance-regular graphs are the
Hamming graphs and the Johnson graphs. In [11, 12], by using the relation-
ship between a discrete Green’s function and the Cheeger constant, we obtain
an upper bound on the Cheeger constant of a distance-regular graph under a
certain condition.
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We find a general upper bound on the Cheeger constant of a distance-regular
graph with no additional condition. Furthermore, our bound is a much more
improved one comparing with the bound in [12] under the same additional
condition; in Example 7 and Example 8, we show that our bound is much more
improved one comparing with the bound in [12] under the same additional

condition: βvr
(β)
d > λ1

1+λ1
.

We point out that our bound is explicitly computable by using the valencies
and the intersection matrix of a distance-regular graph; first, our bound is
expressed in terms of q-numbers, and in general, it is not easy to compute the
q-numbers. For resolving this problem, we obtain an alternative expression of
our bound using the valencies and the intersection matrix of a distance-regular
graph. In Example 10 and Example 11, we compute the upper bound on the
Cheeger constant using the alternative expression in Theorem 2 and Remark
6. As a major tool, we use the discrete Green’s function, which is defined
as the inverse of β-Laplacian for some positive real number β. We present
some examples which show our upper bound on the Cheeger constant for some
distance-regular graphs.

We discuss our main result in more detail for the rest of this section. In this
paper, we study distance-regular graphs. Let Γ = (V,E) be a distance-regular
graph of order v, diameter d and valency k. Let A1 be the adjacency matrix
of Γ and P be the transition probability matrix of Γ. Two adjacent vertices
x, y are denoted by x ∼ y. For a function f : V → R, we define a Laplace
operator ∆ by ∆f(x) = 1

k

∑

y∼x(f(x) − f(y)). Then ∆ = I − 1
kA1. Let Lβ be

the β-normalized Laplacian βI +∆. For β > 0, let Gβ be a discrete Green’s
function denoted by the symmetric matrix which satisfies LβGβ = I; that is,
Gβ is defined as the inverse of the β-Laplacian Lβ [5, 6, 7]. As in [11], for any

positive real number β, let r
(β)
i (i = 0, 1, . . . , d) denote the components of a

Green’s function Gβ . We define αi to be the limit of a sequence {α(β)
i } as β

goes to 0+, where

(1) α
(β)
i =

β2vr
(β)
i

1− βvr
(β)
i

(i = 0, 1, . . . , d).

In fact, we can express αi’s by the eigenvalues λj of the Laplacian Lβ and the
q-numbers qj(i) of the P-polynomial scheme [1, 8, 10, 11]:

αi =
1

−q1(i)
1
λ1

− · · · − qd(i)
1
λd

.(2)

We also see that 0 < αd < αd−1 < · · · < αe < λ1 for some e.
The authors obtain the following result [12] on an upper bound on the

Cheeger constant of a distance-regular graph with a certain restricted condition
as follows.

Theorem A ([12]). Let Γ be a distance-regular graph with diameter d and

βvr
(β)
d > λ1

1+λ1
for β ≤ αd. Let λ1 be the smallest eigenvalue of the Laplacian.
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Then we have

λ1hΓ < αd < αd−1 < · · · < αe < λ1

for e ∈ C′
β.

Main results of this paper are the following Theorem 1, Theorem 2 and
Corollary 3. Theorem 1 presents an upper bound on the Cheeger constant of
a distance-regular graph. In Theorem 2, we find an explicit expression for the
bound given in Theorem 1 by using the valencies kj and the basis of nullspace

N (L
(αd)
sub ). This shows that our new bound is a computable bound using the

valencies and the intersection matrix of a distance-regular graph. Corollary 3
shows that our generalized bound in Theorem 1 and Theorem 2 improves the
bound given in Theorem A [12] under the same additional condition.

Theorem 1. Let Γ be a distance-regular graph of diameter d. Then we have

the following upper bound:

hΓ <
α2
d

α
(αd)
d

,

where αd = limβ→0+
β2vr

(β)
d

1−βvr
(β)
d

and α
(αd)
d =

α2
dvr

(αd)

d

1−αdvr
(αd)

d

.

Theorem 2. Let Γ be a distance-regular graph of order v and diameter d. Let

(u
(αd)
0 , u

(αd)
1 , . . . , u

(αd)
d ) be a basis of N (L

(αd)
sub ) with u

(αd)
d = 1 as in Lemma 4.

Then we have

hΓ <
α2
d

α
(αd)
d

= αd

(1

v

d
∑

j=0

kju
(αd)
j − 1

)

,

where kj are valencies as in Lemma 4 and αd is the same as in Lemma 5.

Corollary 3. Let Γ be a distance-regular graph, and hΓ be a Cheeger constant

of Γ. If βvr
(β)
d > λ1

1+λ1
for β ≤ αd, then we have

hΓ <
α2
d

α
(αd)
d

<
αd

λ1
,

where λ1 is the smallest positive eigenvalue of the Laplacian and αd is the same

as in (1).

In Section 2, we introduce some notations and facts about distance-regular
graph and some properties of the Green’s function Gβ . In Section 3, we find
a new upper bound on the Cheeger constant of a distance-regular graph. We
also obtain an alternative expression of our upper bound by using the valencies

kj and the basis of nullspace N (L
(αd)
sub ). Finally, in Section 4, we present some

examples about our upper bound on the Cheeger constant of some distance-
regular graphs.
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2. Preliminaries and Green’s function

We introduce definitions of the distance-regular graphs and the P -polynomial
schemes. A connected graph Γ with diameter d is called a distance-regular graph
if there are constants ci, ai, bi such that for all i = 0, 1, . . . , d, and all vertices x
and y at distance i = d(x, y), among the neighbors of y, there are ci at distance
i− 1 from x, ai at distance i, and bi at distance i+1. It follows that Γ is a reg-
ular graph with valency k = b0, and that ci + ai + bi = k for all i = 0, 1, . . . , d.
By these equations, the intersection numbers ai can be expressed in terms of
the others, and it is a standard to put these others in the so-called intersection

array (b0, b1, . . . , bd−1; c1, c2, . . . , cd). We describe the relations by its adjacency
matrices Ai (i = 0, 1, . . . , d) which are v × v matrices defined by

(Ai)x,y =

{

1 if (x, y) ∈ Ri,
0 otherwise,

[1, 8]. Let X be a nonempty finite set and R = {R0, R1, . . . , Rd} be a family of
relations defined on X . We say that the pair (X,R) is a symmetric association
scheme with d classes if it satisfies the following conditions.

(1) A0 = I (indentity matrix).
(2) A0 +A1 + · · ·+Ad = J (all 1 matrix).

(3) AiAj =
∑d

k=0 p
k
ijAk, where pkij is the number of z ∈ X such that

(x, z) ∈ Ri and (z, y) ∈ Rj .

(4) At
j = Aj .

(5) AiAj = AjAi.

A symmetric association scheme X = (X,R) is called a P -polynomial scheme

with respect to the ordering R0, R1, . . . , Rd, if there exist some complex coef-
ficient polynomials υi(x) of degree i (i = 0, 1, . . . , d) such that Ai = υi(A1),
where Ai is the adjacency matrix with respect to Ri.

It is known [1, 8] that a distance-regular graph is equivalent to a P -poly-
nomial scheme X with respect to some relations R0, R1, . . . , Rd on a vertex set
V with |V | = v. Thus, we can define the Green’s function over a P -polynomial
scheme, and then by using the Green’s function we will obtain an upper bound
on the Cheeger constant of a distance-regular graph.

The first intersection matrix B1 of a distance-regular graph is a tridiagonal
matrix with non-zero off diagonal entries:

B1 =



















0 k 0 0 · · · 0
1 a1 b1 0 · · · 0
0 c2 a2 b2 · · · 0
...

...
. . .

. . .
. . .

...
cd−1 ad−1 bd−1

0 · · · · · · 0 cd ad



















(bi 6= 0, ci 6= 0).

Let A be the algebra spanned by the adjacency matrices A0, A1, . . . , Ad.
Then A is called the Bose-Mesner algebra of X, and A has two distinguished
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bases {Ai} and {Ei}, where the latter consists of primitive idempotent matrices.
For Ai and Ei, we can express one in terms of the other as the following:

Aj =

d
∑

i=0

pj(i)Ei, Ej =
1

|X |

d
∑

i=0

qj(i)Ai

for j = 0, 1, . . . , d. The (d+ 1)× (d+ 1) matrix P = (pj(i)) (respectively, Q =
(qj(i))) is called the first eigenmatrix (respectively, the second eigenmatrix)
of the P-polynomial scheme X, where pj(i) (respectively, qj(i)) is a p-number
(respectively, a q-number).

As defined in Section 1, the Green’s function Gβ is the inverse of the β-
Laplacian Lβ . For β > 0, we thus have Gβ(βI + I − P ) = I. Therefore, we
get

Lβ =

d
∑

j=0

(

β + 1− 1

k1
p1(j)

)

Ej , Gβ =

d
∑

j=0

(

k1

(β + 1)k1 − p1(j)

)

Ej .

Since Ej = (1/v)
∑

qj(i)Ai and λj = 1− p1(j)/k1, we get

Gβ =

d
∑

j=0

( k1

(β + 1)k1 − p1(j)

)

d
∑

i=0

qj(i)

=

d
∑

i=0

d
∑

j=0

(1/v)
( k1

(β + 1)k1 − p1(j)

)

qj(i)Ai

=

d
∑

i=0

d
∑

j=0

(1/v)
( 1

β + 1− p1(j)
k1

)

qj(i)Ai

=
d

∑

i=0

d
∑

j=0

(1/v)
( 1

β + λj

)

qj(i)Ai.

That is, Gβ is a linear combination of adjacency matrices Ai as follows:

Gβ = r
(β)
0 A0 + r

(β)
1 A1 + · · ·+ r

(β)
d Ad,

where r
(β)
i = 1

v (
1
β + q1(i)

1
β+λ1

+ · · ·+ qd(i)
1

β+λd
) (i = 0, 1, . . . , d).

In [10, 11], a d× (d+ 1) matrix L
(β)
sub is introduced as a matrix obtained by

the removal of the first row of B1 − k1(β + 1)I.

Lemma 4 ([11]). For β > 0, let Gβ = r
(β)
0 A0 + r

(β)
1 A1 + · · · + r

(β)
d Ad be the

Green’s function of a distance-regular graph Γ of order v. Then we have

(a) Gβ can be expressed as Gβ = tu
(β)
0 A0+ tu

(β)
1 A1+ · · ·+ tu

(β)
d Ad for some

nonzero t ∈ R, where (u
(β)
0 , u

(β)
1 , . . . , u

(β)
d ) is the unique basis of the

nullspace N (L
(β)
sub) of L

(β)
sub with u

(β)
d = 1.
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(b) k0r
(β)
0 + k1r

(β)
1 + · · · + kdr

(β)
d = 1

β , where kj is the valency of Aj for

j = 0, 1, . . . , d.

(c) r
(β)
0 > r

(β)
1 > · · · > r

(β)
d > 0.

(d) limβ→0+ |r(β)i − r
(β)
j | = 0 for 0 ≤ i, j ≤ d.

3. A new improved bound on the Cheeger constant

In this section we prove Theorem 1 and Theorem 2. We need the following
lemma for the proof of Theorem 2 and Theorem 3. We consider a set Cβ =

{i | 1
β − vr

(β)
i > 0} as a subset of {0, 1, 2, . . . , d}; then Cβ is a non-empty set

by Lemma 4. When β is sufficiently close to 0+, we consider a set C′
β = {i |

βvr
(β)
i (β + λ1) < λ1}; then C′

β is a subset of Cβ .

Lemma 5 ([11]). For β > 0, let Γ be a distance-regular graph of order v, and

let Gβ = r
(β)
0 A0 + r

(β)
1 A1 + · · ·+ r

(β)
d Ad be a Green’s function of Γ. We recall

that α
(β)
i :=

β2vr
(β)
i

1−βvr
(β)
i

(i = 0, 1, . . . , d) as given in Eq. (1). Then for i ∈ C′
β, we

have the following:

(a) limβ→0+ βvr
(β)
i = 1−, limβ→0+ β2vr

(β)
i = 0+.

(b) α
(β)
i is decreasing in i ∈ C′

β.

(c) There exists i ∈ C′
β such that limβ→0+ α

(β)
i = αi < λ1.

(d) α
(β)
i is decreasing in β > 0.

Proof of Theorem 1. Let S be a subset of the vertex set V of Γ with vol(S) ≤
vol(V )/2 and |∂S|

vol(S) 6= hΓ. Let S′ be a subset of V with |∂S′|
vol(S′) = hΓ. Then

there exists some β with 0 < β < 1 such that

(3)
|∂S|β
vol(S)

=
|∂S′|
vol(S′)

.

We first note that for a positive integer n,

(4) β <
α
(αdβ

n)
d

α
(αd)
d

;

this follows immediately from
α

(αd)

d

αd
<

α
(αdβn)

d

αdβ
, which is clear since α

(x)
d is

decreasing in x by Lemma 5.
We claim that for any ǫ > 0, there exists a positive integer Nε such that

(5) α
(αdβ

n)
d < α2

d + ε

for any n ≥ Nε; we use Lemma 5 for the proof as follows. Let fn=αdβ
nvr

(αdβ
n)

d .
Then limn→∞ fn = 1− by Lemma 5(a). Thus, for sufficiently large positive in-
teger n, we obtain the following approximations:

fn(β
n + αd) ≈ αd
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⇒ fnβ
n ≈ αd(1− fn)

⇒ α
(αdβ

n)
d =

fnβ
nαd

1− fn
≈ α2

d;

so our claim in Eq. (5) follows.
From Eq. (4) and Eq. (5), we thus have that

(6) β <
α2
d + ε

α
(αd)
d

.

Taking ε > 0 to be such that ε <
(vol(S)

|∂S| − 1
)

α2
d (noting that the right hand

side of this inequality is positive), we obtain

hΓ <
α2
d

α
(αd)
d

;

this is because from Eq. (3) and Eq. (6), we get the following:

hΓ =
|∂S|β
vol(S)

<
|∂S|
vol(S)

(α2
d + ε

α
(αd)
d

)

<
α2
d

α
(αd)
d

.

Consequently, the result follows as desired. �

Proof of Theorem 2. From Theorem 1, we have

hΓ <
α2
d

α
(αd)
d

.

By Lemma 5, we have

αd = lim
β→0+

β2vr
(β)
d

1− βvr
(β)
d

, α
(αd)
d =

α2
dvr

(αd)
d

1− αdvr
(αd)
d

.

Thus,

(7)
α2
d

α
(αd)
d

=
1− αdvr

(αd)
d

vr
(αd)
d

=
1

vr
(αd)
d

− αd,

where vr
(αd)
d = 1

αd
+ q1(d)

1
αd+λ1

+ · · ·+ qd(d)
1

αd+λd
. From Lemma 4, we have

d
∑

j=0

kjr
(αd)
j =

1

αd
,

and this implies that

r
(αd)
d

d
∑

j=0

kju
(αd)
j =

1

αd
;

so we get

αd

d
∑

j=0

kju
(αd)
j =

1

r
(αd)
d

.
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It thus follows that

(8)
1

vr
(αd)
d

− αd = αd

(1

v

d
∑

j=0

kju
(αd)
j − 1

)

.

The result follows immediately by combining Eq. (7) with Eq. (8). �

The following remark shows that u
(β)
j can be expressed by a determinant

of a submatrix L
(β)
j of N (L

(β)
sub), and αd can be expressed in terms of a basis

(u
(β)
0 , u

(β)
1 , . . . , u

(β)
d ) of N (L

(β)
sub) and the valencies kj ’s as in Lemma 4.

Remark 6. (1) [10, 11] For β > 0, let L
(β)
0 be the d× d matrix obtained by the

removal of the first column of L
(β)
sub as in Lemma 4. Let L

(β)
j be the (d−j)×(d−j)

matrix obtained by the removal from the first row(respectively, column) to the

j-th row(respectively, column) of L
(β)
0 , and let (u

(β)
0 , u

(β)
1 , . . . , u

(β)
d ) be a basis

of N (L
(β)
sub) with u

(β)
d = 1. Then we have

u
(β)
j = (−1)d−j

det(L
(β)
j )

cj+1cj+2 · · · cd
, j = 0, 1, . . . , d− 1,

where det(L
(β)
d ) = 1.

(2) [11] Let Γ be a distance-regular graph of order v, and let Gβ = r
(β)
0 A0 +

r
(β)
1 A1 + · · ·+ r

(β)
d Ad be a Green’s function of Γ for β > 0. Then we have

αd = lim
β→0+

βv
∑d

j=0 kju
(β)
j − v

and αd < α
(β)
d + β.

Proof of Corollary 3. Since βvr
(β)
d > λ1

1+λ1
for β ≤ αd, we have

λ1 <
βvr

(β)
d

1− βvr
(β)
d

=
α
(β)
d

β
.

Letting β = αd, we get αd

α
(αd)

d

< 1
λ1
. It thus follows

α2
d

α
(αd)
d

<
αd

λ1
.

�

4. Examples

In this section we present some examples regarding our upper bound on the
Cheeger constants for some distance-regular graphs. In particular, Example 7
and Example 8 show that our bound is much more improved one comparing
with the bound in [11, 12] under the same additional condition.

Theorem 1 shows an upper bound on the Cheeger constant hΓ in terms

of αd and α
(β)
d . From Equations (2) and (3), if we know the q-numbers of

the given P -polynomial scheme, then we can find αd and α
(β)
d immediately.
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In the Hamming scheme H(d, q) (respectively, Johnson scheme J(m, d)), the
p-number pj(i) is defined by the Krawtchouk polynomial (respectively, the
Eberlein polynomial) [1]. Since PQ = vI, we can obtain the q-numbers qj(i)
of the Hamming scheme H(d, q) and the Johnson scheme J(m, d). We present
the following two examples for showing this case.

Example 7. Let Γ be the graph of the Hamming scheme H(d, q) with respect
to A1. Then Γ is a distance-regular graph with qd vertices, valency d(q − 1)
and d diameter. We consider two cases: (a) d = 5, q = 4 and (b) d = 7, q = 3,
and in each case, our upper bound on the Cheeger constant is as follows:

(a) H(5, 4) : v = 1024, k1 = 15, λ1 = 4/15, αd = 16/137.

And, for β ≤ αd, βvr
(β)
d ≥ αdvr

(αd)
d ≈ 0.41256 > λ1

1+λ1
≈ 0.21053.

Thus, hΓ <
α2

d

α
(αd)

d

≈ 0.166291 < αd

λ1
≈ 0.43795.

(b) H(7, 3) : v = 2187, k1 = 14, λ1 = 3
14 , αd = 10

121 .

And, for β ≤ αd, βvr
(β)
d ≥ αdvr

(αd)
d ≈ 0.404240 > λ1

1+λ1
≈ 0.176471.

Thus, hΓ <
α2

d

α
(αd)

d

≈ 0.12180 < αd

λ1
≈ 0.385675.

Example 8. Let Γ be a graph of the Johnson scheme J(m, d) with respect to
A1. Then Γ is a distance-regular graph with

(

m
d

)

vertices, valency d(m − d)
and d diameter. We consider two cases: (a) m = 6, d = 3 and (b) m = 11,
d = 5. In each case, our upper bound on the Cheeger constant is as follows:

(a) J(8, 4) : v = 126, k1 = 20, λ1 = 9/20, αd = 252/1325.

And, for β ≤ αd, βvr
(β)
d ≥ αdvr

(αd)
d ≈ 0.415036 > λ1

1+λ1
≈ 0.310345.

Thus, hΓ <
α2

d

α
(αd)

d

≈ 0.268058 < αd

λ1
≈ 0.422642.

(b) J(11, 5) : v = 462, k1 = 30, λ1 = 11/30, αd = 11088/79091.

And, for β ≤ αd, βvr
(β)
d ≥ αdvr

(αd)
d ≈ 0.40805 > λ1

1+λ1
≈ 0.268293.

Thus, hΓ <
α2

d

α
(αd)

d

≈ 0.203375 < αd

λ1
≈ 0.382344.

Example 9. Let Γ be a Taylor graph with intersection array (275, 112, 1; 1, 112,
275). Then Γ is a distance-regular graph with vertices 552, valency 275 and 3

diameter. Also, λ1 = 4/5, α3 = 3864/12475, α
(α3)
3 = 0.2265. Thus we have an

upper bound on the Cheeger constant of Γ as follows:

hΓ <
α2
3

α
(α3)
3

≈ 0.42357.

In Theorem 2, we find an alternative upper bound, which is explicitly com-

putable, by using αd, the valencies kj , and the basis of nullspace N (L
(β)
sub). In

Example 10 and Example 11, we compute the upper bound on the Cheeger
constant using the alternative expression in Theorem 2 and Remark 6.

Example 10. Let Γ be a graph with respect to A1 of a Johnson scheme J(8, 4).
Then Γ is a distance-regular graph with 70 vertices and valency 16. Also, the
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valencies of J(8, 4) are 1, 16, 36, 16, 1 and

L
(β)
sub =









1 6− 16(β + 1) 9 0 0
0 4 8− 16(β + 1) 4 0
0 0 9 6− 16(β + 1) 1
0 0 0 16 −16(β + 1)









.

Since

αd =
1

−q1(d)
1
λ1

− · · · − qd(d)
1
λd

,

(q1(4), . . . , q4(4)) = (−7, 20,−28, 14) and (λ1, . . . , λ4) = ( 8
16 ,

14
16 ,

18
16 ,

20
16 ), we get

αd = 315/1522. Let β = 315/1522. By Remark 6, a basis (u
(αd)
0 , . . . , u

(αd)
4 ) for

N (L
(αd)
sub ) is

(10692972602391

335381132641
,
3108779427

881422162
,
969476

579121
,
1837

1522
, 1

)

.

Thus, by Theorem 2, we have

hΓ < (315/1522)
( 1

70

4
∑

j=0

kju
(αd)
j − 1

)

≈ 0.292388.

Example 11. Let X be a set of d × n matrices over GF (pt) (d ≤ n). We
define the i-th relation Ri on X by (x, y) ∈ Ri if and only if rank(x − y) = i.
Then X = (X, {Ri}) (0 ≤ i ≤ d) is a P -polynomial scheme with respect to the

ordering R0, R1, . . . , Rd. Let p = 2, t = 1, d = 4, n = 5. Then L
(β)
sub is obtained

as follows:








1 44− 465(β + 1) 420 0 0
0 6 123− 465(β + 1) 336 0
0 0 28 245− 465(β + 1) 192
0 0 0 120 345− 465(β + 1)









.

We have |X | = v = 1048576, k0 = 1, k1 = 465, k2 = 32550, k3 = 390600 and

k4 = 624960 by using ki =
k1b1b2···bi−1

c2c3···ci
(i = 2, 3, . . . , d).

Let β = 1
100 . Then by Lemma 4 and Remark 6 (1), we obtain the unique

basis of N (L
(β)
sub) as follows:

(u
(β)
0 , u

(β)
1 , u

(β)
2 , u

(β)
3 , u

(β)
4 ) =

(3921317781669

358400000
,
486743013

17920000
,
661683

448000
,
831

800
, 1

)

.

Thus, by Remark 6, we find

(1048576) 1
100

(1)u
(β)
0 + (465)u

(β)
1 + (32550)u

(β)
2 + (390600)u

(β)
3 + (624960)u

(β)
4 − 1048576

≈ 0.195023.

Thus, we have αd < α̃d ≈ 0.195023+ 0.01 = 0.205023.
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Let β = 0.205023. Then, we obtain the unique basis of N (L
(α̃d)
sub ) as follows:

u
(α̃d)
0 =

227848229494208860060049660207

512000000000000000000000
, u

(α̃d)
1 =

2234200208459744136613

2560000000000000000
,

u
(α̃d)
2 =

85453392459301

6400000000000
, u

(α̃d)
4 =

14355713

8000000
, u

(α̃d)
4 = 1.

Thus, from Theorem 2, we obtain

hΓ < (α̃d)
( 1

1048576

4
∑

j=0

kju
(α̃d)
j − 1

)

≈ 0.305557.

Remark 12. In general, it is a hard task to compute the Cheeger constant of
the graph, and there is not much known about the actual value of the Cheeger
constant of a graph. As far as we know, the only known case is the Cheeger
constant of the Hamming graph H(d, q) with q even, which is q

2n(q−1) . For

instance, we consider two cases H(5, 2) and H(5, 4) for comparing our bound
with the actual Cheeger constant:

(a) H(5, 2) : v = 512, k1 = 5, λ1 = 2/5, αd = 24/137, α
(αd)
d ≈ 0.123033.

Thus, hΓ = 1
5 = 0.2 <

α2
d

α
(αd)

d

≈ 0.249437.

(b) H(5, 4) : v = 1024, k1 = 15, λ1 = 4/15, αd = 16/137, α
(αd)
d ≈ 0.083724.

Thus, hΓ = 2
15 = 0.133333 · · ·< α2

d

α
(αd)

d

≈ 0.166291.

As we can see from these examples, our bound is close to the Cheeger constant,
but it is not sharp yet.

Acknowledgement. We thank the anonymous referee for valuable comments,
which improved the clarity of our paper.
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