• 제목/요약/키워드: Quantum Circuits

검색결과 77건 처리시간 0.024초

Design and Optimization of Full Comparator Based on Quantum-Dot Cellular Automata

  • Hayati, Mohsen;Rezaei, Abbas
    • ETRI Journal
    • /
    • 제34권2호
    • /
    • pp.284-287
    • /
    • 2012
  • Quantum-dot cellular automata (QCA) is one of the few alternative computing platforms that has the potential to be a promising technology because of higher speed, smaller size, and lower power consumption in comparison with CMOS technology. This letter proposes an optimized full comparator for implementation in QCA. The proposed design is compared with previous works in terms of complexity, area, and delay. In comparison with the best previous full comparator, our design has 64% and 85% improvement in cell count and area, respectively. Also, it is implemented with only one clock cycle. The obtained results show that our full comparator is more efficient in terms of cell count, complexity, area, and delay compared to the previous designs. Therefore, this structure can be simply used in designing QCA-based circuits.

Ultradense 2-to-4 decoder in quantum-dot cellular automata technology based on MV32 gate

  • Abbasizadeh, Akram;Mosleh, Mohammad
    • ETRI Journal
    • /
    • 제42권6호
    • /
    • pp.912-921
    • /
    • 2020
  • Quantum-dot cellular automata (QCA) is an alternative complementary metal-oxide-semiconductor (CMOS) technology that is used to implement high-speed logical circuits at the atomic or molecular scale. In this study, an optimal 2-to-4 decoder in QCA is presented. The proposed QCA decoder is designed using a new formulation based on the MV32 gate. Notably, the MV32 gate has three inputs and two outputs, which is equivalent two 3-input majority gates, and operates based on cellular interactions. A multilayer design is suggested for the proposed decoder. Subsequently, a new and efficient 3-to-8 QCA decoder architecture is presented using the proposed 2-to-4 QCA decoder. The simulation results of the QCADesigner 2.0.3 software show that the proposed decoders perform well. Comparisons show that the proposed 2-to-4 QCA decoder is superior to the previously proposed ones in terms of cell count, occupied area, and delay.

RSFQ 논리회로의 개발과 회로설계에 대한 지연시간 고려 (Development of RSFQ Logic Circuits and Delay Time Considerations in Circuit Design)

  • 강준희;김진영
    • Progress in Superconductivity
    • /
    • 제9권2호
    • /
    • pp.157-161
    • /
    • 2008
  • Due to high speed operations and ultra low power consumptions RSFQ logic circuit is a very good candidate for future electronic device. The focus of the RSFQ circuit development has been on the advancement of analog-to-digital converters and microprocessors. Recent works on RSFQ ALU development showed the successful operation of an 1-bit block of ALU at 40 GHz. Recently, the study of an RSFQ analog-to-digital converter has been extended to the development of a single chip RF digital receiver. Compared to the voltage logic circuits, RSFQ circuits operate based on the pulse logic. This naturally leads the circuit structure of RSFQ circuit to be pipelined. Delay time on each pipelined stage determines the ultimate operating speed of the circuit. In simulations, a two junction Josephson transmission line's delay time was about 10 ps, a splitter's 14.5 ps, a switch's 13 ps, a half adder's 67 ps. Optimization of the 4-bit ALU circuit has been made with delay time consideration to operate comfortably at 10 GHz or above.

  • PDF

Design Improvement and Measurement of a Rapid Single Flux Quantum Confluence Buffer

  • Baek, Seung-Hun;Kim, Jin-Young;Kim, Sehoon;Kang, Joonhee;Jungb, Ku-Rak;Park, Jong-Hyeok;Hahnb, Teak-Shang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.41-45
    • /
    • 2004
  • Rapid Single flux quantum (RSFQ) confluence buffer is widely used in complex superconductive digital circuits. In this work, we have improved the currently used confluence buffer and obtained a more soundly designed confluence buffer. In simulations, improvements in the bias margins of 11 % and the global margins of 10%, compared to the previously used confluence buffer, were achieved. Global margins are very important in estimating a process error range allowed in fabrications. We used two circuit simulation tools, WRspice and Julia, to design and optimize the confluence buffer. We used Xic to obtain a mask layout. We fabricated the improved circuits by using Nb technology. The test results at low frequency showed that the improved confluence buffer operated correctly and had a very wide main bias margin of +/-43% enhanced from +/-26% of the previously used confluence buffer.

확장성을 고려한 QCA XOR 게이트 설계 (Design of Extendable XOR Gate Using Quantum-Dot Cellular Automata)

  • 유영원;김기원;전준철
    • 한국항행학회논문지
    • /
    • 제20권6호
    • /
    • pp.631-637
    • /
    • 2016
  • CMOS (complementary metal-oxide-semiconductor)의 소형화에 대한 한계를 극복할 수 있는 대체 기술 중 하나인 양자 셀룰라 오토마타 (QCA; quantum cellular automata)는 나노 단위의 셀들로 이루어져 있고, 전력의 소모량이 매우 적은 것이 특징이다. QCA를 이용한 다양한 회로들이 연구되고 있고, 그 중에서 XOR (exclusive-OR)게이트는 오류 검사 및 복구에 유용하게 사용되고 있다. 기존의 XOR 논리 게이트는 확장성이 부족하고, 클럭 구간의 수가 많이 소요되며, 실제 구현에 어려움이 있는 경우가 많다. 이러한 단점을 극복하기 위해 클럭 구간의 수를 단축한 다수결 게이트를 이용한 XOR 논리 게이트를 제안한다. 제안한 회로는 기존의 XOR 논리 게이트들과 비교 분석하고 그 성능을 검증한다.

3차원 루프 구조를 이용한 QCA 래치 설계 (Design of QCA Latch Using Three Dimensional Loop Structure)

  • 유영원;전준철
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권2호
    • /
    • pp.227-236
    • /
    • 2017
  • 양자점 셀룰라 오토마타(QCA: quantum-dot cellular automata)는 나노 규모의 크기와 낮은 전력 소비로 각광받고 있으며, CMOS 기술 규모의 한계를 극복할 수 있는 대체 기술로 떠오르고 있다. 다양한 QCA 회로들이 연구되고 있고, 그 중 카운터와 상태 제어에 필요한 래치는 순차 회로의 구성 요소로서 제안되어 왔다. 래치는 이전 상태를 유지하기 위한 피드백 구조의 형태를 가지고 있으며, 이를 QCA 상에서 구현하기 위해 4 클럭을 소모하는 사각형 형태의 루프 구조를 사용한다. 기존의 QCA 상에서 제안된 래치는 동일 평면상에서 제안되었으며, 피드백 구조를 구현하기 위해 많은 셀과 클럭이 소모되었다. 본 논문에서는 이러한 단점을 개선하기 위해서 다층 구조를 이용한 새로운 형태의 SR 래치와 D 래치를 제안한다. 제안한 3차원 루프 구조는 다층 구조 기반의 설계이며 총 3개의 층으로 구성한다. 각 층의 배선은 다른 층과 영향을 받지 않도록 인접한 배선 간 2 클럭 차이를 주어 설계한다. 설계된 래치 구조는 시뮬레이션을 수행하고 기존의 래치와 비교 및 분석한다.

고온 초전도 RSFQ A/D 변환기의 시물레이션과 설계 (Simulation of HTS RSFQ A/D Converter and its Layout)

  • 남두우;정구락;강준희
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.8-12
    • /
    • 2002
  • Since the high performance analog-to-digital converter can be built with Rapid Single Flux Quantum (RSFQ) logic circuits the development of superconductive analog-to-digital converter has attracted a lot of interests as one of the most prospective area of the application of Josephson Junction technology. One of the main advantages in using Rapid Sng1e Flux Quantum logic in the analog-to-digital converter is the low voltage output from the Josephson junction switching, and hence the high resolution. To design an analog-digital converter, first we have used XIC tool to compose a circuit schematic, and then studied the operational principle of the circuit with WRSPICE tool. Through this process, we obtained the proper circuit diagram of an 1-bit analog-digital converter circuit. The optimized circuit was laid out as a mask drawing. Inductance values of the circuit layout were calculated with L-meter.

SWIR 이미지 센서 기술개발 동향 및 응용현황

  • 이재웅
    • 세라미스트
    • /
    • 제21권2호
    • /
    • pp.59-74
    • /
    • 2018
  • Imaging in the Short Wave Infrared (SWIR) provides several advantages over the visible and near-infrared regions: enhanced image resolution in in foggy or dusty environments, deep tissue penetration, surveillance capabilities with eye-safe lasers, assessment of food quality and safety. Commercially available SWIR imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits(ROIC) by indium bump bonding Infrared image sensors made of solution-processed quantum dots have recently emerged as candidates for next-generation SWIR imagers. They combine ease of processing, tunable optoelectronic properties, facile integration with Si-based ROIC and good performance. Here, we review recent research and development trends of various application fields of SWIR image sensors and nano-materials capable of absorption and emission of SWIR band. With SWIR sensible nano-materials, new type of SWIR image sensor can replace current high price SWIR imagers.

Nb SQUID가 탑재된 초고감도 캔티레버 제작 (Fabrication of Nb SQUID on an Ultra-sensitive Cantilever)

  • 김윤원;이순걸;최재혁
    • Progress in Superconductivity
    • /
    • 제11권1호
    • /
    • pp.36-41
    • /
    • 2009
  • Superconducting quantum phenomena are getting attention from the field of metrology area. Following its first successful application of Josephson effect to voltage standard, piconewton force standard was suggested as a candidate for the next application of superconducting quantum effects in metrology. It is predicted that a micron-sized superconducting Nb ring in a strong magnetic field gradient generates a quantized force of the order of sub-piconewtons. In this work, we studied the design and fabrication of Nb superconducting quantum interference device (SQUID) on an ultra-thin silicon cantilever. The Nb SQUID and electrodes were structured on a silicon-on-insulator (SOI) wafer by dc magnetron sputtering and lift-off lithography. Using the resulting SOI wafer, we fabricated V-shaped and parallel-beam cantilevers, each with a $30-{\mu}m$-wide paddle; the length, width, and thickness of each cantilever arm were typically $440{\mu}m,\;4.5{\mu}m$, and $0.34{\mu}m$, respectively. However, the cantilevers underwent bending, a technical difficulty commonly encountered during the fabrication of electrical circuits on ultra-soft mechanical substrates. In order to circumvent this difficulty, we controlled the Ar pressure during Nb sputtering to minimize the intrinsic stress in the Nb film and studied the effect of residual stress on the resultant device.

  • PDF

Robust Active LED Driver with High Power Factor and Low Total Harmonic Distortion Compatible with a Rapid-Start Ballast

  • Park, Chang-Byung;Choi, Bo-Hwan;Cheon, Jun-Pil;Rim, Chun-Taek
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.226-236
    • /
    • 2014
  • A new active LED driver with high power factor (PF) and low total harmonic distortion (THD) compatible with a rapid-start ballast is proposed. An LC input filter is attached to the ballast to increase PF and reduce THD. A boost converter is then installed to regulate the LED current, where an unstable operating region has been newly identified. The unstable region is successfully stabilized by feedback control with two zeroes. The extremely high overall system of the 10th order is completely analyzed by the newly introduced phasor transformed circuits in static and dynamic analyses. Although a small DC capacitor is utilized, the flicker percentage of the LED is drastically mitigated to 1% by the fast controller. The proposed LED driver that employs a simple controller with a start-up circuit is verified by extensive experiments whose results are in good agreement with the design.