• 제목/요약/키워드: Reflow soldering

검색결과 70건 처리시간 0.023초

솔더 접합부에 생성된 Void의 JEDEC 규격과 기계적 특성에 미치는 영향 (Analysis of Void Effects on Mechanical Property of BGA Solder Joint)

  • 이종근;김광석;윤정원;정승부
    • 마이크로전자및패키징학회지
    • /
    • 제18권4호
    • /
    • pp.1-9
    • /
    • 2011
  • Understanding the void characterization in the solder joints has become more important because of the application of lead free solder materials and its reliability in electronic packaging technology. According to the JEDEC 217 standard, it describes void types formed in the solder joints, and divides into some categories depending on the void position and formation cause. Based on the previous papers and the standards related to the void, reliability of the BGA solder joints is determined by the size of void, as well as the location of void inside the BGA solder ball. Prior to reflow soldering process, OSP(organic surface preservative) finished Cu electrode was exposed under $85^{\circ}C$/60%RH(relative humidity) for 168 h. Voids induced by the exposure of $85^{\circ}C$/60%RH became larger and bigger with increasing aging times. The void position has more influence on mechanical strength property than the amount of void growth does.

Sn-58Bi 솔더 페이스트와 ENIG 표면 처리된 기판 접합부의 계면 반응 및 접합강도 (Interfacial Reaction and Joint Strength of the Sn-58Bi Solder Paste with ENIG Surface Finished Substrate)

  • 신현필;안병욱;안지혁;이종근;김광석;김덕현;정승부
    • Journal of Welding and Joining
    • /
    • 제30권5호
    • /
    • pp.64-69
    • /
    • 2012
  • Sn-Bi eutectic alloy has been widely used as one of the key solder materials for step soldering at low temperature. The Sn-58Bi solder paste containing chloride flux was adopted to compare with that using the chloride-free flux. The paste was applied on the electroless nickel-immersion gold (ENIG) surface finish by stencil printing, and the reflow process was then performed at $170^{\circ}C$ for 10 min. After reflow, the solder joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 h in an oven. The interfacial microstructures were obtained by using scanning electron microscopy (SEM), and the composition of intermetallic compounds (IMCs) was analyzed using energy dispersive spectrometer (EDS). Two different IMC layers, consisting of $Ni_3Sn_4$ and relatively very thin Sn-Bi-Ni-Au were formed at the solder/surface finish interface, and their thickness increased with increasing aging time. The wettability of solder joints was investigated by wetting balance test. The mechanical property of each aging solder joint was evaluated by the ball shear test in accordance with JEDEC standard (JESD22-B117A). The results show that the highest shear force was measured when the aging time was 100 h, and the fracture mode changed from ductile fracture to brittle fracture with increasing aging time. On the other hand, the chloride flux in the solder paste did not affect the shear force and fracture mode of the solder joints.

Sn-40Pb/Cu 및 Sn-3.0Ag-0.5Cu/Cu 솔더 접합계면의 금속간화합물 형성에 필요한 활성화에너지 (Activation Energy for Intermetallic Compound Formation of Sn-40Pb/Cu and Sn-3.0Ag-0.5Cu/Cu Solder Joints)

  • 홍원식;김휘성;박노창;김광배
    • Journal of Welding and Joining
    • /
    • 제25권2호
    • /
    • pp.82-88
    • /
    • 2007
  • Sn-3.0Ag-0.5Cu lead fee solder was generally utilized in electronics assemblies. But it is insufficient to research about activation energy(Q) that is applying to evaluate the solder joint reliability of environmental friendly electronics assemblies. Therefore this study investigated Q values which are needed to IMC formation and growth of Sn-3.0Ag-0.5Cu/Cu and Sn-40pb/Cu solder joints during aging treatment. We bonded Sn-3.0Ag-0.5Cu and Sn-40Pb solders on FR-4 PCB with Cu pad$(t=80{\mu}m)$. After reflow soldering, to observe the IMC formation and growth of the solder joints, test specimens were aged at 70, 150 and $170^{\circ}C$ for 1, 2, 5, 20, 60, 240, 960, 15840, 28800 and 43200 min, respectively. SEM and EDS were utilized to analysis the IMCS. From these results, we measured the total IMC$(Cu_6Sn_5+Cu_3Sn)$ thickness of Sn-3.0Ag-0.5Cu/Cu and Sn-40Pb/Cu interface, and then obtained Q values for the IMC$(Cu_6Sn_5,\;Cu_3Sn)$ growth of the solder joints.

SAC 305솔더와 ENIG 기판의 접합강도에 미치는 저주파 수소라디칼처리의 영향 (Improvement of Solder Joint Strength in SAC 305 Solder Ball to ENIG Substrate Using LF Hydrogen Radical Treatment)

  • 이아름;조승재;박재현;강정윤
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.99-106
    • /
    • 2011
  • Joint strength between a solder ball and a pad on a substrate is one of the major factors which have effects on electronic device reliability. The effort to improve solder joint strength via surface cleaning, heat treatment and solder composition change have been in progress. This paper will discuss the method of solder ball joint strength improvement using LF hydrogen radical cleaning treatment and focus on the effects of surface treatment condition on the solder ball shear strength and interfacial reactions. In the joint without radical cleaning, voids were observed at the interface. However, the specimens cleaned by hydrogen-radical didn't have voids at the interface regardless of cleaning time. The shear strength between the solder ball and the pad was increased over 120%(about 800gf) when compared to that without the radical treatment (680gf) under the same reflow condition. Especially, at the specimen treated for 5minutes, ball shear strength was considerably increased over 150%(1150gf). Through the observation of fracture surface and cross-section microstructure, the increase of joint strength resulted from the change of fracture mode, that is, from the solder ball fracture to IMC/Ni(P) interfacial fracture. The other cases like radical treated specimen for 1, 3, 7, 9min. showed IMC/solder interfacial fracture rather than fracture in the solder ball.

유리 기판을 투과하는 레이저 빔을 사용한 COG(chip-on-glass) 마운팅 공정 (COG(chip-on-glass) Mounting Using a Laser Beam Transmitting a Glass Substrate)

  • 이종현;문종태;김원용;김용석
    • 마이크로전자및패키징학회지
    • /
    • 제8권4호
    • /
    • pp.1-10
    • /
    • 2001
  • 유리 기판상에 증착된 패드(pad)의 접합부 가열에 의한 면배열(area array) 형태 선자 패키지의 chip-on-glass(COG) 마운팅 공정이 시도되었다. 패드는 접합층(즉, Cr 또는 Ti)과 상부 코팅층(즉, Ni 또는 Cu)으로 구성되었으며, 이 중 접합층이 유리 기판을 투과하는 UV레이저에 의해 가열되었다. 접합층에 흡수된 레이저 에너지는 열전노 과정을 통하여 패드와 물리적으로 접촉되어 있는 솔더볼의 온도를 상승시켰으며, 리플로우 과정을 통하여 솔더 범프를 형성하였다. 레이저 가열 동안 솔더볼의 온도 이력(profile)을 측정함으로써 레이저 리플로우 솔더링시 접합층 및 상부 코팅층의 영향이 조사되었다. 그 결과들은 접합층의 반사율 측정 견과에 기초하여 논의되었다. 아울러 솔더 범프의 미세구조와 기계적 특성이 조사되었다.

  • PDF

Sn-3.0 Ag-0.5 Cu/OSP 무연솔더 접합계면의 접합강도 변화에 따른 전자부품 열충격 싸이클 최적화 (Thermal Shock Cycles Optimization of Sn-3.0 Ag-0.5 Cu/OSP Solder Joint with Bonding Strength Variation for Electronic Components)

  • 홍원식;김휘성;송병석;김광배
    • 한국재료학회지
    • /
    • 제17권3호
    • /
    • pp.152-159
    • /
    • 2007
  • When the electronics are tested with thermal shock for Pb-free solder joint reliability, there are temperature conditions with use environment but number of cycles for test don't clearly exist. To obtain the long term reliability data, electronic companies have spent the cost and times. Therefore this studies show the test method and number of thermal shock cycles for evaluating the solder joint reliability of electronic components and also research bonding strength variation with formation and growth of intermetallic compounds (IMC). SMD (surface mount device) 3216 chip resistor and 44 pin QFP (quad flat package) was utilized for experiments and each components were soldered with Sn-40Pb and Sn-3.0 Ag-0.5 Cu solder on the FR-4 PCB(printed circuit board) using by reflow soldering process. To reliability evaluation, thermal shock test was conducted between $-40^{\circ}C\;and\;+125^{\circ}C$ for 2,000 cycles, 10 minute dwell time, respectively. Also we analyzed the IMCs of solder joint using by SEM and EDX. To compare with bonding strength, resistor and QFP were tested shear strength and $45^{\circ}$ lead pull strength, respectively. From these results, optimized number of cycles was proposed with variation of bonding strength under thermal shock.

LED 패키지 솔더 접합부의 기계적 신뢰성에 미치는 리플로우 횟수의 영향 (Effect of Multiple Reflows on the Mechanical Reliability of Solder Joint in LED Package)

  • 이영철;김광석;안지혁;윤정원;고민관;정승부
    • 대한금속재료학회지
    • /
    • 제48권11호
    • /
    • pp.1035-1040
    • /
    • 2010
  • The research efforts on GaN-based light-emitting diodes (LEDs) keep increasing due to their significant impact on the illumination industry. Surface mount technology (SMT) is widely used to mount the LED packages for practical application. In surface mount soldering both the device body and leads are intentionally heated by a reflow process. We studied on the effects of multiple reflows on microstructural variation and joint strength of the solder joints between the LED package and the substrate. In this study, Pb-free Sn-3.0Ag-0.5Cu solder and a finished pad with organic solderability preservatives (OSP) were employed. A $Cu_6Sn_5$ intermetallic compound (IMC) layer was formed during the multiple reflows, and the thickness of the IMC layerincreased with an increasing number of reflows. The shear force decreased after three reflows. From the observation of the fracture surface after a shear test, partially brittle fractures were observed after five reflows.

LED 패키지 솔더 접합부의 기계적 신뢰성에 미치는 열처리의 영향 (Effect of Heat Treatment on Mechanical Reliability of Solder Joints in LED Package)

  • 고민관;안지혁;이영철;김광석;윤정원;정승부
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.71-77
    • /
    • 2012
  • We studied the effect of heat treatment on the microstructures and mechanical strength of the solder joints in the Light Emitting Diode (LED) packages. The commercial LED packages were mounted on the a flame resistance-4 (FR4) Printed Circuit Board (PCB) in the reflow process, and then the joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 hours, respectively. After the heat treatment, we measured the shear strength of the solder joints between the PCB and the LED packages to evaluate their mechanical property. We used Pb-free Sn-3.0Ag-0.5Cu solder to bond between the LED packages and the PCBs using two different surface finishes, Electroless Nickel-Immersion Gold (ENIG) and Electroless Nickel-Electroless Palladium-Immersion Gold (ENEPIG). The microstructure of the solder joints was observed by a scanning electron microscope (SEM). (Cu,Ni)6Sn5 intermetallic compounds (IMCs) formed between the solder and the PCB, and the thickness of the IMCs was increased with increasing aging time. The shear strength for the ENIG finished LED package increased until aging for 300 h and then decreased with increasing aging time. On the other hand, in the case of an ENEPIG finished LED package, the shear strength decreased after aging for 500 h.

Low Ag 조성의 Sn-0.3Ag-0.7Cu 및 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 열충격 신뢰성 (Thermal Shock Reliability of Low Ag Composition Sn-0.3Ag-0.7Cu and Near Eutectic Sn-3.0Ag-0.5Cu Pb-free Solder Joints)

  • 홍원식;오철민
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.842-851
    • /
    • 2009
  • The long-term reliability of Sn-0.3wt%Ag-0.7wt%Cu solder joints was evaluated and compared with Sn-3.0wt%Ag-0.5wt%Cu under thermal shock conditions. Test vehicles were prepared to use Sn-0.3Ag-0.7Cu and Sn-3.0Ag-0.5Cu solder alloys. To compare the shear strength of the solder joints, 0603, 1005, 1608, 2012, 3216 and 4232 multi-layer ceramic chip capacitors were used. A reflow soldering process was utilized in the preparation of the test vehicles involving a FR-4 material-based printed circuit board (PCB). To compare the shear strength degradation following the thermal shock cycles, a thermal shock test was conducted up to 2,000 cycles at temperatures ranging from $-40^{\circ}C$ to $85^{\circ}C$, with a dwell time of 30 min at each temperature. The shear strength of the solder joints of the chip capacitors was measured at every 500 cycles in each case. The intermetallic compounds (IMCs) of the solder joint interfaces werealso analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the reliability of Sn-0.3Ag-0.7Cu solder joints was very close to that of Sn-3.0Ag-0.5Cu. Consequently, it was confirmed that Sn-0.3Ag-0.7Cu solder alloy with a low silver content can be replaced with Sn-3.0Ag-0.5Cu.

등온 시효 처리에 따른 Cu Pillar Bump 접합부 특성 (Properties of Cu Pillar Bump Joints during Isothermal Aging)

  • 장은수;노은채;나소정;윤정원
    • 마이크로전자및패키징학회지
    • /
    • 제31권1호
    • /
    • pp.35-42
    • /
    • 2024
  • 최근 반도체 칩의 소형화 및 고집적화에 따라 미세 피치에 의한 범프 브리지 (bump bridge) 현상이 문제점으로 주목받고 있다. 이에 따라 범프 브리지 현상을 최소화할 수 있는 Cu pillar bump가 미세 피치에 대응하기 위해 반도체 패키지 산업에서 널리 적용되고 있다. 고온의 환경에 노출될 경우, 접합부 계면에 형성되는 금속간화합물(Intermetallic compound, IMC)의 두께가 증가함과 동시에 일부 IMC/Cu 및 IMC 계면 내부에 Kirkendall void가 형성되어 성장하게 된다. IMC의 과도한 성장과 Kirkendall void의 형성 및 성장은 접합부에 대한 기계적 신뢰성을 약화시키기 때문에 이를 제어하는 것이 중요하다. 따라서, 본 연구에서는 CS(Cu+ Sn-1.8Ag Solder) 구조 Cu pillar bump의 등온 시효 처리에 따른 접합부 특성 평가가 수행되었으며 그 결과가 보고되었다.