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Abstract. For y ∈ R, a sequence x = (xn) ∈ `∞, and a non-negative regular matrix

A, Bartoszewicz et. al., in 2015, defined the notion of the A-density δA(y) of the indices

of those xn that are close to y. Their main result states that if the set of limit points of

(xn) is countable and density δA(y) exists for any y ∈ R where A is a non-negative regular

matrix, then limn→∞(Ax)n =
∑

y∈R δA(y) · y. In this note we first show that the result

can be extended to a more general class of matrices and then consider a conjecture which

naturally arises from our investigations.

1. Introduction

We start by recalling the definition of natural density. For n,m ∈ N with n < m,
let [n,m] denote the set {n, n+ 1, n+ 2, . . . ,m}. Let A ⊂ N. Define

d(A) = lim sup
n→∞

|A ∩ [1, n]|
n

and d(A) = lim inf
n→∞

|A ∩ [1, n]|
n

.

The numbers d(A) and d(A) are called the upper natural density and the lower
natural density of A, respectively. If d(A) = d(A), then this common value is
called the natural density of A and we denote it by d(A). Let Id be the family
of all subsets of N which have natural density 0. This Id is a proper nontrivial
admissible ideal of subsets of N. The notion of natural density was used by Fast
[5] and Scoenberg [18] to define the notion of statistical convergence. Details of
statistical convergence and later on, ideal convergence are thoroughly described in
[1, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 17, 19].
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In [16] Osikiewicz had developed the ideas of finite and infinite splices. Let
E1, E2, E3, . . . , Ek, . . . be a partition of N into countable number of sequences. Let
y1, y2, y3, . . . , yk, . . . be distinct real numbers. Let (xn) be such that

lim
n→∞,n∈Ei

xn = yi.

Then (xn) is called an infinite-splice (In the same way Osikiewicz defined an finite
splice taking finite number of sequences and finite number of distinct real numbers).
He proved the following:

Theorem 1.1.([16, Simplified version of Osikiewicz Theorem]) Assume that (xn)
is a splice over a partition {Ei}. Let yi = lim

n→∞,n∈Ei

xn. Assume that d(Ei) exists

for each i and ∑
i

d(Ei) = 1.

Then

lim
n→∞

1

n

n∑
k=1

xk =
∑
i

yi · d(Ei).

In fact Osikiewicz considered a more general case, namely a regular matrix
summability method A and A-density the details of which are presented in the
preliminaries. Very recently in [2] a new approach was made to study the general
version of Osikiewicz Theorem by defining the notion of the A-density of a point
and an alternative version of the same result was established. In fact it was shown
that the assumptions of Osikiewicz Theorem imply those of the following Theorem:

Theorem 1.2. Suppose that x = (xn) is a bounded sequence, δA(y) exists for every
y ∈ R and

∑
y∈D

δA(y) = 1. Then

lim
n→∞

(Ax)n =
∑
y∈D

δA(y) · y.

and consequently Osikiewicz result is a consequence of Theorem 1.2.
A natural question arises whether the result is only true for regular matrices.

Note that one of the main condition of regularity of a non-negative matrix A =

(an,k) is that lim
n→∞

∞∑
k=1

an,k = 1. In this note we first show that actually the result

can be extended to a larger class of matrices A = (an,k) satisfying lim
n→∞

∞∑
k=1

an,k <∞

using almost the same arguments used in [2]. The main observation which leads
to Theorem 2 is that if (xn) ∈ `∞ and δA(y) exists for all y ∈ R, then D := {y ∈
R : δA(y) > 0} is countable. We produce an example of a matrix A = (an,k) with
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lim
n→∞

∞∑
k=1

an,k =∞ and a bounded sequence (xn) for which δA(y) exists for all y ∈ R

but D := {y ∈ R : δA(y) > 0} is uncountable. This surprising example naturally
gives rise to the following conjecture:

Conjecture (?). For any matrix A = (an,k) with lim
n→∞

∞∑
k=1

an,k = ∞ there exists

a bounded sequence (xn) for which δA(y) exists for all y ∈ R and D := {y ∈ R :
δA(y) > 0} is uncountable.

In the last section of the note we deal with this conjecture essentially showing
that it is false however showing that with imposition of certain conditions on the
matrix the conjecture becomes true.

2. Preliminaries

We first present the necessary definitions and notations which will form the
background of this article.

If x = (xn) is a sequence and A = (an,k) is a summability matrix, then by Ax

we denote the sequence ((Ax)1, (Ax)2, (Ax)3, . . . ) where (Ax)n =
∞∑
k=1

an,kxk. The

matrix A is called regular if lim
n→∞

xn = L implies lim
n→∞

(Ax)n = L. The well-known

Silverman-Toeplitz theorem characterizes regular matrices in the following way. A
matrix A is regular if and only if

(i) lim
n→∞

an,k = 0,

(ii) lim
n→∞

∞∑
k=1

an,k = 1,

(iii) sup
n∈N

∞∑
k=1

|an,k| <∞.

For a non-negative regular matrix A and E ⊂ N, following Freedman and Sem-
ber [9], the A-density of E, denoted by δA(E), is defined as follows

δA(E) = lim sup
n→∞

∑
k∈E

an,k = lim sup
n→∞

∞∑
k=1

an,k1E(k) = lim sup
n→∞

(A1E)n,

δA(E) = lim inf
n→∞

∑
k∈E

an,k = lim inf
n→∞

∞∑
k=1

an,k1E(k) = lim inf
n→∞

(A1E)n

where 1E is a 0-1 sequence such that 1E(k) = 1 ⇐⇒ k ∈ E. If δA(E) = δA(E)
then we say that the A-density of E exists and it is denoted by δA(E). Clearly, if
A is the Cesàro matrix i.e.

an,k =
{ 1

n if n ≥ k
0 otherwise
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then δA coincides with the natural density.
Throughout by `∞ we denote the set of all bounded sequences of reals.
In [2] in a new approach, the authors had defined for a sequence (xn) a density

δA(y) of indices of those xn which are close to y which was not dealt with till then
in the literature. This was a more general approach than that of Osikiewicz [16].

Fix (xn) ∈ `∞. For y ∈ R let

δA(y) = lim
ε→0+

δA({n : |xn − y| ≤ ε})

and
δA(y) = lim

ε→0+
δA({n : |xn − y| ≤ ε}).

If δA(y) = δA(y), then the common value is denoted by δA(y).
The main result of [2] was the following.

Theorem 2.1. Let x = (xn) ∈ `∞. Suppose that the set of limit points of (xn) is
countable and δA(y) exists for any y ∈ R where A is a non-negative regular matrix.
Then

lim
n→∞

(Ax)n =
∑
y∈R

δA(y) · y.

Now recall that a non-empty family I of subsets of N is an ideal in N if for
A,B ⊂ N, (i)A,B ∈ I ⇒ A ∪ B ∈ I; (ii)A ∈ I, B ⊂ A ⇒ B ∈ I. Further if⋃
A∈I

A = N i.e. {n} ∈ I ∀ n ∈ N, then I is called admissible or free. An ideal I is

called a P-ideal if for any sequence of sets (Dn) from I, there is another sequence
of sets (Cn) in I such that Dn M Cn is finite for all n and

⋃
n
Cn ∈ I. Equivalently

if for each sequence (An) of sets from I there exists A∞ ∈ I such that An \ A∞ is
finite for all n ∈ N then I becomes a P-ideal.

For a bounded sequence (xn), we now recall the following definitions (see [13]):

(i) (xn) is I convergent to y if for any ε > 0, {n : |xn − y| ≥ ε} ∈ I.

(ii) A point y is called an I-cluster point of (xn) if {n : |xn − y| ≤ ε} /∈ I for any
ε > 0.

(iii) y is called an I-limit point of (xn) if there is a set B ⊂ N, B /∈ I, such that
lim
n∈B

xn = y.

In this note we primarily consider non-negative matrices A = (an,k) satisfying

(i) an,k ≥ 0 for all n, k;

(ii) lim
n→∞

an,k = 0, for all k;

(iii) lim
n

∞∑
k=1

an,k <∞.
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One should note that one can not replace the lim
n

in (iii) above by sup
n

for the

simple fact that in that case if one considers a matrix A having infinitely many zero
rows, like the matrix A = (an,k) where

an,k =
{

1 if n = k and n is even
0 otherwise

then even δA(N) does not exist.
Throughout the next section by a non-negative matrix A we will always mean

a matrix satisfying the above three conditions. It should be noted that the notion
A-density can be similarly defined as in the case of regular matrices and all the
axiomatic conditions, as stated in [9] are satisfied here except for the fact that the
density of the set of natural numbers N is now a finite real number, not necessarily
1. Further it is easy to check that {E ⊂ N : δA(E) = 0} forms a P -ideal of N. The
proof being very similar to the case of regular matrices (see [2]) is omitted here.

3. Results for Non-negative Matrices

The main result which we are going to establish in this paper is the following.

Theorem 3.1. Let x = (xn) ∈ `∞, and the set of limit points of (xn) is countable.

Let A be a non-negative matrix as defined before (necessarily with sup
n

∞∑
k=1

an,k <∞).

Suppose δA(y) exists for all y ∈ R. Then

lim
n→∞

(Ax)n =
∑
y∈R

δA(y) · y

As in [2] we start with the following observation.

Lemma 3.2. Let (xn) ∈ `∞ and δA(y) exists for all y ∈ R. Then D := {y ∈ R :
δA(y) > 0} is countable and ∑

y∈D
δA(y) ≤M.

where sup
n

∞∑
k=1

an,k = M .

Proof. Let (rn) be a strictly decreasing sequence converging to M . For m ∈ N let

Dm := {y ∈ R | δA(y) ≥ 1

m
}.

Note that D1 ⊂ D2 ⊂ ... ⊂ Dm ⊂ ... and D =
⋃
m
Dm. Now if y1, y2, ..., yl ∈ Dm be

distinct, let us choose ε = min
i6=j

|yi−yj |
3 > 0. Consequently the sets Ei = {n : xn ∈
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(yi − ε, yi + ε)} are pairwise disjoint. Moreover

δA(Ei) ≥ δA(yi) ≥
1

m
⇒ lim inf

∑
k∈Ei

an,k ≥
1

m
.

Then for any τ > 0, ∃ n1 ∈ N such that
∑
k∈Ei

an,k >
1
m − τ ∀ n ≥ n1. Again

lim sup
n

∞∑
k=1

an,k < rn ∀n ∈ N. So for any fixed rp, we get n2 ∈ N such that

∞∑
k=1

an,k < M + δ < rp ∀ n ≥ n2 and for a suitably chosen δ. Let n0 = max{n1, n2}.

As Ei’s are disjoint, we have

∑
k∈

l⋃
i=1

Ei

an,k =

l∑
i=1,k∈Ei

an,k ≥
l

m
− lτ ∀ n ≥ n0.

But ∑
k∈

l⋃
i=1

Ei

an,k ≤
∞∑
k=1

an,k < rp.

Now note that l
m − lτ ≤ rp ⇒ l ≤ mrp

1−τm . Hence choosing τ so that 1 − τm > 0
we observe that l must be finite. Thus Dm is finite for each m which implies that
D =

⋃
m
Dm can be at most countable.

Again

∑
y∈Dm

δA(y) ≤
l∑
i=1

δA(Ei) =

l∑
i=1

lim inf
n

∑
k∈Ei

an,k

≤
l∑
i=1

(
∑
k∈Ei

an,k +
ε0
l

) ∀n ≥ N (for some N)

where ε0 is arbitrary. So

∑
y∈Dm

δA(y) ≤
∑

k∈
l⋃

i=1
Ei

an,k + ε0 ≤
∞∑
k=1

an,k + ε0 ≤ rp

for suitably chosen ε0. Finally in view of the fact that D =
⋃
m

Dm we get

∑
y∈D

δA(y) = lim
m→∞

∑
y∈Dm

δA(y) ≤ rp.
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Since this is true for any rp, so letting p→∞ we get
∑
y∈D

δA(y) ≤M . 2

In [2] it was observed that generally it is not true that D = {y ∈ R : δA(y) > 0}
should be nonempty as also D := {y ∈ R : δA(y) > 0} need not be countable.

The next result extends Theorem 6 [2].

Theorem 3.3. Let (xn) be a bounded sequence and A be a non-negative matrix
such that δA(y) exists for every y ∈ R and moreover

∑
y∈D

δA(y) = M . Then

lim
n→∞

(Ax)n =
∑
y∈D

δA(y) · y.

Proof. Since (xn) is bounded, there exists a K > 0 such that |xn| ≤ K for every
n ∈ N. Let D = {yi : i = 1, 2, ...} where yi’s are distinct. Let ε > 0 be given and
let r ∈ N be such that

r∑
i=1

δA(yi) > M − ε and |
∞∑

i=r+1

yi · δA(yi)| < ε.

Let N ∈ N be such that
1

3
min
i 6=j
|yi − yj | >

1

N

∀ i, j ∈ 1, 2, ..., r and such that the sets Ei = {j : |xj − yi| < 1
N } have the following

property

δA(yi)−
ε

r(k + 1)
≤ δA(Ei) ≤ δA(Ei) ≤ δA(yi) +

ε

r(k + 1)

for i = 1, 2, ..., r. Obviously E1, ..., Er are pairwise disjoint. Now we can choose a
m0 ∈ N such that

δA(Ei)−
1

N
<

∑
k∈Ei

an,k < δA(Ei) +
1

N

(3.1) |
∑
k∈Ei

an,k − δA(yi) |<
1

N
+

ε

r(k + 1)

for every n ≥ m0 and i = 1, 2, ..., r. Then for n ≥ m0 we have

(Ax)n =

∞∑
k=1

an,kxk ≤
∑
k∈E1

an,k(y1 +
1

N
) +

∑
k∈E2

an,k(y2 +
1

N
) + . . .

+
∑
k∈Er

an,k(yr +
1

N
) +K.

∑
k∈(E1∪···∪Er)c

an,k.
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Now we can choose m1 > m0 such that ∀n ≥ m1

∞∑
k=1

an,k < M + ε.

Then

M + ε >

∞∑
k=1

an,k =
∑

k∈
r⋃

i=1
Ei

an,k +
∑

k∈(
r⋃

i=1
Ei)c

an,k

and consequently

∑
k∈

r⋃
i=1

Ei

an,k =

r∑
i=1

∑
k∈Ei

an,k >

r∑
i=1

δA(yi)−
r

N
− ε

K + 1
.

Therefore for n ≥ m1 we have∑
k∈(

r⋃
i=1

Ei)c

an,k < (M + ε)− (M − r

N
− (1 +

1

K + 1
)ε) =

r

N
+ (2 +

1

K + 1
)ε.

Subsequently we get for n ≥ m1,

(Ax)n ≤
∑
k∈E1

an,k(y1 +
1

N
) +

∑
k∈E2

an,k(y2 +
1

N
) + . . .

+
∑
k∈Er

an,k(yr +
1

N
) +

Kr

n
+ (2 +

1

K + 1
)εK.

Analogously

(Ax)n ≥
∑
k∈E1

an,k(y1 −
1

N
) +

∑
k∈E2

an,k(y2 −
1

N
) + . . .

+
∑
k∈Er

an,k(yr −
1

N
)− Kr

n
− (2 +

1

K + 1
)εK.

Thus

(3.2) (Ax)n −
r∑
i=1

∑
k∈Ei

an,k(yi +
1

N
) ≤ Kr

n
+ (2 +

1

K + 1
)εK

and

(3.3) (Ax)n −
r∑
i=1

∑
k∈Ei

an,k(yi −
1

N
) ≥ −Kr

n
− (2 +

1

K + 1
)εK.
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Hence using (1) and (2) we obtain

(Ax)n −
∞∑
i=1

δA(yi).yi = (Ax)n −
r∑
i=1

δA(yi).yi −
∞∑

i=r+1

δA(yi).yi

≤ (Ax)n −
r∑
i=1

δA(yi).yi + |
∞∑

i=r+1

δA(yi).yi|

≤ (Ax)n −
r∑
i=1

δA(yi).yi + ε

= [(Ax)n −
r∑
i=1

∑
k∈Ei

an,k(yi +
1

N
)] +

r∑
i=1

[
∑
k∈Ei

an,k(yi +
1

N
)− δA(yi).yi] + ε

≤
r∑
i=1

[(
∑
k∈Ei

an,k − δA(yi))(yi +
1

N
)] +

1

N

r∑
i+1

δA(yi) +
Kr

N
+ (2K +

K

K + 1
+ 1)ε

≤
r∑
i=1

[|(
∑
k∈Ei

an,k − δA(yi))|(|yi|+
1

N
)] +

M

n
+
Kr

N
+ (2K +

K

K + 1
+ 1)ε

≤ r( 1

N
+

ε

r(K + 1)
).(K + 1 +

1

N
) +

M

n
+
Kr

N
+ (2K +

K

K + 1
+ 1)ε.

Analogously from (1) and (3) we get

(Ax)n −
∞∑
i=1

δA(yi).yi ≥− r(
1

N
+

ε

r(K + 1)
).(K + 1 +

1

N
)

− M

n
− Kr

N
− (2K +

K

K + 1
+ 1)ε.

Since N can be chosen arbitrarily large, we obtain

|(Ax)n −
∞∑
i=1

δA(yi).yi| ≤ (2K +
K

K + 1
+ 1)ε

for every ε > 0. Therefore we can conclude that

lim
n→∞

(Ax)n =

∞∑
i=1

δA(yi) · yi. 2

Next we prove the following result which is a variant of the corresponding result
of [2] forming the basis of a necessary condition for the existence of a limit of
{(Ax)n}.

Proposition 3.4. Suppose x = (xn) ∈ l∞. If δA(y) = M , then My is a limit point
of the sequence {(Ax)n}.
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Proof. Since (xn) is bounded, there is K > 0 such that |xn| ≤ K ∀N ∈ N. Let y
be such that δA(y) = M . Let N ∈ N and let EN = {j ∈ N : |xj − y| < 1

N }. Then
there exists kN ≥ N such that∑

k∈EN

akN ,k > δA(EN )− 1

N
= M − 1

N
.

Again as we have lim sup
n→∞

∞∑
k=1

an,k = M , we get

∞∑
k=1

akN ,k < M +
1

N
.

Since y − 1
N < xk < y + 1

N ∀xk ∈ EN and −K ≤ xk ≤ K ∀xk /∈ EN , so we have∑
k∈EN

akN ,k(y − 1

N
)−

∑
k∈(EN )c

akN ,k ·K

≤ (Ax)kN ≤
∑
k∈EN

akN ,k(y +
1

N
) +

∑
k∈(EN )c

akN ,k ·K.

Thus

y(

∞∑
k=1

akN ,k −M)− 1

N

∑
k∈EN

akN ,k −
∑

k∈(EN )c

akN ,k(K + y)

≤ (Ax)kN −My ≤ y(

∞∑
k=1

akN ,k −M) +
1

N

∑
k∈EN

akN ,k +
∑

k∈(EN )c

akN ,k(K − y)

and consequently

| (Ax)kN −My |≤|
∑
k∈EN

akN ,k.
1

N
| + |

∑
k∈(EN )c

akN ,k(K + |y|) | + 1

N
|y|.

Since ∑
k∈(EN )c

akN ,k =

∞∑
k=1

akN ,k −
∑
k∈EN

akN ,k < M +
1

N
− (M − 1

N
) =

2

N

so

|(Ax)kN −My| ≤ (
M

N
+

1

N2
) +

∑
k∈(EN )c

akN ,k(K + |y|) +
1

N
|y|

≤ (
M

N
+

1

N2
) +

2

N
(K + |y|) +

1

N
|y|.
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Therefore

lim
N→∞

(Ax)kN = My. 2

Corollary 3.5. Let (xn) be a bounded sequence. Suppose that there are y and z
(y 6= z) with δA(y) = δA(z) = M . Then the limit lim

n→∞
(Ax)n does not exist.

Now we recall some important results from [2] which will be useful in the sequel.

Lemma 3.6.([2]) Let I be an ideal of subsets of N. Assume that X := {n : xn ∈
[a, b]} /∈ I. Suppose that

{n : a ≤ xn ≤ t− ε} ∈ I or {n : t+ ε ≤ xn ≤ b} ∈ I

for any t ∈ (a, b) and any ε > 0 such that ε < min{t − a, b − t}. Then there is
y ∈ [a, b] such that {n : |xn − y| ≥ ε} ∈ I for every ε > 0.

Proposition 3.7.([2]) Let I be a P -ideal. Assume that (xn) ∈ `∞ does not have
any I-limit points. Then the set of limit points of (xn), i.e. the set

{y ∈ R : xnk
→ y for some increasing sequence (nk) of natural numbers},

is uncountable and closed.

Corollary 3.8.([2]) Let [a, b] be a fixed interval and I be a P -ideal. Assume that
{n : xn ∈ [a, b]} /∈ I and any point y ∈ (a, b) is not an I-limit point of (xn). Then
the set of limit points of (xn) in [a, b], i.e. the set

{y ∈ (a, b) : xnk
→ y for some increasing sequence (nk) of natural numbers},

is uncountable and closed.

Corollary 3.9.([2]) Let (xn) ∈ `∞. Assume that the set of limit points of (xn) is
countable. Then the sequence (xn) has at least one I-limit point for every P -ideal
I.

We can easily prove the following results analogous to the results of [2] which
will help us to reach our final goal.

Lemma 3.10. Let r ∈ (0, 1), r1 ≥ r2 ≥ r3 ≥ . . . , lim
n→∞

rn = r and let (En) be a

decreasing sequence of subsets of N.

(i) If δA(En) = rn, n ∈ N, then there is a subset E of N with δA(E) = r and
such that E ⊂∗ En, n ∈ N, i.e. E \ En is finite for every n ∈ N. Moreover,
if δA(En)→ r, then δA(E) = r.

(ii) If δA(En) = rn, n ∈ N, then there is a subset E of N with δA(E) = r and
such that E ⊂∗ En, n ∈ N.
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Theorem 3.11. Let (xn) ∈ `∞. A point y ∈ R is an A-statistical limit point of
(xn) if and only if δA(y) > 0. Moreover if δA(y) > 0, then there is E ⊂ N with
δA(E) = δA(y) and lim

n∈E
xn = y.

Corollary 3.12. Let (xn) ∈ `∞. A point y ∈ R is an A-statistical cluster point of
(xn) and it is not an A-statistical limit point if and only if

(1) δA({j : |xj − y| ≤ 1/n}) > 0 for every n;

(2) δA(y) = lim
n→∞

δA({j : |xj − y| ≤ 1/n}) = 0.

Proposition 3.13. Let (xn) ∈ `∞. Assume that y1, y2, . . . are the only distinct
real numbers such that δA(yi) > 0 ∀i. Then there exists a partition E1, E2, . . . such
that δA(Ei) = δA(yi), i = 1, 2, . . . and lim

n∈Ei

xn = yi.

Lemma 3.14. Assume that {En : n = 1, 2, . . . } is a partition of N such that
∞∑
n=1

δA(En) < M . Then there is a partition {Fn : n = 0, 1, 2, . . . } of N such that

(i) Fn ⊂ En;

(ii) δA(Fn) = δA(En);

(iii) δA(F0) = M −
∞∑
n=1

δA(En).

Finally we prove a sufficient condition for a bounded sequence (xn) to have the
property that

∑
y∈R

δA(y) = M .

Theorem 3.15. Let (xn) be a bounded sequence. Suppose that the set of limit
points of (xn) is countable and δA(y) exists for all y ∈ D. Then

∑
y∈D

δA(y) = M .

Proof. Suppose that, on the contrary,∑
y∈D

δA(y) < M.

Then by Corollary 14 in [2] the set D is non-empty. By Lemma 3.2 the set D is
countable. Enumerate D as {y1, y2, . . . }. By Proposition 3.13 there is a partition
{Ek : k = 1, 2, . . . } of N such that δA(Ek) = δA(yk) and lim

n→∞,n∈Ek

xn = yk.

By Lemma 3.14 there is a partition {Fk : k = 0, 1, 2, . . . } such that Fk ⊂ Ek,

δA(Fk) = δA(Ek) for every k ≥ 1, F0 = N \
∞⋃
i=1

Fi so that δA(F0) = M −
∞∑
k=1

δA(Fk).

Thus δA(F0) > 0. Consider the sequence (xn)n∈F0
and the ideal IA|F0

= {E ⊂ F0 :
E ∈ IA}. Since δA(y) = 0 for every y /∈ D, so by Theorem 3.11 y can not be an
A-statistical limit point of (xn) and so can not be an IA|F0-limit point of (xn)n∈F0
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for any y ∈ Dc. If yi was IA|F0
-limit point of (xn)n∈F0

, then there would be a set
B ⊂ F0 such that B /∈ IA|F0

, and lim
n∈B

xn = yi. But then B /∈ IA and since B∩Fi = ∅

and lim
n∈B∪Fi

xn = yi, we would have δA(y) = δA(y) ≥ δA(B ∪ Fi) > δA(Fi) = δA(y),

which gives a contradiction. Therefore the sequence (xn)n∈F0
has no IA|F0

-limit
points.

Note that IA|F0
is a P -ideal. To see this assume that A1, A2, · · · ∈ IA|F0

. Then
A1, A2, · · · ∈ IA and as IA is a P -ideal, we can find A∞ ∈ IA such that An \A∞ is
finite for every n. Since A∞∩F0 ∈ IA|F0 and each An ⊂ F0, then An \ (A∞∩F0) is
finite for every n. Now by Proposition 14 in [2] applied to the sequence (xn)n∈F0

and
P -ideal IA|F0

, we obtain that the sequence (xn)n∈F0
has uncountably many limit

points which are, in turn, limit points of (xn). This contradicts the assumption. 2

Finally combining Theorem 3.3 with Theorem 3.15 we get the desired proof of
our main result.

4. Conjecture (?)

Throughout the paper we have considered the matrices with the following prop-
erties.

(i) an,k ≥ 0 for all n, k;

(ii) lim
n→∞

an,k = 0, for all k;

(iii) lim
n

∞∑
k=1

an,k <∞.

Now the natural question arises whether the results discussed above remain true
if any one of the conditions for the matrix can be relaxed. The first condition is
clearly essential.

Coming to the second condition, if lim
n→∞

an,k > 0 for some k, then note that the

axiomatic condition in [9] namely the condition ’for E1, E2 ⊂ N such that E14E2

is finite,δA(E1) = δA(E2)’,which is very crucial in defining a density function does
not hold anymore. For example, let

A =



1 1 0 0 ...
1 1

2
1
2 0 0 ...

1 1
3

1
3

1
3 0 0 ...

. . .

. . .
1 1

n
1
n ... 1

n 0 ...
. .
. .


Here an,1 → 1 as n→∞. We take E1 = N,E2 = N \ {1}. Then E14E2 = {1},but
δA(E1) = 2 whereas δA(E2) = 1.
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Finally let us relax condition (iii) and assume that lim
n

∞∑
k=1

an,k = ∞. Observe

that Lemma 3.6 forms the backbone of our main result as only then the sequence
can be partitioned into countably infinitely many splices. Below we produce an

example of a matrix A with lim
n

∞∑
k=1

an,k =∞ and a bounded real sequence (xn) for

which {y ∈ R : δA(y) > 0} is uncountable,i.e. Lemma 3.2 is not true when M =∞.

Proposition 4.1. Define the matrix A = (an,k) in the following way

an,k =
{ 1

g(n) if n ≥ k
0 otherwise

where g : N → (0,∞) is defined as g(k) = n + 1 if k ∈ [2n, 2n+1). Then there is a
bounded sequence (xn) such that {y ∈ R : δA(y) > 0} is uncountable.

Proof. Let (xn) be defined as follows:

x1 =
1

2
,

x2 =
1

4
, x3 =

3

4
,

x4 =
1

8
, x5 =

3

8
, x6 =

5

8
, x7 =

7

8
, etc

In general

x2n+k =
2k + 1

2n+1
for k ∈ [0, 2n).

Now consider a dyadic interval I = [ k2p ,
k+1
2p ). Then I contains 2n−p elements from

{x2n+k : k ∈ [0, 2n)}. Therefore

δA{m : xm ∈ I} ≥ lim inf
m→∞

1

g(m)
|{l ∈ [0, 2n) : x2n+l ∈ I}| = lim

n→∞

1

n+ 2
2n−p =∞

where n is the largest natural number such that 2n+1 ≤ m. Let y ∈ [0, 1]. Note that
for every ε > 0 there is a dyadic interval I = [ k2p ,

k+1
2p ) contained in (y − ε, y + ε).

Thus δA(y) = ∞ for every y ∈ [0, 1] (consequently δA(y) exists and it equals ∞).
As for each point y ∈ R \ [0, 1], δA(y) = 0 so we can conclude that δA(y) exists for
all y ∈ R and {y : δA(y) > 0} = [0, 1] is uncountable. 2

In view of the above example one can naturally think of the following conjecture.

Conjecture (?). For any matrix A = (an,k) with

(i) an,k ≥ 0 for all n, k,

(ii) lim
n→∞

an,k = 0 for all k,
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(iii) lim
n→∞

∞∑
k=1

an,k =∞.

there exists a bounded sequence (xn) for which δA(y) exists for all y ∈ R and
D := {y ∈ R : δA(y) > 0} is uncountable.

Proposition 4.2. There is a non-negative matrix A = (an,k) satisfying all the above
properties (as prescribed in Conjecture (?) such that for any bounded sequence (xn)
for which δA(y) exists for all y ∈ R the set D = {y : δA(y) > 0} is a singleton.

Proof. Let the matrix A = (an,k) be such that

an,k =
{
n if n = k
0 otherwise

Clearly lim
n

∞∑
k=1

an,k =∞. Let (xn) be a bounded sequence. First note that isolated

points of the sequence have density 0 with respect to matrix A. Now if (xn) has
more than one limit point, let y be one of them. Choose another limit point z of

the sequence (xn). Let we choose 0 < ε < |y−z|
2 and consider the set Bε = {k : xk ∈

(y− ε, y+ ε)}. Observe that the set Bcε = {k : xk /∈ (y− ε, y+ ε)} must be infinite,
or else z would not be a limit point of (xn). Let Bcε = {n1, n2, ...}. So

∑
k∈Bε

ani,k = 0

for all i = 1, 2, .... This implies that lim inf
n

∑
k∈Bε

an,k = 0. But it is easy to see that

lim sup
n

∑
k∈Bε

an,k = ∞. So δA(y) does not exist. This is true for all limit points of

(xn). Finally if (xn) has only one limit point y, say, i.e. (xn) is convergent to y0
then obviously δA(y0) > 0 and D = {y : δA(y) > 0} = {y0}. 2

Finally one can ask for which matrices the Conjecture (?) is true ? The following
result shows that the Conjecture is valid for matrices A satisfying certain conditions.

Proposition 4.3. Let A = (an,k) be a non-negative matrix satisfying the conditions
of Conjecture (?). In addition let there exist a sequence of positive real numbers
(δk)∞k=1 with the following properties.

(i) For any k, min{a11, a12, ..., a1k} ≥ δk ;

(ii) lim
n→∞

δn.2
n−p > 0 , for any p < n.

Then there exists a bounded sequence (xn) such that the set {y : δA(y) > 0} is
uncountable.

Proof. Let (xn) be defined as in Proposition 4.1. Now consider a dyadic interval
I = [ k2p ,

k+1
2p ). Then I contains 2n−p elements from {x2n+k : k ∈ [0, 2n)}. Therefore

δA{m : xm ∈ I} ≥ lim inf
m→∞

δm.|{l ∈ [0, 2n) : x2n+l ∈ I}| = lim
n→∞

δn2n−p =∞

where n is the largest natural number such that 2n+1 ≤ m. Let y ∈ [0, 1]. Note that
for every ε > 0 there is a dyadic interval I = [ k2p ,

k+1
2p ) contained in (y − ε, y + ε).
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Thus δA(y) = ∞ for every y ∈ [0, 1] (consequently δA(y) exists and it equals ∞).
As for each point y ∈ R \ [0, 1], δA(y) = 0 so we can conclude that δA(y) exists for
all y ∈ R and {y : δA(y) > 0} = [0, 1] is uncountable. 2

Problem 1. Find the necessary and sufficient conditions or some other condition
for a matrix A for the Conjecture (?) to be true.
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