• Title/Summary/Keyword: Quadratic Programming

Search Result 323, Processing Time 0.024 seconds

A SUCCESSIVE QUADRATIC PROGRAMMING ALGORITHM FOR SDP RELAXATION OF THE BINARY QUADRATIC PROGRAMMING

  • MU XUEWEN;LID SANYANG;ZHANG YALING
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.837-849
    • /
    • 2005
  • In this paper, we obtain a successive quadratic programming algorithm for solving the semidefinite programming (SDP) relaxation of the binary quadratic programming. Combining with a randomized method of Goemans and Williamson, it provides an efficient approximation for the binary quadratic programming. Furthermore, its convergence result is given. At last, We report some numerical examples to compare our method with the interior-point method on Maxcut problem.

Solving A Quadratic Fractional Integer Programming Problem Using Linearization

  • Gaur, Anuradha;Arora, S.R.
    • Management Science and Financial Engineering
    • /
    • v.14 no.2
    • /
    • pp.25-44
    • /
    • 2008
  • This paper concentrates on reduction of a Quadratic Fractional Integer Programming Problem (QFIP) to a 0-1 Mixed Linear Programming Problem (0-1 MLP). The solution technique is based on converting the integer variables to binary variables and then the resulting Quadratic Fractional 0-1 Programming Problem is linearized to a 0-1 Mixed Linear Programming problem. It is illustrated with the help of a numerical example and is solved using the LINDO software.

ON THE GLOBAL CONVERGENCE OF A MODIFIED SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM FOR NONLINEAR PROGRAMMING PROBLEMS WITH INEQUALITY CONSTRAINTS

  • Liu, Bingzhuang
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1395-1407
    • /
    • 2011
  • When a Sequential Quadratic Programming (SQP) method is used to solve the nonlinear programming problems, one of the main difficulties is that the Quadratic Programming (QP) subproblem may be incompatible. In this paper, an SQP algorithm is given by modifying the traditional QP subproblem and applying a class of $l_{\infty}$ penalty function whose penalty parameters can be adjusted automatically. The new QP subproblem is compatible. Under the extended Mangasarian-Fromovitz constraint qualification condition and the boundedness of the iterates, the algorithm is showed to be globally convergent to a KKT point of the non-linear programming problem.

THE USE OF MATHEMATICAL PROGRAMMING FOR LINEAR REGRESSION PROBLEMS

  • Park, Sung-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.3 no.1
    • /
    • pp.75-79
    • /
    • 1978
  • The use of three mathematical programming techniques (quadratic programming, integer quadratic programming and linear programming) is discussed to solve some problems in linear regression analysis. When the criterion is the minimization of the sum of squared deviations and the parameters are linearly constrained, the problem may be formulated as quadratic programming problem. For the selection of variables to find "best" regression equation in statistics, the technique of integer quadratic programming is proposed and found to be a very useful tool. When the criterion of fitting a linear regression is the minimization of the sum of absolute deviations from the regression function, the problem may be reduced to a linear programming problem and can be solved reasonably well.ably well.

  • PDF

Quadratic Complementary Programming

  • Gupta, A.K.;Sharma, J.K.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 1982
  • The present paper provides a method for solving a complementary programming problem with quadratic objective function subject to linear constraints. The procedure developed is based on the simplex method for quadratic programming problem. An example is added to illustrate the procedure.

  • PDF

FUZZY REGRESSION ANALYSIS WITH NON-SYMMETRIC FUZZY COEFFICIENTS BASED ON QUADRATIC PROGRAMMING APPROACH

  • Lee, Haekwan;Hideo Tanaka
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.63-68
    • /
    • 1998
  • This paper proposes fuzzy regression analysis with non-symmetric fuzzy coefficients. By assuming non-symmetric triangular fuzzy coefficients and applying the quadratic programming fomulation, the center of the obtained fuzzy regression model attains more central tendency compared to the one with symmetric triangular fuzzy coefficients. For a data set composed of crisp inputs-fuzzy outputs, two approximation models called an upper approximation model and a lower approximation model are considered as the regression models. Thus, we also propose an integrated quadratic programming problem by which the upper approximation model always includes the lower approximation model at any threshold level under the assumption of the same centers in the two approximation models. Sensitivities of Weight coefficients in the proposed quadratic programming approaches are investigated through real data.

  • PDF

POLYNOMIAL COMPLEXITY OF PRIMAL-DUAL INTERIOR-POINT METHODS FOR CONVEX QUADRATIC PROGRAMMING

  • Liu, Zhongyi;Sun, Wenyu;De Sampaio, Raimundo J.B.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.567-579
    • /
    • 2009
  • Recently, Peng et al. proposed a primal-dual interior-point method with new search direction and self-regular proximity for LP. This new large-update method has the currently best theoretical performance with polynomial complexity of O($n^{\frac{q+1}{2q}}\;{\log}\;{\frac{n}{\varepsilon}}$). In this paper we use this search direction to propose a primal-dual interior-point method for convex quadratic programming (QP). We overcome the difficulty in analyzing the complexity of the primal-dual interior-point methods for convex quadratic programming, and obtain the same polynomial complexity of O($n^{\frac{q+1}{2q}}\;{\log}\;{\frac{n}{\varepsilon}}$) for convex quadratic programming.

  • PDF

A Study for the Land-cover Classification of Remote Sensed Data Using Quadratic Programming (원격탐사 데이터의 이차계획법에 의한 토지피복분류에 관한 연구)

  • 전형섭;조기성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.163-172
    • /
    • 2001
  • This study present the quadratic programming as the classification method of remote sensed data applying to the extraction of landcover and examine it's applicable capability by comparing the classification accuracy of quadratic programming with that of neural network and maximum likelihood method which are used in the extraction of thematic layer. As the results, as drawing the more improved classification results by 6% than maximum likelihood method, we could discern that the method of quadratic programming is appliable to classifying the remote sensed data. Also, in the classification of quadratic programming method, we could definitely indicate the results which was ignored in the previous extreme(binary) classification method by affecting the class decision with the class composition proportion.

  • PDF

Object Based Image Compression Using QP (Quadratic Programming) Method (QP(Quadratic Programming) 방법을 이용한 객체단위의 영상압축 알고리즘)

  • 최유태;이상엽;곽대호;김시내;송문호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.175-178
    • /
    • 2000
  • The object level image compression is a useful technology for reducing the necessary data and manipulating individual objects. In this paper, we propose a new image object compression algorithm that uses the quadratic programming (QP) method to reduce the compressed data. The results indicate the superiority of the proposed QP based algorithm over the low pass extrapolation (LPE) method of MPEG-4.

  • PDF

A GLOBALLY AND SUPERLIEARLY CONVERGENT FEASIBLE SQP ALGORITHM FOR DEGENERATE CONSTRAINED OPTIMIZATION

  • Chen, Yu;Xie, Xiao-Liang
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.823-835
    • /
    • 2010
  • In this paper, A FSQP algorithm for degenerate inequality constraints optimization problems is proposed. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving a quadratic programming subproblem. To overcome the Maratos effect, a higher-order correction direction is obtained by solving another quadratic programming subproblem. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions. Finally, some preliminary numerical results are reported.