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An Accurate Method to Estimate Traffic Matrices from
Link Loads for QoS Provision

Xingwei Wang, Dingde Jiang, Zhengzheng Xu, and Zhenhua Chen

Abstract: Effective traffic matrix estimation is the basis of efficient
traffic engineering, and therefore, quality of service provision sup-
port in IP networks. In this study, traffic matrix estimation is inves-
tigated in IP networks and an Elman neural network-based traf-
fic matrix inference (ENNTMI) method is proposed. In ENNTMI,
the conventional Elman neural network is modified to capture the
spatio-temporal correlations and the time-varying property, and
certain side information is introduced to help estimate traffic ma-
trix in a network accurately. The regular parameter is further in-
troduced into the optimal equation. Thus, the highly ill-posed na-
ture of traffic matrix estimation is overcome effectively and effi-
ciently.

Index Terms: Ill-posed nature, origin-destination flow, quality of
service (QoS) provision, traffic engineering, traffic matrix estima-
tion.

I. INTRODUCTION

Quality of service (QoS) provision is essential in next gener-
ation IP network and thus needs a variety of QoS facilities to
be deployed in IP network. Traffic engineering as an effective
means to provide QoS support in IP network has received much
attention in academic and industrial worlds; however, it requires
measurement, modeling, characterization, and control of IP net-
work traffic, and thus requires network operators to know how
network traffic flows in their networks; this means effective traf-
fic matrix estimation is necessary in a IP network. A traffic ma-
trix describes the amount of traffic that flows between every pair
of origin-destination (OD) nodes in a network. It provides valu-
able information about the current network state to network op-
erators. However, because of the causes mentioned in [1], espe-
cially with the size of the IP network growing exponentially, it
is significantly difficult and even impossible to measure the traf-
fic matrix directly and accurately. This forces network operators
to estimate it. The estimation results of the traffic matrix is so
far used by network operators to conduct traffic engineering [2],
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QoS routing [3], failure management [4]-[7], network dimen-
sioning [8], load balancing [9], [10], network capacity planning
[111-[13], survivability enhancement [14]-[17], optimized net-
work node deployment [18]-[22], and so on. Therefore, this re-
search topic has recently received much attention [23]-[27].

Since the problem of traffic matrix estimation has the highly
ill-posed properties [28], [29], this topic is a challenging re-
search problem. Vardi [28] and Tebaldi ez al. [29] first used the
statistical inference techniques to investigate this problem over a
local area network (LAN). They modeled OD flows as an inde-
pendent and identically-distributed (IID) Poisson model. Then
the expectation-maximization (EM) algorithm was exploited to
obtain the value of traffic matrix estimation. Cao et al. [30] stud-
ied a more complex case and used the modified EM algorithm to
predict the time-varying traffic over a LAN. Zhang et al. [24],
[25] studied traffic matrix estimation in the IP network. They
introduced the gravity model into this problem. Tan ez al. [26]
made the traffic matrix estimation by calculating the {1 }-inverse
of a routing matrix. Nevertheless, as reported in [27] and [29],
the statistical inference techniques are sensitive to prior infor-
mation, while the gravity model methods still have larger esti-
mation errors, though it partially reduces the sensitivity to prior
information. Moreover, new traffic characteristics and new user
behaviors will result in new problems for traffic matrix estima-
tion. How to perform effective and accurate estimation of the
traffic matrix is a challenge. Hence, there is a need to develop a
new method to estimate the traffic matrix.

We study traffic matrix estimation in IP networks and present
a novel method called the Elman neural network-based traffic
matrix inference (ENNTMI). As mentioned in [1] and [27], the
traffic matrix itself not only holds the temporal, spatial, and
spatio-temporal correlations, but also exhibits a time-varying
property. The accuracy of traffic matrix estimation largely de-
pends on whether we can capture these characteristics. Elman
neural network (ENN) [31] is a powerful modeling tool. It is ex-
tensively applied to signal processing, pattern recognition, mod-
eling, and so on. The conventional ENN is modified to model
the problem of traffic matrix estimation in IP network. After
the modified ENN’s outputs are introduced back into its inputs,
the temporal correlations of the traffic matrix can be captured
correctly. At the same time, the link loads of the several mea-
surement moments before current moment are also led into the
ENN'’s inputs. This further ensures that the modified ENN can
reflect accurately the temporal properties of traffic matrix. To
seize the spatial nature of traffic matrix, we deal with all the OD
flows of the measured networks in a parallel way. Moreover,
because of the parallel structure of ENN, it can also denote ac-
curately the spatial nature of traffic matrix. Thus, the modified
ENN can capture the above characteristics of traffic matrix by
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training it. Built on the modified ENN model, the regular pa-
rameter is introduced into the optimal equation and describes
the problem of traffic matrix estimation as an optimal process
satisfied with some constraints. By seeking the optimal solution
of traffic matrix, ENNTMI can easily get rid of the ill-posed
nature of this problem and obtain its fairly accurate estimation.
The real data from the Abilene [32]. GEANT [33], and cam-
pus networks are used to validate ENNTMI. Simulation results
show that in contrast to previous methods, ENNTMI exhibits
lower estimation errors and stronger robustness to noise.

This paper is organized as follows. Problem statement is de-
scribed in the next section. The proposed estimation model for
traffic matrix and ENNTMI method are discussed in detail. Sec-
tion 111 presents the experimental results and analysis in the Abi-
lene, GEANT, and campus networks. Concluding remarks are
given in the last section.

IL. PROBLEM STATEMENT

An IP network, assuming there are n nodes and L links, will
have N = n? OD flows. The traffic matrix and link loads at time
t can be denoted as z(t) = (z1(t) z2(t) - - zn (t))T and y(t) =
(ya(t) y2(t) -~ yr(t))T, respectively. The traffic matrix x(t)
and link loads y(t) are associated by the L by N routing matrix
A = (Ajj)Lxn, where A;; equals 1 if OD flow j traverses
link 7 and zero otherwise. They are satisfied with the following
constraints:

y(t) = Az(t). (1)

By collecting SNMP measurement data, we can directly com-
pute link loads. The routing matrix can be obtained from the sta-
tus and configuration information of the network. Therefore, the
problem of traffic matrix estimation is that given link loads y(¢)
and routing matrix A how can one seek to obtain a required so-
lution x(t) satisfying (1). For an IP network, the number of OD
flows is generally much larger than that of links, i.e., L <« N.
The linear problem denoted by (1) is highly under-constrained.
This shows that the solution satisfied with (1) is not unique.
Hence, IP traffic matrix estimation is a highly ill-posed inverse
problem. How to overcome the ill-posed nature of this problem
is the main challenge faced at present.

A. Estimation Model for Traffic Matrix

Fig.1(a) shows that the traffic in the Abilene network not only
has the period characteristic, but also evolutes along with time.
This shows that the traffic in the Abilene network holds tempo-
ral correlations and time-varying property. Similarly, Fig. 1(b)
shows that the traffic in the GEANT network also has these
characteristics. Compared with Figs. 1(a) and 1(b) shows that
the traffic in the GEANT network changes more quickly over
time, i.e., its time-varying property is more obvious. Fig. 1(¢)
shows that the traffic in the campus network also holds the tem-
poral correlations, spatial correlations, time-varying nature, and
so on. Hence, the traffic matrix holds temporal correlations and
time-varying properties foo. How to capture accurately these
characteristics is significantly difficult. Moreover, as mentioned
in [1] and [27], traffic matrix also holds the spatial and spatio-
temporal correlations. The accuracy of traffic matrix estimation
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Fig. 2. Schematic diagram of the modified ENN model, with the first
hidden layers fully recurrent, the second hidden layers forward, and
with an output layer one-step prediction.

largely depends on whether the built model can capture correctly
all these characteristics. As a powerful modeling tool, the ENN
has the ability of learning and generalizing. Thus, we modify
the conventional ENN to capture all these properties so that the
highly ill-posed nature of the problem of traffic matrix estima-
tion can be overcome successfully.

Fig. 2 plots the modified ENN architecture used for the prob-
lem of traffic matrix estimation, where it holds an input layer,
two hidden layers with one fully recurrent layer and one forward
layer, and an output layer with one-step linear prediction; link
loads y(t) and traffic matrix (%) are used as the input and out-
put of the modified ENN model, respectively; “1)” and “vD”
denote the unit delay and v-unit delays, respectively; y°(t) =
W2 (8) ¥8(E) -+ w3, y'(1) = (yi(t) w3 (t) - yR(t)7T,
v = (b)) () yi ()7, and () =
(w3 () y3(t) - y% ()T represent the outputs of the first hid-
den, second hidden, and output layers, respectively; Wi =
(Wiy Wiy - W(ls+1)R)T» W? = (Wi Wi, -+ W}

T
(Revym)
and W* = (Wi Wi, - Wi, )y)" denote the for-
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ward connection weight matrix of the first hidden, sec-
ond hidden, and output layers, respectively; W, =
(WH W2 .. WRRT W = (Wol We2 - WeN)T, and

Wy = (Wt wgi2 ... wgrL)T denote the feedback con-
nection weight matrix of the first hidden layer, model input, and
model output, respectively. On the basis of the conventional
ENN, we have proposed a three-layer ENN structure. The re-
current connection of the first hidden layer can sufficiently cap-
ture the traffic matrix’s temporal correlations, while the ENN’s
space structure can accurately seize its spatial correlations. Fur-
thermore, by introducing the delayed inputs and outputs into the
input of the model, we can further ensure that the modified ENN
model can accurately capture the traffic matrix’s spatio-temporal
correlations and time-varying nature. In addition, from Fig. 2,
we can see that the parallel structure of the modified ENN model
can make quickly the estimation of the traffic matrix as soon as
this model is successfully established.
According to Fig. 2, the following equation is attained.

Ui (t) = @R (ni(2)),
M

ni(t) = 3 Wi

vi (t) 1),

yi(t) = 2 Wiy;(t) + b3, ©)

y; (1) = 5 (nj (1)),

yi(t) + b3,

=3 (n

s R
ni(t) = k¥1 Whyd(t) + l; Wityl(t — 1) + b,
yg(t) = fk(y(t - 1)7 e ‘7y(t - U)ay(t)vx(t - 1))
where h = 1,2,---, N, ¢7 and n} (r = 1,2,3) is the activa-

tion function and output of the sth neural cell in the rth layer,
respectively; b}, represents the uth bias value in the rth layer.
Equation (2) formulates the traditional ENN model. Addition-
ally, the data pre-treating and post-treating processes in Fig. 2,
respectively, are denoted as follows:

2(t) =) 3)

and
yl(c)(t) :fk(y(t_1)a"'ay(t_v)7y(t)7x(t-1)) €
where k = 1,2,---,5; f = (f1, f2,- -+, fs) and v denote the

data pre-treating and post-treating processes, respectively.
According to (2)—(4), we can obtain the below equation:

z(t) =7(°(),
v () = (W32 () +°),
y2(t) = o (W2y' () +b°), ©)
yH(t) = " (Wy(t) + Way'(t — 1) +b'),
y°) = fy(t—1), -yt —v),y(t),2(t - 1))

where ' (i = 1,2, 3) is the activation function of the ith layer.
Equation (5) represents the following mapping relation:

z(t) = o(y(t)) (6)

where ¢ denotes the complex mapping from link loads y(t) to
traffic matrix estimation xz(¢). Moreover, in the post-treating
process, we make the ENN’s output satisfy two constraints,
namely, (1) and z;(¢) > 0 (: = 1,2,---, N). Hence, the out-
put of the modified ENN’s model is given as follows:

z(t) = $(y(t)),
. y(t) = Ax(t), ™
o zi(t)>0,i=1,2,---,N

From (2)—(7), we can see that we are able to obtain the traffic
matrix’s accurate estimation following the constraints of (1) and
zi(t) > 03¢ =1,2,---,N))as long as the weights in (5) and (6)
are determined. By training the modified ENN model denoted
by Fig.1 with the input-output data pairs, we can avoid the com-
plex mathematical computation and can easily build the traffic
matrix’s estimation model. And then according to (7), the traf-
fic matrix’s estimation Z.(t) = ¢(y(¢)) that satisfies the above
constraints can be attained.

Until now, we have proposed the process of predicting a traf-
fic matrix according to the estimation model denoted in Fig. 1.
The following Algorithm 1 presents the complete steps in this
process.

Algorithm 1

Step 1. Initialize the network model denoted in Fig. 2. Set the
error ¢ and total iterative steps Z, 6, and k = 0.
According to (2)—(7), train the above model with the
input-output data pairs and get the output of the model.
Calculate the gradient of the model with backpropaga-
tion algorithm, and update its weights.

Compute the total error £ = ||Z(¢) — x(t)||2 of the out-
put of the model.

Compute the estimation error o = ||y(t) — AZ(¢)||2.
Ife < dork > Z or o < 0, then exit the training
process and go back to step 7, or set k = k£ + 1 and go
back to step 2.

Give the input data to the network model denoted in
Fig. 2, and make the data pretreatment process.
According to #,(t) = ¢(y(t)), get the traffic matrix
estimation Z.(t).

If the estimating process is over, output the estimation
result and exit, or go back to step 7.

Step 2.
Step 3.
Step 4.
Step 5.
Step 6.
Step 7.
Step 8.

Step 9.

B. Traffic Matrix Inference

On the basis of the above estimation model, we describe traf-
fic matrix estimation into an optimal process to further over-
come the ill-posed nature of this problem. The objective func-
tion is given as follows:

min((y(t) — Az(t))" (y(t) — Az(t))+
Ma(t) — zo(t))" C(x(t) — 2o(2)), ®
L YO =Az),
z(t)y>0, i=12,--,N

where z(t) and zo(t) denote the traffic matrix and its initial
value at time ¢, respectively, C represent a smoothing matrix;
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and A represents a regularization parameter, with its value being
0.01 or so.

Set  z(t) = zo(t) + Ax(t). 9)

According to (8) and (9), obtain the following equation:
min((y(t) — Azo(t)) — AAx(t)" ((y(t)—
Azo(t)) — AAz(t)) + MAz(t))T CAx(t),

(10)
. y(t) = Az(t),
s.
z;(t) >0, i=12---N.
Then the optimal solution of (10) is obtained as follows:
Az(t) = (ATA £ XC)PAT (y(t) — Axo(t)). (11)

Hence, according to (11), we construct the following iterative
equation:

v HL(t) = 2¥(t) + Az (),
Az?T(t) = (ATA + MC) AT (y(t) — Az(2)), (12)
20(t) = 2.(t)

where v represents the iterative step and Z.(¢) is the estimation
attained by Algorithm 1. Equation (12) is the iterative equation
of traffic matrix inference. According to (12), we can attain the
traffic matrix’s optimal estimation Z4(t).

From (8)—(12), we can see that by introducing the regular pa-
rameter into the process of traffic matrix inference, we can fur-
ther get rid of the ill-posed nature of this problem. Moreover,
this iterative inference can further decrease the estimation errors
and improve the estimation accuracy. We have presented the pro-
cess of traffic matrix inference. Algorithm 2 gives a description
of this process.

Algorithm 2

Step 1. Set the error « and iterative step V. Let v = 0 and
aO(t) = 2e(t).

Step 2. According to (12), perform traffic matrix inference.

Step 3. If ||y(t) — Az ()], < aorv >V, exit and output
the result, or go back step 2.

C. The Complete Algorithm

The complete ENNTMI method is described as follows.

Step 1. Obtain the initial traffic matrix &.(¢) according to Al-
gorithm 1.

Step 2. According to Algorithm 2, perform the traffic matrix
inference to attain the optimization solution Z,(t).

Step 3. Adjust Z,(t) with IPFP and obtain a more accurate es-
timation £ (¢) satisfied with the constraints in (8).

The creativity of ENNTMI method includes several aspects.
First, for the proposed estimation model for traffic matrix, the
link loads of the several measurement moments before the cur-
rent moment are introduced into the inputs of this model. This
helps to further capture the temporal correlations of the traffic
matrix. Second, because the traffic matrix holds temporal, spa-
tial, and spatio-temporal correlations and time-varying property,
and its real value is several orders of magnitude, it is impossi-
ble that ENN be directly exploited to handle traffic matrix esti-
mation. The pre-treating and post-treating processes are added
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Fig. 3. Campus network topologies for simulation.

before the ENN’s inputs and after its outputs, respectively. The
pre-treating process handles the link loads and the feedback in-
puts of traffic matrix in order to be suited for the requirements of
ENN’s inputs. However, in the post-treating process, the ENN’s
outputs are handled and transferred to meet the real size of the
traffic matrix. On the other hand, the ENN’s outputs are also
treated exactly so that the outputs of this estimation model are
satisfied with some constraints in (7). Third, the feedback out-
puts are those of this model instead of the ENN’s outputs. This
help to capture the actual properties that the traffic matrix it-
self owns. Additionally, to capture the spatial nature of the traf-
fic matrix, all the OD flows of the measured networks are dealt
with in a parallel way. Finally, statistical inference is introduced
to further overcome the ill-posed nature of the problem of traf-
fic matrix estimation. The smoothing matrix C in (8) is re-
placed with the covariance matrix of the sample traffic matrix
here. This covariance matrix can denote the spatial and tempo-
ral correlations. Thus, (8) can describe the spatio-temporal cor-
relations. Moreover, a regularization parameter A can turn the
under-constrained problem into a well-posed one. According to
(12), the ill-posed nature can be overcome further and accurate
estimation of traffic matrix can be obtained.

III. EXPERIMENTAL RESULTS AND ANALYSIS

We test three real-world networks: Campus network plotted
in Fig. 3, and Abilene [32] as well as GEANT [33] networks
shown in Fig. 4, where campus network is one of the university
networks in China, while Abilene and GEANT are two back-
bone networks used for education and research in America and
Europe, respectively. The number in the circle denotes the serial
number of routers; the number beside the directed line denotes
the serial number of the inner links. A series of simulations are
conducted to validate ENNTMI, analyzing traffic matrix track-
ing, estimation errors (spatial relative errors (SREs) and tempo-
ral relative errors (TRESs)), and robustness to the noise. Tomo-
Gravity [24], [25] and {1}-inverse [26] are reported as the ac-
curate methods of traffic matrix estimation, and thus ENNTMI
will be compared with them. We use, respectively, the thirty-
five-day, forty-two-day, 900-time-slot (about three days) real
data from the Abilene, GEANT, and campus networks to sim-
ulate the performance of three methods. The first fourteen-day,
twenty-one-day, 500-time-slot data from the Abilene, GEANT,
and campus networks is, respectively, used to train the modified
ENN and construct the traffic matrix estimation model, while
the rest of data are, respectively, exploited to test three methods.

Figs. 5, 6, and 7 shows traffic matrix tracking of three meth-
ods in the Abilene, GEANT, and campus networks. From these
figures, we can evidently see that three methods can track the dy-
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b

Fig. 4. Backbgne network topologies for simulation: (a) Abilene network
and {(b) GEANT network.

namics of OD flows while ENNTMI can more accurately predict
OD flows than the other two methods. TomoGravity and {1}-
inverse hold the nearly same estimation accuracy. ENNTMI can
track the change trend of OD flows, but TomoGravity and {1}-
inverse yield under-estimations or over-estimations. The follow-
ing discussions will show that ENNTMI holds lower estima-
tion errors. More importantly, we only use the two-week, three-
week, or 500-time-slot data to train the estimation model in Fig.
2, while ENNTMI can accurately predict the other three-week
or 400-time-slot traffic matrices. Hence, ENNTMI can not only
more accurately track the TM’s dynamics than TomoGravity and
{1}-inverse, but also make a long-term prediction for the traffic
matrix.
The SREs and TREs are denoted as follows:

_ H'Ii.T(n) —Zr (’I’L)H2

(™) = O,
() - 2y (),
= ol

n=12,--,N; t=1,2,--- M (13)
where N and T represent the total number of OD flows and mea-
surement moments, respectively; ||-||2 is Lz norm; errg,(n) and
erren (t) denote the SREs and TREs, respectively. To precisely
evaluate the estimation performance of three methods, we exam-
ine the cumulative distribution functions (CDFs) of their SREs
and TREs. Figs. 8, 9, and 10 show their CDFs in the Abilene,
GEANT, and campus networks, respectively. Figs. 8(a), 9(a),
and 10(a) evidently show that the curves of the SREs’ CDFs of
TomoGravtiy and {1}-inverse are far below that of ENNTMI,
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Fig. 6. Estimations of OD flows in GEANT.

while TomoGravtiy’s and {1}-inverse’s are very close. Further-
more, in the Abilene network, for ENNTMI, about 80% of OD
flows are tracked with SREs less than 0.75, while about 72%
for TomoGravity and less than 69.1% for {1}-inverse. In the
GEANT network, for ENNTMI, above 52% of OD flows are
tracked with SREs less than 0.85, while 29% for TomoGravity
and about 37.6% for {1}-inverse. Moreover, in the campus net-
work, for ENTMI, above 88% of OD flows are captured with
SRESs less than 0.62, while 72% for TomoGravity and 76% for
{1}-inverse. This shows that in the Abilene, GEANT, and cam-
pus networks, the spatial estimation errors of ENNTMI are far
lower than those of the other two methods, while those of Tomo-
Gravity and {1}-inverse is close in Abilene network and Tomo-
Gravity’s are larger than {1}-inverse’s in the GEANT networks.
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For the campus network, when SREs are about less than 0.7,
those of TomoGravity and {1}-inverse is close, whereas that of
{1}-inverse is always larger than that of TomoGravity.

From Figs. 8(b), 9(b), and 10(b), we can see that the curves of
the TREs’ CDFs of TomoGravity and {1}-inverse are far below
that of ENNTMI, while {1}-inverse’s is under TomoGravity’s.
Moreover, we can also see that, in the Abilene network, about
90% of measurement moments, for ENNTMI, can be tracked
with TREs less than 0.25, while about 65.2% for TomoGrav-
ity and less than 61% for {1}-inverse. In the GEANT network,
ENNTMI can track 90% of measurement moments with TREs
less than 0.32, while TomoGravity and {1}-inverse with TREs
0.515, and about 0.526, respectively. Likewise, in the campus
network, ENNTMI can track 80% of measurement moments
with TRESs less than 0.035, while TomoGravity and {1}-inverse
with TREs 0.121, and about 0.067, respectively. This shows that
in the Abilene, GEANT, and campus networks, the temporal es-
timation errors of TomoGravity and {1}-inverse are much larger
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Fig. 9. CDF of spatial and temporal relative errors in GEANT: (a) x = L2
norm, spatial relative errors and (b) x = L2 norm, temporal relative
errors.
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Fig. 10. CDF of spatial and temporal relative errors in campus: (a) x =L2
norm, spatial relative errors and (b) x = L2 norm, temporal relative
errors.

than those of TNNTMI. However, {1}-inverse’s are larger than
TomoGravity’s. Therefore, ENNTMI can more accurately esti-
mate traffic matrix than TomoGravity and {1 }-inverse.

Fig. 11 shows that the average performance improvement for
ENNTMI over TomoGravity is up to 24.2%, 54.1%, and 42.7%
in the Abilene GEANT and campus networks, respectively,
while that for ENNTMI over {1}-inverse is equal to 26.6%,
52.7%, and 62.7% in three networks, respectively. In contrast
to TomoGravity and {1}-inverse, the improvement of ENNTMI
is more significant. This further indicates that for the ill-posed
problem of traffic matrix estimation, ENNTMI is promising.
More importantly, from the above analysis, we find that in con-
trast to TomoGravity and {1}-inverse, ENNTMI has more ac-
curate estimation performance in not only larger networks such
as Abilene and GEANT but also smaller networks, for instance
campus network.

To further evaluate the performance of the three methods,
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Fig. 11. Average performance improvement for ENNTMI over Tomo-

Gravity and {1}-inverse.

the impact of the noise on the three methods is discussed.
We introduce an error term #(£) to (1) and attain the equation
yn(t) = Az(t) + 6(t), where 6(t) = yn(t)n(0, ), and n(0,¢)
denotes a normal distribution with zero mean and standard devi-
ation. We discuss the robustness of three methods in three cases:
¢ =0.02,¢ = 0.03, and ¢ = 0.05. We use the following spatial
root mean squared relative error (SRMSRE) and temporal root
mean squared relative error (TRMSRE) to evaluate the robust-
ness of the three methods in the Abilene, GEANT, and campus
networks:

N
_ 1 B2 () — 2 (n)l,
SRMSRE = n§=1: ,

|z ()],

T
_ l ”i‘N(t) — xN(t)||2
TRMSRE = ; : (14)

llzx @)1,

Tables 1 and 2 show the impact of the noise on the three meth-
ods in the Abilene, GEANT, and campus networks, respectively.
From the tables, we can see that, in the three cases: { = 0.02,
¢ = 0.03, and ¢ = 0.05, the ENNTMI’s SRMSRE and TRM-
SRE are still much lower than TomoGravity’s and {1 }-inverse’s.
Moreover, the SRMSRE’s and TRMSRE’s changes of ENNTMI
are lower than those of other two methods. Hence, this indicates
that ENNTMI is more robust to noise than TomoGravity and
{1}-inverse.

IV. CONCLUSION

This paper has proposed a new method call ENNTMI to esti-
mate an IP traffic matrix. On the basis of the conventional Elman
neural network, we propose a modified Elman neural network
model to overcome the highly ill-posed nature of traffic matrix
estimation. We build traffic matrix estimation into an optimal
inference process. By introducing the regular parameter into the
optimal equation, we can further get rid of the ill-posed nature
of this problem. Simulation results show that ENNTMI outper-
forms the previous methods.

Table 1. Impact of noise on three methods in Abilene.

[(=0.02 [ (=0.03] =005

Noise level

Tink | SRMSRE | 2.02% | 3.12% | 517%
loads | TRMSRE | 1.99% | 292% | 4.99%
SRMSRE | 50.03% | 59.97% | 62.07%

ENNTMI —1oMSRE | 19.13% | 19.19% | 1931%
Torc | SRMSRE | 8101% | 8283% | 8748%
TRMSRE | 24.56% | 25.25% | 27.55%

1~ | SRMSRE | 87.83% | 89.62% | 9237%
inverse TRMSRE | 25.23% 25.85% 26.72%

Table 2. Impact of noise on three methods in GEANT.
[(=0.02](=003](=0.05

Noise level

Link SRMSRE | 2.01% 3.08% 5.11%
loads TRMSRE | 1.98% 2.99% 5.02%
SRMSRE | 106.57% | 107.21% | 108.21%
ENNTMI TRMSRE | 24.21% | 24.55% | 25.26%
TomoG SRMSRE | 155.89% | 159.05% | 160.91%
TRMSRE | 47.02% | 47.46% | 48.62%
{1}- SRMSRE | 150.36% | 150.98% | 152.58%
inverse | TRMSRE | 95.73% | 96.75% | 97.69%

Table 3. Impact of noise on three methods in campus.

[¢=0.02]¢=0.03] {=0.05

Noise level

Link SRMSRE 1.90% 2.88% 4.77%

loads TRMSRE 1.95% 2.91% 4.73%
SRMSRE | 51.69% 56.87% 66.69%

ENNTMI o MSRE | 4.78% | 5.26% | 7.12%
TomoG SRMSRE | 139.62% | 150.05% | 169.91%
TRMSRE | 98.12% | 104.23% | 115.57%
{1}- SRMSRE | 140.62% | 145.68% | 162.23%
inverse TRMSRE | 47.31% 49.85% 55.39%
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