Bull. Korean Math. Soc. **54** (2017), No. 2, pp. 507–519 https://doi.org/10.4134/BKMS.b160157 pISSN: 1015-8634 / eISSN: 2234-3016

AN UPPER BOUND ON THE CHEEGER CONSTANT OF A DISTANCE-REGULAR GRAPH

GIL CHUN KIM AND YOONJIN LEE

ABSTRACT. We present an upper bound on the Cheeger constant of a distance-regular graph. Recently, the authors found an upper bound on the Cheeger constant of distance-regular graph under a certain restriction in their previous work. Our new bound in the current paper is much better than the previous bound, and it is a general bound with no restriction. We point out that our bound is explicitly computable by using the valencies and the intersection matrix of a distance-regular graph. As a major tool, we use the discrete Green's function, which is defined as the inverse of β -Laplacian for some positive real number β . We present some examples of distance-regular graphs, where we compute our upper bound on their Cheeger constants.

1. Introduction

A notion of the Cheeger constant of a graph has an important geometric meaning in graph theory. The Cheeger constant of a graph is closely related to the problem of separating a graph into two large components by making a small edge-cut. In fact, the Cheeger constant of a connected graph is strictly positive. If the Cheeger constant of a connected graph is "small", then it means that there are two large sets of vertices with "few" edges between them. On the other hand, if a graph has "large" Cheeger constant, then it indicates that there are two sets of vertices with "many" edges between these two subsets. In general, computation of the Cheeger constant of a graph is a hard task. Only limited research has been done for finding the Cheeger constant of a graph. We are interested in finding bounds of Cheeger constants of graphs.

We begin with introducing some definitions in graph theory. Let $\Gamma = (V, E)$ be a simple and connected graph, where V is the vertex set of Γ and E is the

©2017 Korean Mathematical Society

Received February 22, 2016; Revised July 11, 2016.

²⁰¹⁰ Mathematics Subject Classification. 05C40, 05C50.

Key words and phrases. Green's function, Laplacian, P-polynomial scheme, distanceregular graph, Cheeger constant, Cheeger inequality.

The second named author is a corresponding author and supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827) and also by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST)(2014-002731).

edge set of Γ . Let S be a nonempty subset of V. The *edge boundary* of S, denoted by ∂S , is defined as follows:

$$\partial S = \{\{x, y\} \in E \mid x \in S \text{ and } y \in V - S\}.$$

The volume of S, denoted by vol(S), is defined as follows:

$$\operatorname{rol}(S) = \sum_{u \in S} k_u,$$

where k_u is the valency of u in Γ . The *Cheeger ratio* of S, denoted by h_S , is defined as

$$h_S = \frac{|\partial S|}{\min\{\operatorname{vol}(S), \operatorname{vol}(\Gamma) - \operatorname{vol}(S)\}}$$

The Cheeger constant of Γ , denoted by h_{Γ} , is defined as

$$h_{\Gamma} = \min\{h_S \mid S \subseteq V\}.$$

Recent developments in [3, 4, 14] regarding distance-regular graphs show that there is a close connection between the Cheeger constant and vertex (or edge) connectivity. From Propositions A, B, and C we see that, for a distanceregular graph, there are close connections between the Cheeger constant and vertex and edge connectivity.

Proposition A ([3]). Let Γ be a distance-regular graph with more than one vertex. Then its edge-connectivity equals its valency k, and the only disconnecting sets of k edges are the sets of edges incident with a single vertex.

Proposition B ([4]). Let Γ be a non-complete distance-regular graph of valency k > 2. Then the vertex-connectivity $\kappa(\Gamma)$ equals k, and the only disconnecting sets of vertices of size not more than k are the point neighbourhoods.

Proposition C ([14]). Let $\Gamma = (V, E)$ be a simple graph with the vertexconnectivity $\kappa(\Gamma)$ and the edge-connectivity $\lambda(\Gamma)$. Then

$$\frac{2\kappa(\Gamma)}{|V|} \leq \frac{2\lambda(\Gamma)}{|V|} \leq \inf \frac{|\partial S|}{|S|} \leq \kappa(\Gamma) \leq \lambda(\Gamma),$$

where S is a subset of V with $|S| \leq \frac{|V|}{2}$.

The Cheeger constants [9, 15] are related to the eigenvalues of the Laplacians of distance-regular graphs, and their eigenvalues are also involved with the *intersection numbers* of distance-regular graphs [13, 16]. However, in general, it is a hard task to compute the Cheeger constant of a distance-regular graph. Distance-regular graphs introduced by Biggs [2] are connected with coding theory and design theory; well-known examples of distance-regular graphs are the Hamming graphs and the Johnson graphs. In [11, 12], by using the relationship between a discrete Green's function and the Cheeger constant, we obtain an upper bound on the Cheeger constant of a distance-regular graph under a certain condition.

We find a general upper bound on the Cheeger constant of a distance-regular graph with no additional condition. Furthermore, our bound is a much more improved one comparing with the bound in [12] under the same additional condition; in Example 7 and Example 8, we show that our bound is much more improved one comparing with the bound in [12] under the same additional condition: $\beta v r_d^{(\beta)} > \frac{\lambda_1}{1+\lambda_1}$. We point out that our bound is explicitly computable by using the valencies

We point out that our bound is explicitly computable by using the valencies and the *intersection matrix* of a distance-regular graph; first, our bound is expressed in terms of q-numbers, and in general, it is not easy to compute the q-numbers. For resolving this problem, we obtain an alternative expression of our bound using the valencies and the intersection matrix of a distance-regular graph. In Example 10 and Example 11, we compute the upper bound on the Cheeger constant using the alternative expression in Theorem 2 and Remark 6. As a major tool, we use the discrete Green's function, which is defined as the inverse of β -Laplacian for some positive real number β . We present some examples which show our upper bound on the Cheeger constant for some distance-regular graphs.

We discuss our main result in more detail for the rest of this section. In this paper, we study distance-regular graphs. Let $\Gamma = (V, E)$ be a distance-regular graph of order v, diameter d and valency k. Let A_1 be the adjacency matrix of Γ and P be the transition probability matrix of Γ . Two adjacent vertices x, y are denoted by $x \sim y$. For a function $f : V \to \mathbb{R}$, we define a Laplace operator Δ by $\Delta f(x) = \frac{1}{k} \sum_{y \sim x} (f(x) - f(y))$. Then $\Delta = I - \frac{1}{k}A_1$. Let \mathcal{L}_{β} be the β -normalized Laplacian $\beta I + \Delta$. For $\beta > 0$, let \mathcal{G}_{β} be a discrete Green's function denoted by the symmetric matrix which satisfies $\mathcal{L}_{\beta}\mathcal{G}_{\beta} = I$; that is, \mathcal{G}_{β} is defined as the inverse of the β -Laplacian \mathcal{L}_{β} [5, 6, 7]. As in [11], for any positive real number β , let $r_i^{(\beta)}$ $(i = 0, 1, \ldots, d)$ denote the components of a Green's function \mathcal{G}_{β} . We define α_i to be the limit of a sequence $\{\alpha_i^{(\beta)}\}$ as β goes to 0^+ , where

(1)
$$\alpha_i^{(\beta)} = \frac{\beta^2 v r_i^{(\beta)}}{1 - \beta v r_i^{(\beta)}} \ (i = 0, 1, \dots, d).$$

In fact, we can express α_i 's by the eigenvalues λ_j of the Laplacian \mathcal{L}_{β} and the q-numbers $q_j(i)$ of the P-polynomial scheme [1, 8, 10, 11]:

(2)
$$\alpha_i = \frac{1}{-q_1(i)\frac{1}{\lambda_1} - \dots - q_d(i)\frac{1}{\lambda_d}}$$

We also see that $0 < \alpha_d < \alpha_{d-1} < \cdots < \alpha_e < \lambda_1$ for some e.

The authors obtain the following result [12] on an upper bound on the Cheeger constant of a distance-regular graph with a certain restricted condition as follows.

Theorem A ([12]). Let Γ be a distance-regular graph with diameter d and $\beta vr_d^{(\beta)} > \frac{\lambda_1}{1+\lambda_1}$ for $\beta \leq \alpha_d$. Let λ_1 be the smallest eigenvalue of the Laplacian.

Then we have

$$\lambda_1 h_{\Gamma} < \alpha_d < \alpha_{d-1} < \dots < \alpha_e < \lambda_1$$

for $e \in \mathbf{C}'_{\beta}$.

Main results of this paper are the following Theorem 1, Theorem 2 and Corollary 3. Theorem 1 presents an upper bound on the Cheeger constant of a distance-regular graph. In Theorem 2, we find an explicit expression for the bound given in Theorem 1 by using the valencies k_j and the basis of nullspace $\mathcal{N}(L_{sub}^{(\alpha_d)})$. This shows that our new bound is a computable bound using the valencies and the intersection matrix of a distance-regular graph. Corollary 3 shows that our generalized bound in Theorem 1 and Theorem 2 improves the bound given in Theorem A [12] under the same additional condition.

Theorem 1. Let Γ be a distance-regular graph of diameter d. Then we have the following upper bound:

$$h_{\Gamma} < \frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}},$$

where $\alpha_d = \lim_{\beta \to 0^+} \frac{\beta^2 v r_d^{(\beta)}}{1 - \beta v r_d^{(\beta)}}$ and $\alpha_d^{(\alpha_d)} = \frac{\alpha_d^2 v r_d^{(\alpha_d)}}{1 - \alpha_d v r_d^{(\alpha_d)}}.$

Theorem 2. Let Γ be a distance-regular graph of order v and diameter d. Let $(u_0^{(\alpha_d)}, u_1^{(\alpha_d)}, \ldots, u_d^{(\alpha_d)})$ be a basis of $\mathcal{N}(L_{sub}^{(\alpha_d)})$ with $u_d^{(\alpha_d)} = 1$ as in Lemma 4. Then we have

$$h_{\Gamma} < \frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}} = \alpha_d \big(\frac{1}{v} \sum_{j=0}^d k_j u_j^{(\alpha_d)} - 1 \big),$$

where k_j are valencies as in Lemma 4 and α_d is the same as in Lemma 5.

Corollary 3. Let Γ be a distance-regular graph, and h_{Γ} be a Cheeger constant of Γ . If $\beta vr_d^{(\beta)} > \frac{\lambda_1}{1+\lambda_1}$ for $\beta \leq \alpha_d$, then we have

$$h_{\Gamma} < \frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}} < \frac{\alpha_d}{\lambda_1},$$

where λ_1 is the smallest positive eigenvalue of the Laplacian and α_d is the same as in (1).

In Section 2, we introduce some notations and facts about distance-regular graph and some properties of the Green's function \mathcal{G}_{β} . In Section 3, we find a new upper bound on the Cheeger constant of a distance-regular graph. We also obtain an alternative expression of our upper bound by using the valencies k_j and the basis of nullspace $\mathcal{N}(L_{sub}^{(\alpha_d)})$. Finally, in Section 4, we present some examples about our upper bound on the Cheeger constant of some distance-regular graphs.

2. Preliminaries and Green's function

We introduce definitions of the distance-regular graphs and the *P*-polynomial schemes. A connected graph Γ with diameter d is called a *distance-regular graph* if there are constants c_i, a_i, b_i such that for all $i = 0, 1, \ldots, d$, and all vertices x and y at distance i = d(x, y), among the neighbors of y, there are c_i at distance i-1 from x, a_i at distance i, and b_i at distance i+1. It follows that Γ is a regular graph with valency $k = b_0$, and that $c_i + a_i + b_i = k$ for all i = 0, 1, ..., d. By these equations, the intersection numbers a_i can be expressed in terms of the others, and it is a standard to put these others in the so-called *intersection* array $(b_0, b_1, \ldots, b_{d-1}; c_1, c_2, \ldots, c_d)$. We describe the relations by its adjacency matrices A_i (i = 0, 1, ..., d) which are $v \times v$ matrices defined by

$$(A_i)_{x,y} = \begin{cases} 1 & \text{if } (x,y) \in R_i, \\ 0 & \text{otherwise,} \end{cases}$$

[1, 8]. Let X be a nonempty finite set and $R = \{R_0, R_1, \ldots, R_d\}$ be a family of relations defined on X. We say that the pair (X, R) is a symmetric association scheme with d classes if it satisfies the following conditions.

- (1) $A_0 = I$ (indentity matrix).
- (1) $A_0 = I$ (indentity matrix). (2) $A_0 + A_1 + \dots + A_d = J$ (all 1 matrix). (3) $A_i A_j = \sum_{k=0}^d p_{ij}^k A_k$, where p_{ij}^k is the number of $z \in X$ such that $(x, z) \in R_i$ and $(z, y) \in R_j$. (4) $A_j^t = A_j$. (5) $A_i A_j = A_j A_i$.

A symmetric association scheme $\mathfrak{X} = (X, R)$ is called a *P*-polynomial scheme with respect to the ordering R_0, R_1, \ldots, R_d , if there exist some complex coefficient polynomials $v_i(x)$ of degree i (i = 0, 1, ..., d) such that $A_i = v_i(A_1)$, where A_i is the adjacency matrix with respect to R_i .

It is known [1, 8] that a distance-regular graph is equivalent to a P-polynomial scheme \mathfrak{X} with respect to some relations R_0, R_1, \ldots, R_d on a vertex set V with |V| = v. Thus, we can define the Green's function over a P-polynomial scheme, and then by using the Green's function we will obtain an upper bound on the Cheeger constant of a distance-regular graph.

The first intersection matrix B_1 of a distance-regular graph is a tridiagonal matrix with non-zero off diagonal entries:

$$B_{1} = \begin{pmatrix} 0 & k & 0 & 0 & \cdots & 0 \\ 1 & a_{1} & b_{1} & 0 & \cdots & 0 \\ 0 & c_{2} & a_{2} & b_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ & & & c_{d-1} & a_{d-1} & b_{d-1} \\ 0 & \cdots & \cdots & 0 & c_{d} & a_{d} \end{pmatrix} \quad (b_{i} \neq 0, c_{i} \neq 0).$$

Let \mathcal{A} be the algebra spanned by the adjacency matrices A_0, A_1, \ldots, A_d . Then \mathcal{A} is called the *Bose-Mesner algebra* of \mathfrak{X} , and \mathcal{A} has two distinguished bases $\{A_i\}$ and $\{E_i\}$, where the latter consists of primitive idempotent matrices. For A_i and E_i , we can express one in terms of the other as the following:

$$A_j = \sum_{i=0}^d p_j(i)E_i, \ E_j = \frac{1}{|X|} \sum_{i=0}^d q_j(i)A_i$$

for j = 0, 1, ..., d. The $(d + 1) \times (d + 1)$ matrix $\mathbf{P} = (p_j(i))$ (respectively, $\mathbf{Q} = (q_j(i))$) is called *the first eigenmatrix* (respectively, the second eigenmatrix) of the P-polynomial scheme \mathfrak{X} , where $p_j(i)$ (respectively, $q_j(i)$) is a *p*-number (respectively, a *q*-number).

As defined in Section 1, the Green's function \mathcal{G}_{β} is the inverse of the β -Laplacian \mathcal{L}_{β} . For $\beta > 0$, we thus have $\mathcal{G}_{\beta}(\beta I + I - P) = I$. Therefore, we get

$$\mathcal{L}_{\beta} = \sum_{j=0}^{d} \left(\beta + 1 - \frac{1}{k_1} p_1(j) \right) E_j, \ \mathcal{G}_{\beta} = \sum_{j=0}^{d} \left(\frac{k_1}{(\beta + 1)k_1 - p_1(j)} \right) E_j.$$

Since $E_j = (1/v) \sum q_j(i) A_i$ and $\lambda_j = 1 - p_1(j)/k_1$, we get

$$\begin{aligned} \mathcal{G}_{\beta} &= \sum_{j=0}^{d} \left(\frac{k_{1}}{(\beta+1)k_{1} - p_{1}(j)} \right) \sum_{i=0}^{d} q_{j}(i) \\ &= \sum_{i=0}^{d} \sum_{j=0}^{d} (1/v) \left(\frac{k_{1}}{(\beta+1)k_{1} - p_{1}(j)} \right) q_{j}(i) A_{i} \\ &= \sum_{i=0}^{d} \sum_{j=0}^{d} (1/v) \left(\frac{1}{\beta+1 - \frac{p_{1}(j)}{k_{1}}} \right) q_{j}(i) A_{i} \\ &= \sum_{i=0}^{d} \sum_{j=0}^{d} (1/v) \left(\frac{1}{\beta+\lambda_{j}} \right) q_{j}(i) A_{i}. \end{aligned}$$

That is, \mathcal{G}_{β} is a linear combination of adjacency matrices A_i as follows:

$$\mathcal{G}_{\beta} = r_0^{(\beta)} A_0 + r_1^{(\beta)} A_1 + \dots + r_d^{(\beta)} A_d,$$

where $r_i^{(\beta)} = \frac{1}{v} (\frac{1}{\beta} + q_1(i) \frac{1}{\beta + \lambda_1} + \dots + q_d(i) \frac{1}{\beta + \lambda_d})$ $(i = 0, 1, \dots, d).$ In [10, 11] a $d \times (d + 1)$ matrix $L^{(\beta)}$ is introduced as a matrix

In [10, 11], a $d \times (d+1)$ matrix $L_{sub}^{(\beta)}$ is introduced as a matrix obtained by the removal of the first row of $B_1 - k_1(\beta+1)I$.

Lemma 4 ([11]). For $\beta > 0$, let $\mathcal{G}_{\beta} = r_0^{(\beta)}A_0 + r_1^{(\beta)}A_1 + \cdots + r_d^{(\beta)}A_d$ be the Green's function of a distance-regular graph Γ of order v. Then we have

(a) \mathcal{G}_{β} can be expressed as $\mathcal{G}_{\beta} = tu_0^{(\beta)}A_0 + tu_1^{(\beta)}A_1 + \dots + tu_d^{(\beta)}A_d$ for some nonzero $t \in \mathbb{R}$, where $(u_0^{(\beta)}, u_1^{(\beta)}, \dots, u_d^{(\beta)})$ is the unique basis of the nullspace $\mathcal{N}(L_{sub}^{(\beta)})$ of $L_{sub}^{(\beta)}$ with $u_d^{(\beta)} = 1$.

- (b) $k_0 r_0^{(\beta)} + k_1 r_1^{(\beta)} + \dots + k_d r_d^{(\beta)} = \frac{1}{\beta}$, where k_j is the valency of A_j for $\begin{array}{l} (b) \ h_{0}r_{0}^{(\beta)} = r_{1}r_{1}^{(\beta)} \\ j = 0, 1, \dots, d. \\ (c) \ r_{0}^{(\beta)} > r_{1}^{(\beta)} > \dots > r_{d}^{(\beta)} > 0. \\ (d) \ \lim_{\beta \to 0^{+}} |r_{i}^{(\beta)} - r_{j}^{(\beta)}| = 0 \ for \ 0 \le i, j \le d. \end{array}$

3. A new improved bound on the Cheeger constant

In this section we prove Theorem 1 and Theorem 2. We need the following lemma for the proof of Theorem 2 and Theorem 3. We consider a set C_{β} = $\{i \mid \frac{1}{\beta} - vr_i^{(\beta)} > 0\}$ as a subset of $\{0, 1, 2, \dots, d\}$; then \mathbf{C}_{β} is a non-empty set by Lemma 4. When β is sufficiently close to 0^+ , we consider a set $\mathbf{C}'_{\beta} = \{i \mid i \}$ $\beta v r_i^{(\beta)}(\beta + \lambda_1) < \lambda_1 \};$ then \mathbf{C}'_{β} is a subset of \mathbf{C}_{β} .

Lemma 5 ([11]). For $\beta > 0$, let Γ be a distance-regular graph of order v, and let $\mathcal{G}_{\beta} = r_0^{(\beta)} A_0 + r_1^{(\beta)} A_1 + \cdots + r_d^{(\beta)} A_d$ be a Green's function of Γ . We recall that $\alpha_i^{(\beta)} := \frac{\beta^2 v r_i^{(\beta)}}{1 - \beta v r_i^{(\beta)}}$ (i = 0, 1, ..., d) as given in Eq. (1). Then for $i \in \mathbf{C}'_{\beta}$, we have the following:

- (a) $\lim_{\beta \to 0^+} \beta v r_i^{(\beta)} = 1^-, \lim_{\beta \to 0^+} \beta^2 v r_i^{(\beta)} = 0^+.$
- (b) $\alpha_i^{(\beta)}$ is decreasing in $i \in \mathbf{C}'_{\beta}$.
- (c) There exists $i \in \mathbf{C}'_{\beta}$ such that $\lim_{\beta \to 0^+} \alpha_i^{(\beta)} = \alpha_i < \lambda_1$.
- (d) $\alpha_i^{(\beta)}$ is decreasing in $\beta > 0$.

Proof of Theorem 1. Let S be a subset of the vertex set V of Γ with vol $(S) \leq$ $\operatorname{vol}(V)/2$ and $\frac{|\partial S|}{\operatorname{vol}(S)} \neq h_{\Gamma}$. Let S' be a subset of V with $\frac{|\partial S'|}{\operatorname{vol}(S')} = h_{\Gamma}$. Then there exists some β with $0 < \beta < 1$ such that

(3)
$$\frac{|\partial S|\beta}{\operatorname{vol}(S)} = \frac{|\partial S'|}{\operatorname{vol}(S')}$$

We first note that for a positive integer n,

(4)
$$\beta < \frac{\alpha_d^{(\alpha_d \beta^n)}}{\alpha_d^{(\alpha_d)}}$$

this follows immediately from $\frac{\alpha_d^{(\alpha_d)}}{\alpha_d} < \frac{\alpha_d^{(\alpha_d\beta^n)}}{\alpha_d\beta}$, which is clear since $\alpha_d^{(x)}$ is decreasing in x by Lemma 5.

We claim that for any $\epsilon > 0$, there exists a positive integer N_{ε} such that

(5)
$$\alpha_d^{(\alpha_d \beta^n)} < \alpha_d^2 + \epsilon$$

for any $n \ge N_{\varepsilon}$; we use Lemma 5 for the proof as follows. Let $f_n = \alpha_d \beta^n v r_d^{(\alpha_d \beta^n)}$. Then $\lim_{n\to\infty} f_n = 1^-$ by Lemma 5(a). Thus, for sufficiently large positive integer n, we obtain the following approximations:

$$f_n(\beta^n + \alpha_d) \approx \alpha_d$$

$$\Rightarrow f_n \beta^n \approx \alpha_d (1 - f_n) \Rightarrow \alpha_d^{(\alpha_d \beta^n)} = \frac{f_n \beta^n \alpha_d}{1 - f_n} \approx \alpha_d^2;$$

so our claim in Eq. (5) follows.

From Eq. (4) and Eq. (5), we thus have that

(6)
$$\beta < \frac{\alpha_d^2 + \varepsilon}{\alpha_d^{(\alpha_d)}}.$$

Taking $\varepsilon > 0$ to be such that $\varepsilon < \left(\frac{\operatorname{vol}(S)}{|\partial S|} - 1\right) \alpha_d^2$ (noting that the right hand side of this inequality is positive), we obtain

$$h_{\Gamma} < \frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}};$$

this is because from Eq. (3) and Eq. (6), we get the following:

$$h_{\Gamma} = \frac{|\partial S|\beta}{\operatorname{vol}(S)} < \frac{|\partial S|}{\operatorname{vol}(S)} \left(\frac{\alpha_d^2 + \varepsilon}{\alpha_d^{(\alpha_d)}}\right) < \frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}}.$$

Consequently, the result follows as desired.

Proof of Theorem 2. From Theorem 1, we have

$$h_{\Gamma} < \frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}}.$$

By Lemma 5, we have

$$\alpha_d = \lim_{\beta \to 0^+} \frac{\beta^2 v r_d^{(\beta)}}{1 - \beta v r_d^{(\beta)}}, \ \alpha_d^{(\alpha_d)} = \frac{\alpha_d^2 v r_d^{(\alpha_d)}}{1 - \alpha_d v r_d^{(\alpha_d)}}$$

Thus,

(7)
$$\frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}} = \frac{1 - \alpha_d v r_d^{(\alpha_d)}}{v r_d^{(\alpha_d)}} = \frac{1}{v r_d^{(\alpha_d)}} - \alpha_d,$$

where $vr_d^{(\alpha_d)} = \frac{1}{\alpha_d} + q_1(d)\frac{1}{\alpha_d + \lambda_1} + \dots + q_d(d)\frac{1}{\alpha_d + \lambda_d}$. From Lemma 4, we have

$$\sum_{j=0}^{d} k_j r_j^{(\alpha_d)} = \frac{1}{\alpha_d},$$

and this implies that

$$r_d^{(\alpha_d)} \sum_{j=0}^d k_j u_j^{(\alpha_d)} = \frac{1}{\alpha_d};$$

so we get

$$\alpha_d \sum_{j=0}^d k_j u_j^{(\alpha_d)} = \frac{1}{r_d^{(\alpha_d)}}.$$

514

It thus follows that

(8)
$$\frac{1}{vr_d^{(\alpha_d)}} - \alpha_d = \alpha_d \left(\frac{1}{v} \sum_{j=0}^d k_j u_j^{(\alpha_d)} - 1\right)$$

The result follows immediately by combining Eq. (7) with Eq. (8).

The following remark shows that $u_j^{(\beta)}$ can be expressed by a determinant of a submatrix $L_j^{(\beta)}$ of $\mathcal{N}(L_{sub}^{(\beta)})$, and α_d can be expressed in terms of a basis $(u_0^{(\beta)}, u_1^{(\beta)}, \ldots, u_d^{(\beta)})$ of $\mathcal{N}(L_{sub}^{(\beta)})$ and the valencies k_j 's as in Lemma 4.

Remark 6. (1) [10, 11] For $\beta > 0$, let $L_0^{(\beta)}$ be the $d \times d$ matrix obtained by the removal of the first column of $L_{sub}^{(\beta)}$ as in Lemma 4. Let $L_j^{(\beta)}$ be the $(d-j) \times (d-j)$ matrix obtained by the removal from the first row(respectively, column) to the *j*-th row(respectively, column) of $L_0^{(\beta)}$, and let $(u_0^{(\beta)}, u_1^{(\beta)}, \ldots, u_d^{(\beta)})$ be a basis of $\mathcal{N}(L_{sub}^{(\beta)})$ with $u_d^{(\beta)} = 1$. Then we have

$$u_j^{(\beta)} = (-1)^{d-j} \frac{\det(L_j^{(\beta)})}{c_{j+1}c_{j+2}\cdots c_d}, \ j = 0, 1, \dots, d-1,$$

where $\det(L_d^{(\beta)}) = 1$.

(2) [11] Let Γ be a distance-regular graph of order v, and let $\mathcal{G}_{\beta} = r_0^{(\beta)} A_0 + r_1^{(\beta)} A_1 + \cdots + r_d^{(\beta)} A_d$ be a Green's function of Γ for $\beta > 0$. Then we have

$$\alpha_d = \lim_{\beta \to 0^+} \frac{\beta v}{\sum_{j=0}^d k_j u_j^{(\beta)} - v} \text{ and } \alpha_d < \alpha_d^{(\beta)} + \beta.$$

Proof of Corollary 3. Since $\beta vr_d^{(\beta)} > \frac{\lambda_1}{1+\lambda_1}$ for $\beta \leq \alpha_d$, we have

$$\lambda_1 < \frac{\beta v r_d^{(\beta)}}{1 - \beta v r_d^{(\beta)}} = \frac{\alpha_d^{(\beta)}}{\beta}$$

Letting $\beta = \alpha_d$, we get $\frac{\alpha_d}{\alpha_d^{(\alpha_d)}} < \frac{1}{\lambda_1}$. It thus follows

$$\frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}} < \frac{\alpha_d}{\lambda_1}.$$

4. Examples

In this section we present some examples regarding our upper bound on the Cheeger constants for some distance-regular graphs. In particular, Example 7 and Example 8 show that our bound is much more improved one comparing with the bound in [11, 12] under the same additional condition.

Theorem 1 shows an upper bound on the Cheeger constant h_{Γ} in terms of α_d and $\alpha_d^{(\beta)}$. From Equations (2) and (3), if we know the *q*-numbers of the given *P*-polynomial scheme, then we can find α_d and $\alpha_d^{(\beta)}$ immediately.

In the Hamming scheme H(d, q) (respectively, Johnson scheme J(m, d)), the *p*-number $p_j(i)$ is defined by the Krawtchouk polynomial (respectively, the Eberlein polynomial) [1]. Since $\mathbf{PQ} = v\mathbf{I}$, we can obtain the *q*-numbers $q_j(i)$ of the Hamming scheme H(d, q) and the Johnson scheme J(m, d). We present the following two examples for showing this case.

Example 7. Let Γ be the graph of the Hamming scheme H(d, q) with respect to A_1 . Then Γ is a distance-regular graph with q^d vertices, valency d(q-1) and d diameter. We consider two cases: (a) d = 5, q = 4 and (b) d = 7, q = 3, and in each case, our upper bound on the Cheeger constant is as follows:

- (a) $H(5,4): v = 1024, k_1 = 15, \lambda_1 = 4/15, \alpha_d = 16/137.$ And, for $\beta \le \alpha_d, \beta v r_d^{(\beta)} \ge \alpha_d v r_d^{(\alpha_d)} \approx 0.41256 > \frac{\lambda_1}{1+\lambda_1} \approx 0.21053.$ Thus, $h_{\Gamma} < \frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}} \approx 0.166291 < \frac{\alpha_d}{\lambda_1} \approx 0.43795.$
- (b) $H(7,3): v = 2187, k_1 = 14, \lambda_1 = \frac{3}{14}, \alpha_d = \frac{10}{121}.$ And, for $\beta \le \alpha_d, \beta v r_d^{(\beta)} \ge \alpha_d v r_d^{(\alpha_d)} \approx 0.404240 > \frac{\lambda_1}{1+\lambda_1} \approx 0.176471.$ Thus, $h_{\Gamma} < \frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}} \approx 0.12180 < \frac{\alpha_d}{\lambda_1} \approx 0.385675.$

Example 8. Let Γ be a graph of the Johnson scheme J(m, d) with respect to A_1 . Then Γ is a distance-regular graph with $\binom{m}{d}$ vertices, valency d(m-d) and d diameter. We consider two cases: (a) m = 6, d = 3 and (b) m = 11, d = 5. In each case, our upper bound on the Cheeger constant is as follows:

- (a) $J(8,4): v = 126, k_1 = 20, \lambda_1 = 9/20, \alpha_d = 252/1325.$ And, for $\beta \le \alpha_d, \beta v r_d^{(\beta)} \ge \alpha_d v r_d^{(\alpha_d)} \approx 0.415036 > \frac{\lambda_1}{1+\lambda_1} \approx 0.310345.$ Thus, $h_{\Gamma} < \frac{\alpha_d^2}{\alpha_s^{(\alpha_d)}} \approx 0.268058 < \frac{\alpha_d}{\lambda_1} \approx 0.422642.$
- (b) $J(11,5): v = 462, k_1 = 30, \lambda_1 = 11/30, \alpha_d = 11088/79091.$ And, for $\beta \le \alpha_d, \ \beta v r_d^{(\beta)} \ge \alpha_d v r_d^{(\alpha_d)} \approx 0.40805 > \frac{\lambda_1}{1+\lambda_1} \approx 0.268293.$ Thus, $h_{\Gamma} < \frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}} \approx 0.203375 < \frac{\alpha_d}{\lambda_1} \approx 0.382344.$

Example 9. Let Γ be a Taylor graph with intersection array (275, 112, 1; 1, 112, 275). Then Γ is a distance-regular graph with vertices 552, valency 275 and 3 diameter. Also, $\lambda_1 = 4/5$, $\alpha_3 = 3864/12475$, $\alpha_3^{(\alpha_3)} = 0.2265$. Thus we have an upper bound on the Cheeger constant of Γ as follows:

$$h_{\Gamma} < \frac{\alpha_3^2}{\alpha_3^{(\alpha_3)}} \approx 0.42357$$

In Theorem 2, we find an alternative upper bound, which is explicitly computable, by using α_d , the valencies k_j , and the basis of nullspace $\mathcal{N}(L_{sub}^{(\beta)})$. In Example 10 and Example 11, we compute the upper bound on the Cheeger constant using the alternative expression in Theorem 2 and Remark 6.

Example 10. Let Γ be a graph with respect to A_1 of a Johnson scheme J(8, 4). Then Γ is a distance-regular graph with 70 vertices and valency 16. Also, the

valencies of J(8, 4) are 1, 16, 36, 16, 1 and

$$L_{sub}^{(\beta)} = \begin{pmatrix} 1 & 6 - 16(\beta + 1) & 9 & 0 & 0 \\ 0 & 4 & 8 - 16(\beta + 1) & 4 & 0 \\ 0 & 0 & 9 & 6 - 16(\beta + 1) & 1 \\ 0 & 0 & 0 & 16 & -16(\beta + 1) \end{pmatrix}.$$

Since

$$\alpha_d = \frac{1}{-q_1(d)\frac{1}{\lambda_1} - \dots - q_d(d)\frac{1}{\lambda_d}},$$

 $(q_1(4), \ldots, q_4(4)) = (-7, 20, -28, 14)$ and $(\lambda_1, \ldots, \lambda_4) = (\frac{8}{16}, \frac{14}{16}, \frac{18}{16}, \frac{20}{16})$, we get $\alpha_d = 315/1522$. Let $\beta = 315/1522$. By Remark 6, a basis $(u_0^{(\alpha_d)}, \ldots, u_4^{(\alpha_d)})$ for $\mathcal{N}(L_{sub}^{(\alpha_d)})$ is

$$\left(\frac{10692972602391}{335381132641},\ \frac{3108779427}{881422162},\ \frac{969476}{579121},\ \frac{1837}{1522},\ 1\right)$$

Thus, by Theorem 2, we have

$$h_{\Gamma} < (315/1522) \Big(\frac{1}{70} \sum_{j=0}^{4} k_j u_j^{(\alpha_d)} - 1 \Big) \approx 0.292388.$$

Example 11. Let X be a set of $d \times n$ matrices over $GF(p^t)$ $(d \leq n)$. We define the *i*-th relation R_i on X by $(x, y) \in R_i$ if and only if rank(x - y) = i. Then $\mathfrak{X} = (X, \{R_i\}) \ (0 \le i \le d)$ is a *P*-polynomial scheme with respect to the ordering R_0, R_1, \ldots, R_d . Let p = 2, t = 1, d = 4, n = 5. Then $L_{sub}^{(\beta)}$ is obtained as follows:

$$\left(\begin{array}{cccccc} 1 & 44 - 465(\beta+1) & 420 & 0 & 0 \\ 0 & 6 & 123 - 465(\beta+1) & 336 & 0 \\ 0 & 0 & 28 & 245 - 465(\beta+1) & 192 \\ 0 & 0 & 0 & 120 & 345 - 465(\beta+1) \end{array}\right).$$

We have |X| = v = 1048576, $k_0 = 1$, $k_1 = 465$, $k_2 = 32550$, $k_3 = 390600$ and $k_4 = 624960$ by using $k_i = \frac{k_1 b_1 b_2 \dots b_{i-1}}{c_2 c_3 \dots c_i}$ $(i = 2, 3, \dots, d)$. Let $\beta = \frac{1}{100}$. Then by Lemma 4 and Remark 6 (1), we obtain the unique basis of $\mathcal{N}(L_{sub}^{(\beta)})$ as follows:

$$(u_0^{(\beta)}, u_1^{(\beta)}, u_2^{(\beta)}, u_3^{(\beta)}, u_4^{(\beta)}) = \left(\frac{3921317781669}{358400000}, \frac{486743013}{17920000}, \frac{661683}{448000}, \frac{831}{800}, 1\right).$$

Thus by Bemark 6, we find

Thus, by Remark 6, we find

$$(1048576)\frac{1}{100}$$

 $\frac{(1010010)_{100}}{(1)u_0^{(\beta)} + (465)u_1^{(\beta)} + (32550)u_2^{(\beta)} + (390600)u_3^{(\beta)} + (624960)u_4^{(\beta)} - 1048576}$ $\approx 0.195023.$

Thus, we have $\alpha_d < \widetilde{\alpha_d} \approx 0.195023 + 0.01 = 0.205023$.

Thus, from Theorem 2, we obtain

$$h_{\Gamma} < (\widetilde{\alpha_d}) \Big(\frac{1}{1048576} \sum_{j=0}^{4} k_j u_j^{(\widetilde{\alpha_d})} - 1 \Big) \approx 0.305557.$$

Remark 12. In general, it is a hard task to compute the Cheeger constant of the graph, and there is not much known about the actual value of the Cheeger constant of a graph. As far as we know, the only known case is the Cheeger constant of the Hamming graph H(d,q) with q even, which is $\frac{q}{2n(q-1)}$. For instance, we consider two cases H(5,2) and H(5,4) for comparing our bound with the actual Cheeger constant:

- (a) $H(5,2): v = 512, k_1 = 5, \lambda_1 = 2/5, \alpha_d = 24/137, \alpha_d^{(\alpha_d)} \approx 0.123033.$ Thus, $h_{\Gamma} = \frac{1}{5} = 0.2 < \frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}} \approx 0.249437.$
- (b) $H(5,4): v = 1024, k_1 = 15, \lambda_1 = 4/15, \alpha_d = 16/137, \alpha_d^{(\alpha_d)} \approx 0.083724.$ Thus, $h_{\Gamma} = \frac{2}{15} = 0.133333 \cdots < \frac{\alpha_d^2}{\alpha_d^{(\alpha_d)}} \approx 0.166291.$

As we can see from these examples, our bound is close to the Cheeger constant, but it is not sharp yet.

Acknowledgement. We thank the anonymous referee for valuable comments, which improved the clarity of our paper.

References

- E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/ Cummings, Menlo Park, 1984.
- [2] N. Biggs, Algebraic Graph Theory, Cambridge Tracts in Mathematics, No. 67. Cambridge University Press, London, 1974.
- [3] A. Brouwer and W. Haemers, *Eigenvalues and perfect matchings*, Linear Algebra Appl. 395 (2005), 155–162.
- [4] A. Brouwer and J. H. Koolen, The vertex-connectivity of a distance regular-graph, European J. Combin. 30 (2009), no. 3, 668–673.
- [5] F. Chung, PageRank and random walks on graphs, Fete of Combinatorics and Computer Science (G. O. H. Katona, A. Schrijver and T. Szonyi, Eds.), pp. 43–62, Springer, Berlin, 2010.
- [6] _____, PageRank as a discrete Green's function, Geometry and Analysis. No. 1, 285– 302, Adv. Lect. Math. (ALM), 17, Int. Press, Somerville, MA, 2011.
- [7] F. Chung and S.-T. Yau, Covering, heat kernels and spanning tree, Electron. J. Combin.
 6 (1999), Research Paper 12, 21 pp.
- [8] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973), 97 pp.

- J. Dodziuk and W. S. Kendall, Combinatorial Laplacians and isoperimetric inequality, From local times to global geometry, control and physics (Coventry, 1984/85), 68–74, Pitman Res. Notes Math. Ser., 150, Longman Sci. Tech., Harlow, 1986.
- [10] G. C. Kim and Y. Lee, Explicit expression of the Krawtchouk polynomial via a discrete Green's function, J. Korean Math. Soc. 50 (2013), no. 3, 509–527.
- [11] _____, A Cheeger inequality of a distance regular graph using Green's function, Discrete Math. 313 (2013), no. 20, 2337–2347.
- [12] _____, Corrigendum to "A Cheeger inequality of a distance-regular graph using Green's function" [Discrete Mathematics 313 (2013), no. 20, 2337–2347], Discrete Math. 338 (2015), no. 9, 1621–1623.
- [13] J. H. Koolen, J. Park, and H. Yu, An inequality involving the second largest and smallest eigenvalue of a distance regular graph, Linear Algebra Appl. 434 (2011), no. 12, 2404– 2412.
- [14] G. Oshikiri, Cheeger constant and connectivity of graphs, Interdiscip. Inform. Sci. 8 (2002), no. 2, 147–150.
- [15] J. Tan, On cheeger inequalities of a graph, Discrete Math. 269 (2003), no. 1-3, 315–323.
- [16] P. Terwilliger, An inequality involving the local eigenvalues of a distance-regular graph, J. Algebraic Combin. 19 (2004), no. 2, 143–172.

GIL CHUN KIM DEPARTMENT OF MATHEMATICS DONG-A UNIVERSITY BUSAN, KOREA *E-mail address*: higen@dau.ac.kr

YOONJIN LEE DEPARTMENT OF MATHEMATICS EWHA WOMANS UNIVERSITY SEOUL, KOREA *E-mail address*: yoonjinl@ewha.ac.kr