SWIR 이미지 센서 기술개발 동향 및 응용현황

  • Published : 2018.06.30

Abstract

Imaging in the Short Wave Infrared (SWIR) provides several advantages over the visible and near-infrared regions: enhanced image resolution in in foggy or dusty environments, deep tissue penetration, surveillance capabilities with eye-safe lasers, assessment of food quality and safety. Commercially available SWIR imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits(ROIC) by indium bump bonding Infrared image sensors made of solution-processed quantum dots have recently emerged as candidates for next-generation SWIR imagers. They combine ease of processing, tunable optoelectronic properties, facile integration with Si-based ROIC and good performance. Here, we review recent research and development trends of various application fields of SWIR image sensors and nano-materials capable of absorption and emission of SWIR band. With SWIR sensible nano-materials, new type of SWIR image sensor can replace current high price SWIR imagers.

Keywords

References

  1. E.R. Fossum, "CMOS Image sensors: electronic camera on a chip," IEDM Tech. Dig., 17-25, (1995).
  2. S. Mendis, S.E. Kemeny, and E.R. Fossum, "CMOS active pixel image sensor," IEEE Trans. Electron Devices, 41 [3] 452-453 (1994). https://doi.org/10.1109/16.275235
  3. K.M. Bedka, "Overshooting cloud top detections using MSG SEVIRI infrared brightness temperatures and their relationship to severe weather over Europe," Atmos. Res., 99 175-189 (2011). https://doi.org/10.1016/j.atmosres.2010.10.001
  4. J.E. Kallhammer, "Imaging: The road ahead for car night-vision," Nature Photon., 5 12-13 (2006).
  5. K. Welsher, Z. Liu, S.P. Sherlock, J.T. Robinson, Z. Chen, D. Daranciang and H. Dai, "A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice," Nature Nano., 4 773-780 (2009). https://doi.org/10.1038/nnano.2009.294
  6. X.H. Gao, Y.Y. Cui, R.M. Levenson, L.W.K. Chung and S.M. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nature Biotechnol., 22 969-976 (2004). https://doi.org/10.1038/nbt994
  7. J.B. Barton, R.F. Cannata and S.M. Petronio, "InGaAs NIR focal plane arrays for imaging and DWDM applications," Pro. SPIE, 4721 37-47 (2002).
  8. M.P. Hansen and D.S. Malchow, "Overview of SWIR detectors, cameras, and applications," Proc. SPIE, 6939 Thermosense XXX 69390I (2008).
  9. Y. Ni, C. Bouvier, B. Arion and V. Noguier, "Wide dynamic logarithmic InGaAs sensor suitable for eyesafe active imaging," Proc. SPIE, 9861 Thermosense: Thermal Infrared Applications XXXVIII, 986111 (2016).
  10. G. Schmid, "Nanoparticles: From Theory to Application," Wiley-VCH, Weinheim, (2004).
  11. J. Park, "Quantum Dots for Bioimaging," Polymer Science and Technology, 23 [5] 509-512 (2012).
  12. E. Thimsen, B. Sadtler and M.Y. Berezin, "Shortwaveinfrared (SWIR) emitters for biological imaging: a review of challenges and opportunities," Nanophotonics, 6 1043 (2017). https://doi.org/10.1515/nanoph-2017-0039
  13. H. Zhou, S.P. Gunsten, N.G. Zhegalova, S. Bloch, S. Achilefu, J.C. Holley, D. Schweppe, W. Akers, S.L. Brody and W.C. Eades, "Visualization of pulmonary clearance mechanisms via noninvasive optical imaging validated by near-infrared flow cytometry," Cytometry A 87 419-27 (2015). https://doi.org/10.1002/cyto.a.22658
  14. D. Lu, L. He, G. Zhang, A. Lv, R. Wang, X. Zhang and W. Tan, "Aptamer-assembled nanomaterials for fluorescent sensing and imaging," Nanophotonics, 6[1] 109-121 (2016). https://doi.org/10.1515/nanoph-2015-0145
  15. S. Kim, Y.T. Lim, E.G. Soltesz, A.M.D. Grand, J. Lee, A. Nakayama, J.A. Parker, T. Mihaljevic, R.G. Laurence, D.M. Dor, L.H. Cohmn, M.G. Bawendi, and J. V. Frangioni, "Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping," Nat Biotech, 22 93-97 (2004). https://doi.org/10.1038/nbt920
  16. S.L. Troyan, V. Kianzad, S.L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar and J.V. Frangioni, "The $FLARE^{TM}$ Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping," Ann. Surg. Oncol., 16 1943-1952 (2009).
  17. G.C. Gurtner, G.E. Jones, P.C. Neligan, M.I. Newman, B.T. Phillips, J.M. Sacks and M.R. Zenn, "Intraoperative laser angiography using the SPY system: Review of the literature and recommendations for use," Ann. Surg. Innov. Res., 7 1 (2013). https://doi.org/10.1186/1750-1164-7-1
  18. E.C. Rossi, A. Ivanova and J.F. Boggess, "Robotically assisted fluorescence-guided lymph node mapping with ICG for gynecologic malignancies: a feasibility study," Gynecol Oncol, 124 78-82 (2012). https://doi.org/10.1016/j.ygyno.2011.09.025
  19. S. He, J. Song, J. Qu and Z. Cheng, "Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics," Chem. Soc. Rev., Advanced Article (2018).
  20. G. Hong, S. Diao, J. Chang, A.L. Antaris, C. Chen, B. Zhang, S. Zhao, D.N. Atochin, P.L. Huang, K.I. Andreasson, C.J. Kuo and H. Dai, "Through-skull fluorescence imaging of the brain in a new nearinfrared window," Nature Photonics, 8 723-730 (2014). https://doi.org/10.1038/nphoton.2014.166
  21. M. Casalboni, D.F. Matteis, P. Prosposito, A. Quatela and F. Sarcinelli, "Fluorescence efficiency of four infrared polymethine dyes," Chem Phys Lett, 373 372-378 (2003). https://doi.org/10.1016/S0009-2614(03)00608-0
  22. D.R. Klaus, M. Keene, S. Silchenko, M. Berezin and N. Gerasimchuk, "1D polymeric platinum cyanoximate: a strategy toward luminescence in the near-infrared region beyond 1000 nm," Inorg Chem, 54 1890-1900 (2015). https://doi.org/10.1021/ic502805h
  23. A.M. Smith, M.C. Mancini and S. Nie, "Bioimaging: second window for in vivo imaging," Nat Nanotechnol, 4 710-711, (2009). https://doi.org/10.1038/nnano.2009.326
  24. O.E. Semonin, J.C. Johnson, J.M. Luther, A.G. Midgett and A.J.Nozik, "Beard MC. Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots," J Phys Chem Lett, 1 2445-50 (2010). https://doi.org/10.1021/jz100830r
  25. S. Hatami, C. Wurth, M. Kaiser, S. Leubner, S. Gabriel, L. Bahrig, V. Lesnyak, J. Pauli and N. Gaponik, "Absolute photoluminescence quantum yields of IR26 and IR-emissive $Cd_{1-x}Hg_xTe$ and PbS quantum dots-method-and material-inherent challenges," Nanoscale, 7 133-143 (2015). https://doi.org/10.1039/C4NR04608K
  26. P. Zhao, Q. Xu, J. Tao, Z. Jin, Y. Pan, C. Yu, and Z. Yu, "Near infrared quantum dots in biomedical applications: current status and future perspective," Nanomed. Nanobiotechnol., 10 [3] 1483-1498 (2017).
  27. O.T. Bruns, T.S. Bischof, D.K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F.B. Jaworski, J.A. Carr, C.J. Rowlands, M.W.B. Wilson, O. Chen, H. Wei, G.W. Hwang, D.M. Montana, I. Coropceanu, O.B. Achorn, J. Kloepper, J. Heeren, P.T.C. So, D. Fukumura, K.F. Jensen, R.K. Jain and M.G. Bawendi, "Next-generation in vivo optical imaging with short-wave infrared quantum dots," Nature biomedical engineering, 1 Article Number 56 (2017).
  28. M.T. Zuber, D.E. Smith, F.G. Lemoine and G.A. Neumann, "The Shape and Internal Structure of the Moon from the Clementine Mission," Science, 16 [266] 1839-1843 (1994).
  29. J. Kim, K.K. Kwon and S.I. Lee, "Trend and Applications on Lidar Sensor Technology," Electronics and Telecommunications Trends, 27 [6] 134-142 (2012).
  30. D. Malchow, J. Battaglia, R. Brubaker and M. Ettenberg, "High speed short wave infrared (SWIR) imaging and range gating cameras", Proc. SPIE, 6541 Thermosense XXIX 654106 (2007).
  31. M. Laurenzis, and F. Christnacher, "Laser gated viewing at ISL for vision through smoke, active polarimetry, and 3D imaging in NIR and SWIR wavelength bands," Advanced Optical Technologies, 2 397-405 (2013).
  32. T. Sasaki, M. Kitamura and I. Mito, "Selective metalorganic vapor phase epitaxial growth of InGaAsP/InP layers with bandgap energy control in InGaAs/InGaAsP multiple-quantum well structures," J. Cryst. Growth, 132 435-443 (1993). https://doi.org/10.1016/0022-0248(93)90069-9
  33. Commercializations Promotion Agency for R&D Outcomes, "Biometrics Technology and Market Trends(in Korean)," S&T Market Report, 39 1-28 (2016).
  34. M. Sharif, S. Bhagavatula, L. Bauer and M.K. Reiter, "Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition," Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 24-28 (2016).
  35. J. Galbally and R. Satta, "Three-dimensional and two-and-a-half-dimensional face recognition spoofing using three-dimensional printed models," IET Biometrics, 5 [2] 83-91 (2015). https://doi.org/10.1049/iet-bmt.2014.0075
  36. D. McDuff, R. El Kaliouby, S. Thibaud, A. May, J. Cohn and R. Picard, "Affectiva-MIT facial expression dataset (AM-FED): naturalistic and spontaneous facial expressions collected in-the-wild," Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE Computer Society Conference on 881-888 (2013)
  37. R. Albarracin, J. Eells and K. Valter, "Photobiomodulation protects the retina from lightinduced photoreceptor degeneration," Invest. Ophthalmol. Vis. Sci., 52 3582-3592 (2011). https://doi.org/10.1167/iovs.10-6664
  38. J.A. Zuclich, D.J. Lund and B.E. Stuck, "Wavelength dependence of ocular damage thresholds in the near-IR to far-IR transition region: Proposed revisions to MPEs," Health Phys, 92 [1] 15-23 (2007). https://doi.org/10.1097/01.HP.0000232188.69779.69
  39. Laservision, "Laser Safety Guide: Depth of penetration of electromagnetic radiation in the human eye," www.lasersafety.com, (2018).
  40. Y. Barkana, M. Belkin, "Laser eye injuries," Surv. Ophthalmol., 44 [6] 459-478 (2000). https://doi.org/10.1016/S0039-6257(00)00112-0
  41. H. Yao, Z. Hruska, R. Kincaid, R.L. Brown, D. Bhatnagar and T.E. Cleveland, "Detecting maize inoculated with toxigenic and atoxigenic fungal strains with fluorescence hyperspectral imagery," Biosyst. Eng., 115 125-135 (2013). https://doi.org/10.1016/j.biosystemseng.2013.03.006
  42. I. Kim, M. Kim, Y. Chen and S. Kong, "Detection of skin tumors on chicken carcasses using hyperspectral fluorescence imaging," Trans. Am. Soc. Agric. Eng., 47 1785-1792 (2004). https://doi.org/10.13031/2013.17595
  43. J. Xing, C. Bravo, P.T. Jancsok, H. Ramon and J. Baerdemaeker, "Detecting bruises on 'golden delicious' apples using hyperspectral imaging with multiple wavebands," Biosyst. Eng., 90 27-36 (2005). https://doi.org/10.1016/j.biosystemseng.2004.08.002
  44. M. Nagata, J.G. Tallada and T. Kobayashi, "Bruise detection using nir hyperspectral imaging for strawberry (fragaria x ananassa duch.)," Environ. Control Biol., 44 133 (2006). https://doi.org/10.2525/ecb.44.133
  45. J. Qiao, M.O. Ngadi, N. Wang, C. Gariepyand S.O. Prasher, "Pork quality and marbling level assessment using a hyperspectral imaging system," J. Food Eng., 83 10-16 (2007). https://doi.org/10.1016/j.jfoodeng.2007.02.038
  46. D.W. Sun, "Hyperspectral Imaging for Food Quality Analysis and Control" Academic Press, Elsevier, San Diego, CA, USA, (2010).
  47. F. Mendoza, R. Lu, D. Ariana, H. Cen and B. Bailey, "Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content," Postharv. Biol. Technol., 62 149-160 (2011).
  48. G.A. Leiva-Valenzuela, L. Renfu and J.M. Aguilera, "Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging," J. Food Eng., 115 91-98 (2013). https://doi.org/10.1016/j.jfoodeng.2012.10.001
  49. J. Qin, J. T.F. Burks, M.A. Ritenour and W.G. Bonn, "Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence," J. Food Eng., 93 183-191 (2009). https://doi.org/10.1016/j.jfoodeng.2009.01.014
  50. D.P. Ariana and R. Lu, "Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging," J. Food Eng., 96 583-590 (2010). https://doi.org/10.1016/j.jfoodeng.2009.09.005
  51. E. Gaston, J.S.M. As, P.J. Cullen, C.P. O'donnell and A.A. Gowen, "Prediction of polyphenol oxidase activity using visible near-infrared hyperspectral imaging on mushroom (agaricus bisporus) caps," J. Agric. Food Chem., 58 6226-6233 (2010). https://doi.org/10.1021/jf100501q
  52. A. Gowen, C. O'donnell, M. Taghizadeh, P. Cullen, J. Frias, and G. Downey, "Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (agaricus bisporus)," J. Chemometr., 22 259-267 (2008). https://doi.org/10.1002/cem.1127
  53. L. Liu, M. Ngadi, S. Prasher and C. Gariepy, "Objective determination of pork marbling scores using the wide line detector," J. Food Eng., 110 497-504 (2012). https://doi.org/10.1016/j.jfoodeng.2011.11.008
  54. L. Liu, M. Ngadi, S. Prasher and C. Gariepy, "Categorization of pork quality using gabor filterbased hyperspectral imaging technology," J. Food Eng., 99 284-293 (2010). https://doi.org/10.1016/j.jfoodeng.2010.03.001
  55. H. Huang, L. Liu, M.O. Ngadi and C. Gariepy, "Rapid and non-invasive quantification of intramuscular fat content of intact pork cuts," Talanta, 119 385-395 (2014). https://doi.org/10.1016/j.talanta.2013.11.015
  56. Y. Peng, J. Zhang, W. Wang, Y. Li, J. Wu, H. Huang, X. Gao, and W. Jiang, "Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles," J. Food Eng., 102 163-169 (2011). https://doi.org/10.1016/j.jfoodeng.2010.08.014
  57. D. Barbin, G. Elmasry, D.W. Sun and P. Allen, "Near-infrared hyperspectral imaging for grading and classification of pork," Meat Sci., 90 259-268 (2012). https://doi.org/10.1016/j.meatsci.2011.07.011
  58. D. Wu, D.W. Sun and Y. He, "Application of longwave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet," Innov. Food Sci. Emerg. Technol., 16 361-372 (2012). https://doi.org/10.1016/j.ifset.2012.08.003
  59. D. Wu, H. Shi, Y. He, X. Yu and Y. Bao, "Potential of hyperspectral imaging and multivariate analysis for rapid and non-invasive detection of gelatin adulteration in prawn," J. Food Eng., 119 680-686 (2013). https://doi.org/10.1016/j.jfoodeng.2013.06.039
  60. P.A. Coelho, M.E. Soto, S.N. Torres, D.G. Sbarbaro and J.E. Pezoa, "Hyperspectral transmittance imaging of the shell-free cooked clam mulinia edulis for parasite detection," J. Food Eng., 117 408-416 (2013). https://doi.org/10.1016/j.jfoodeng.2013.01.047
  61. M. Arngren, P.W. Hansen, B. Eriksen, J. Larsen and R. Larsen, "Analysis of pregerminated barley using hyperspectral image analysis," J. Agric. Food Chem., 59 11385-11394 (2011). https://doi.org/10.1021/jf202122y
  62. P. Williams, P. Geladi, G. Fox and M. Manley, "Maize kernel hardness classification by near infrared (nir) hyperspectral imaging and multivariate data analysis," Anal. Chim. Acta, 653 121-130 (2009). https://doi.org/10.1016/j.aca.2009.09.005
  63. S. Serranti, D. Cesare, F. Marini and G. Bonifazi, "Classification of oat and groat kernels using nir hyperspectral imaging," Talanta, 103 276-284 (2013). https://doi.org/10.1016/j.talanta.2012.10.044
  64. P.J. Williams, P. Geladi, T.J. Britz and M. Manley, "Investigation of fungal development in maize kernels using NIR hyperspectral imaging and multivariate data analysis," J. Cereal Sci., 55 272-278 (2012). https://doi.org/10.1016/j.jcs.2011.12.003
  65. C.B. Singh, D.S. Jayas, J. Paliwal and N.D.G. White, "Detection of midge-damaged wheat kernels using short-wave near-infrared hyperspectral and digital color imaging," Biosyst. Eng., 105 380-387 (2010). https://doi.org/10.1016/j.biosystemseng.2009.12.009
  66. C. Ibarra-Castanedo, S. Sfarra, M. Genest and X. Maldague, "Infrared Vision: Visual Inspection Beyond the Visible Spectrum," Integrated imaging and vision techniques for industrial inspection, Springer, London (2015).
  67. M. Vollmer and K.P. Mollmann, "Infrared Thermal Imaging: Fundamentals, Research and Applications," JohnWiley & Sons, (2010).
  68. T. Martin, R. Brubaker, P. Dixon, M.A. Gagliardi and T. Sudol, "640x512 InGaAs focal plane array camera for visible and SWIR imaging," Proc. SPIE, 5783 Infrared Technology and Applications XXXI (2005).
  69. Z.A. Peng, and X. Peng, "Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor," J. Am. Chem. Soc., 123 [1]183-184 (2001). https://doi.org/10.1021/ja003633m
  70. E. J. D. Klem, D. D. MacNeil, P. W. Cyr, L. Levina, E. H. Sargent, "Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution," Appl. Phys. Lett., 90 183113 (2007). https://doi.org/10.1063/1.2735674
  71. M. Yarema, S. Pichler, M. Sytnyk, R. Seyrkammer, R.T. Lechner, G. Fritz-Popovski, D. Jarzab, K. Szendrei, R. Resel, O. Korovyanko, M.A. Loi, O. Paris, G. Hesser and W. Heiss, "Infrared Emitting and Photoconducting Colloidal Silver Chalcogenide Nanocrystal Quantum Dots from a Silylamide-Promoted Synthesis," ACS Nano, 5 3758-3765 (2011). https://doi.org/10.1021/nn2001118
  72. X. Hu, Q. Zhang, X. Huang, D. Li, Y. Luo and Q. Meng, "Aqueous colloidal $CuInS_2$ for quantum dot sensitized solar," J. Mater. Chem., 21 15903-15905 (2011). https://doi.org/10.1039/c1jm12629f
  73. K. Nose, T. Omata and S.O.Y. Matsuo, "Colloidal Synthesis of Ternary Copper Indium Diselenide Quantum Dots and Their Optical Properties," J. Phys. Chem. C, 113 [9]3455-3460 (2009). https://doi.org/10.1021/jp809398k
  74. D. Franke, D.K. Harris, O. Chen, O.T. Bruns, J.A. Carr, M.W. B. Wilson and M.G. Bawendi, "Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared," Nature Communications, 7 12749 (2016). https://doi.org/10.1038/ncomms12749
  75. V. Grigel, D. Dupont, K. De Nolf, Z. Hens, and M. D. Tessier, "InAs colloidal quantum dots synthesis via aminopnictogen precursor chemistry," J. Am. Chem. Soc., 138 [41] 13485-13488 (2016). https://doi.org/10.1021/jacs.6b07533
  76. A. Sills, P. Harrison and M. Califano, "Exciton Dynamics in InSb Colloidal Quantum Dots," J. Phys. Chem. Lett., 7 31-35 (2016). https://doi.org/10.1021/acs.jpclett.5b02408
  77. I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J.C. Martins and Z. Hens, "Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study," ACS Nano, 5 2004-2012 (2011). https://doi.org/10.1021/nn103050w
  78. M.C. Weidman, M.E. Beck, R.S. Hoffman, F. Prins and W.A. Tisdale, "Monodisperse, Air-Stable PbS Nanocrystals via Precursor Stoichiometry Control," ACS Nano, 8 6363 (2014). https://doi.org/10.1021/nn5018654
  79. J.W. Lee, D.Y. Kim, S. Baek, H. Yu and F. So, "Inorganic UV-Visible-SWIR Broadband Photodetector Based on Monodisperse PbS Nanocrystals," Small, 12 1328-1333 (2016). https://doi.org/10.1002/smll.201503244
  80. P.R. Brown, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi, J.C. Grossman and V. Bulovic, "Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange," ACS Nano, 8 5863-5872 (2014). https://doi.org/10.1021/nn500897c
  81. M. Liu, O. Voznyy, R. Sabatini, F. P. Garcia de Arquer, R. Munir, A. H. Balawi, X. Lan, F. Fan, G. Walters, A. R. Kirmani, S. Hoogland, F. Laquai, A. Amassian and E. H. Sargent, "Hybrid organicinorganic inks flatten the energy landscape in colloidal quantum dot solid," Nat Mater, 16 258-263 (2017). https://doi.org/10.1038/nmat4800
  82. C.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr and E.H. Sargent, "Colloidal Quantum Dot Solar Cells," Chem. Rev., 115 12732-12763 (2015). https://doi.org/10.1021/acs.chemrev.5b00063
  83. F.P.G.de Arquer, A.Armin, P.Meredith and E. H. Sargent, "Solution-processed semiconductors for next-generation photodetectors," Nature Reviews Materials, 2 Article number: 16100 (2017).
  84. D.Y. Kim, T. Lai, J.W. Lee, J.R. Manders and F. So, "Multi-spectral imaging with infrared sensitive organic light emitting diode," Scientific Reports, 4 Article number: 5946 (2014).
  85. S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras, R. Perez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galan, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos and F. Koppens, "Broadband image sensor array based on graphene-CMOS integration," Nature Photonics, 11 366-371 (2017). https://doi.org/10.1038/nphoton.2017.75