DOI QR코드

DOI QR Code

Effect of Multiple Reflows on the Mechanical Reliability of Solder Joint in LED Package

LED 패키지 솔더 접합부의 기계적 신뢰성에 미치는 리플로우 횟수의 영향

  • Lee, Young-Chul (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Kim, Kwang-Seok (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Ahn, Ji-Hyuk (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Yoon, Jeong-Won (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Ko, Min-Kwan (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Jung, Seung-Boo (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 이영철 (성균관대학교 신소재공학과) ;
  • 김광석 (성균관대학교 신소재공학과) ;
  • 안지혁 (성균관대학교 신소재공학과) ;
  • 윤정원 (성균관대학교 신소재공학과) ;
  • 고민관 (성균관대학교 신소재공학과) ;
  • 정승부 (성균관대학교 신소재공학과)
  • Received : 2010.05.20
  • Published : 2010.11.25

Abstract

The research efforts on GaN-based light-emitting diodes (LEDs) keep increasing due to their significant impact on the illumination industry. Surface mount technology (SMT) is widely used to mount the LED packages for practical application. In surface mount soldering both the device body and leads are intentionally heated by a reflow process. We studied on the effects of multiple reflows on microstructural variation and joint strength of the solder joints between the LED package and the substrate. In this study, Pb-free Sn-3.0Ag-0.5Cu solder and a finished pad with organic solderability preservatives (OSP) were employed. A $Cu_6Sn_5$ intermetallic compound (IMC) layer was formed during the multiple reflows, and the thickness of the IMC layerincreased with an increasing number of reflows. The shear force decreased after three reflows. From the observation of the fracture surface after a shear test, partially brittle fractures were observed after five reflows.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. P. A. Aswatha Narayana and K. N. Seetharamu, Microelectron. Int. 23, 19 (2006).
  2. Narendran, N., Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, J. Crystal Growth 268, 449 (2004). https://doi.org/10.1016/j.jcrysgro.2004.04.071
  3. N. Narendran, and L. Deng, In IESNA Annu. Conf. Technical Paper, 157, Illuminating Engineering Society of North America, New York (2002).
  4. J. W. Seo, H. S. Oh, K. M. Kang, S. M. Moon, J. S. Kwak, K. H. Lee, W. H. Lee, Y. H. Park, and H. S. Park, J. Kor. Inst. Met. & Mater. 46, 683 (2008).
  5. J. W. Kim and S. B. Jung, Mater. Sci. Eng. A 371, 267 (2004). https://doi.org/10.1016/j.msea.2003.12.012
  6. D. G. Kim, J. W. Kim, J. G. Lee, H. Mori, D. J. Quesnel, and S. B. Jung, J. Alloys Compd. 395, 80 (2005). https://doi.org/10.1016/j.jallcom.2004.11.038
  7. D. G. Kim, J. W. Kim, and S. B. Jung, Mater. Sci. Eng. B 121, 204 (2005). https://doi.org/10.1016/j.mseb.2005.03.033
  8. W. H. Zhong, J. Alloys Compd. 414, 123 (2006). https://doi.org/10.1016/j.jallcom.2005.07.047
  9. R. J. K. Wassink, Soldering in Electronics, 2nd ed., pp. 149-158, Electrochemical Publications, British Isles (1989).
  10. Y. G. Lee, H. Y. Lee, J. T. Moon, J. H. Park, S. S. Han, and J. P. Jung, J. Kor. Inst. Met. & Mater. 47, 580 (2009).
  11. I. E. Anderson and J. L. Harringa, J. Eletron. Mater. 33, 1485 (2004). https://doi.org/10.1007/s11664-004-0090-1
  12. J. M. Koo, B. Q. Vu, Y. N. Kim, J. B. Lee, J. W. Kim, D. U. Kim, J. H. Moon, and S. B. Jung, J. Electron. Mater. 37, 118 (2008). https://doi.org/10.1007/s11664-007-0301-7