DOI QR코드

DOI QR Code

Design of Extendable XOR Gate Using Quantum-Dot Cellular Automata

확장성을 고려한 QCA XOR 게이트 설계

  • You, Young-Won (Department of Computer Engineering, Kumoh National Institute of Technology) ;
  • Kim, Kee-Won (College of Convergence Technology, Dankook University) ;
  • Jeon, Jun-Cheol (Department of Computer Engineering, Kumoh National Institute of Technology)
  • 유영원 (금오공과대학교 컴퓨터공학과) ;
  • 김기원 (단국대학교 융합기술대학) ;
  • 전준철 (금오공과대학교 컴퓨터공학과)
  • Received : 2016.12.09
  • Accepted : 2014.12.29
  • Published : 2016.12.31

Abstract

Quantum cellular automata (QCA) are one of the alternative technologies that can overcome the limits of complementary metal-oxide-semiconductor (CMOS) scaling. It consists of nano-scale cells and demands very low power consumption. Various circuits on QCA have been researched until these days, and in the middle of the researches, exclusive-OR (XOR) gates are used as error detection and recover. Typical XOR logic gates have a lack of scalable, many clock zones and crossover designs so that they are difficult to implement. In order to overcome these disadvantages, this paper proposes XOR design using majority gate reduced clock zone. The proposed design is compared and analysed to previous designs and is verified the performance.

CMOS (complementary metal-oxide-semiconductor)의 소형화에 대한 한계를 극복할 수 있는 대체 기술 중 하나인 양자 셀룰라 오토마타 (QCA; quantum cellular automata)는 나노 단위의 셀들로 이루어져 있고, 전력의 소모량이 매우 적은 것이 특징이다. QCA를 이용한 다양한 회로들이 연구되고 있고, 그 중에서 XOR (exclusive-OR)게이트는 오류 검사 및 복구에 유용하게 사용되고 있다. 기존의 XOR 논리 게이트는 확장성이 부족하고, 클럭 구간의 수가 많이 소요되며, 실제 구현에 어려움이 있는 경우가 많다. 이러한 단점을 극복하기 위해 클럭 구간의 수를 단축한 다수결 게이트를 이용한 XOR 논리 게이트를 제안한다. 제안한 회로는 기존의 XOR 논리 게이트들과 비교 분석하고 그 성능을 검증한다.

Keywords

References

  1. R. D. Isaac, "The future of CMOS technology," IBM Journal of Research and Development, Vol. 44, No. 3, pp. 369-378, 2000. https://doi.org/10.1147/rd.443.0369
  2. C. S. Lent, P. D. Tougaw, and W. Porod, "Bistable saturation in coupled quantum dots for quantum cellular automata," Applied Physics Letter, Vol. 62, pp. 714-716, 1993. https://doi.org/10.1063/1.108848
  3. C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, "Quantum cellular automata," Nanotechnology, Vol. 4, No. 1, pp. 49-57, 1993. https://doi.org/10.1088/0957-4484/4/1/004
  4. J. H. Park, Y. W. You, and J. C. Jeon, "Design of BCD-EXCESS 3 code converter using quantum-dot cellular automata," Korea Computer Congress, Yeosu: Korea, pp. 762-764, 2013.
  5. R. Zhang, K. Wang, and G. A. Julline, "A method of majority logic reduction for quantum cellular automata," IEEE Transaction Of Nanotechnology, Vol. 3, No. 4, pp. 443-450, 2004. https://doi.org/10.1109/TNANO.2004.834177
  6. Y. W. You and J. C. Jeon, "Design of Extendable BCD-EXCESS 3 Code Converter Using Quantum-Dot Cellular Automata," Journal of Advanced Navigation Technology, Vol. 20, No. 1, pp. 65-71, 2016. https://doi.org/10.12673/jant.2016.20.1.65
  7. M. Beigh, M. Mustafa, and F. Ahmad, "Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA)," Circuits and Systems, Vol. 4, No. 2, pp. 147-156, 2013. https://doi.org/10.4236/cs.2013.42020
  8. P. D. Tougaw, and C. S. Lent, "Logical devices implemented using quantum cellular automata," Journal of Applied Physics, Vol. 75, pp. 1818-1824, 1994. https://doi.org/10.1063/1.356375
  9. M. Mustafa, and M. R. Beigh, "Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count," Indian Journal of Pure and Applied Physics, Vol. 51, No. 1, pp. 60-66, 2013.
  10. H. Cho and E. E. Swartzlander, "Adder designs and analyses for quantum-dot cellular automata." IEEE Transactions on Nanotechnology, Vol. 6, No. 3, pp. 374-383, 2007. https://doi.org/10.1109/TNANO.2007.894839
  11. QCA Designer, [Internet]. Available: http://www.qcadesigner.ca
  12. M. Mambo, K. Usuda, and E. Okamoto, "Proxy signature : Delegation of the power to sign messages," IEICE Transactions on Fundamentals, Vol. E79-A, No. 9, pp. 1338-1353, 1996.
  13. K. S. Kim, K. Wu, and R. Karri, "The robust QCA adder designs using composable QCA building blocks," IEEE Transactions on Computer-Aided Design of Integrated Circuits and System, Vol. 26, No. 1, pp. 176-183, Jan. 2007. https://doi.org/10.1109/TCAD.2006.883921
  14. S. E. Frost-Murphy, M. Ottavi, M. P. Frank, and E. P. DeBenedictis, On the design of reversible QDCA systems, Sandia National Laboratories, SAND2006-5990, 2006.