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Abstract

This paper proposes fuzzy regression analysis with non-symmetric fuzzy coefficients. By assuming non-
symmetric triangular fuzzy coefficients and applying the quadratic programming formulation, the center of the
oblained T'uzzy regression model attains more central tendency compared to the one with symmeltric triangular fuzzy
coefficients. For a data set composed of crisp inputs-fuzzy outputs, two approximation models called an upper
approximation model and a lower approximation model are considered as the regression models. Thus, we also
proposc an integrated quadratic programming problem by which the upper approximation model always includes the
lower approximation model at any threshold level under the assumption of the same centers in the two approximation
models. Sensitivities of weight coefficients in the proposed quadratic programming approaches are investigated

through real data.
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1. Introduction

In fuzsy regression analysis originated by Tanuka ct
al. [5], to deal with a vague and uncertain phenomenon,
a fuzzy structure of the given phenomenon is represented
as a {uzzy lincar function whose parameters arc {uzzy
numbers. Therefore, a fuzzy linear function is used as a
regression model 1o describe fuzziness in the given
phenomenon. Several regression analyses had been
developed based on linear programming (I.P) and
quadratic programming (QP) [5-10]. Recent develop-
ments on fuzzy regression are shown in Inuiguchi etal.
{1} and Ishibuchi and Nii [3].

Savicand Pedrycz [4] proposed a method where center
cocfficients a,, (i =0, ... , n) are obtained by least squares
and then spread coefficients ¢, (i =0, ... , n) are obta ned
by LP problem [6]. Due to symmetric coefficients, this
method gives too wide spreads in spite of the reasonable
central tendency.

In this paper, we propose fuzzy regression analysis
with non-symmetric fuzzy coefficients by QP. The
proposed QP approach can integrate the property of
central lendency in least squares and the possibilistic
property in fuzzy regression analysis. The characteristic
of the proposed QP approach is that it allows us to obtain
the center and spread coefficients simultaneously with
one optimization problem while the method [4] is not.
Also, the proposed QP approach gives some trade-off
between minimum spreads and central tendency in the
regression model.

Foradala set composed of crisp inputs-fuzzy outputs,

we can consider ftwo approximation models, an upper
approximation model and a lower approximation model
which are similar to the possibility and necessity
concepts. It is necessary that the upper approximation
model should include the lower approximation model for
any input vector. If the two approximation models are
obtained by solving two separate optimization problems,
there is a possibility that the upper approximation model
does not include the lower approximation model for
some input vector as discussed in [2]. Thus, we also
propose an integrated QP problem where centers of two
approximation models are assumed to be identical. The
advantage of assuming a same center for two approxi-
mation models is that if the upper approximation model
includes the lower approximation model at some h-level,
then this inclusion relation is satisfied at any level
between 0 and 1. Using the GDP data, the proposed
methods are illustrated and also sensitivities of weight
coefficients in the QP problems are investigated.

2. Formulation of fuzzy regression model
with non-symmetric fuzzy coefficientsby QP

Former regression analyses |35, 6] are based on the
fuzzy linear system whose coefficients are assumed to be
symmetric fuzzy numbers. Differently to our former
approaches, in this paper, we propose a fuzzy linear
regression model with non-symmetric fuzzy coefficients.

Let us assume a fuzzy regression model as
Yx)=A+Ax + " +Ax=Ax
x=(l,x,..,x) is an

M

where input  vector,



A=(A,, ..., A) is afuzzy coefficient vector,and Y (x)is
the estimated fuzzy output. If the coefficients
A.(i=0,..,n) are assumed to be non-symmetric
triangular fuzzy numbers, A, denoted as A, ={a;, ¢, d));
can be defined by
u0=1-la~0/c, ifa-c=sxsa,
=1 —(x—al.)/d”
=0, otherwise,
where a, is a center, ¢, is a left-spread, and 4, is a
right-spread.

Let the input-output
(x,,y,.)z(l,x“, X D=1
regression coefficients A = (a, c.d);, (=0, ...
(1) are assumed to be non-symmetric triangular fuzzy
numbers, the estimated output Y(x)) also becomes a
non-symmetric triangular fuzzy number which can be
catculated by fuzzy arithmetic. Therefore, parametric
representation of (1) becomes

@

ifa sx<sa,+d,

data be given as
., m. Since the
,1) In

Y(x)= (ec(xj), 6,(x ), QR(xj))T (3)
where

O x)= 22} ax;,

6,(x)= lezao €Xi— % . dx,, (4)

6 (X)) = XEO d,x]1 - v‘ﬂZ{” R

represent a center, a left-spread, and a right-spread of the
fuzzy output Y (x), respectively. It should be noted that
(JL(xI.) and Gk(x/.) in (4) are positive since c;andd, (i =
0,...,n) are assumed to be positive. Then, the member-
ship function of Y (x) can be defined as

0.x)~y .
HypM)=1- ——FG—L-(;)—- if 8,.(x)-60,(x)sy=6x),
_ y- QC(X) .
__——GR(x) , if B.(x)sys0x0)+ 0,(x), (5)
=0, otherwise.

The h-level set of Y(x) can be expressed as an interval

[Y(x)]h = {yl u y(x)(y) =zh } = [)’;, y;] (6)
where
),‘;: 6C(x)—(l ——/'l) GL(X)‘ (7)

¥ =00 + (1 -h) 0,(x),
represent the bounds of [Y(x)]h, respectively.

To determine the optimal fuzzy coefficients
A =(a,c,d),,(i=0,.. ,n) of the fuzzy regression
model (1), the sum of spreads of the estimated outputs
can be considered as an objective function, that is, the
sum of spread of [Y(x)]h for all data is taken as an
objective function:

(1-1E (0,6)+6,6)) = 1= E @]x,| +]x,]
®
,d)" are left and

where ¢=(c,,...,c) andd=(d,, ...

right spread coefficient vectors, and m is a data size.

Let us consider minimization of sum of squared
distances between the estimated output centers and the
observed outputs, denoted as

2 0,-a'x) (9)
J=

which corresponds to the least squares concept and
a={a,, .., “,,)' is a center vector. Thus we suggestanew
objective function by combining (8) and (9):

T2k X0 k(=) X @, |+ d]x ) (10)

j=1 j=

where k and &, are weight coefficients. Given a threshold
h, the given output ¥, should be included in the h-level
set of the estimated fuzzy output Y(x ), thatis, satisfies

H(j(x‘,) + (1 - h) Bk(xj) Z)’j,
o C(x].) —(1-h) QL(xj) <y,

which is regarded as one of possibilistic properties of
fuzzy regression.

Based on the above assumptions, fuzzy regression by
QP is to determine the optimal fuzzy cocfficients
A =(a,c,d),, (i=0,.., n)thatminimize the objective
function J (10) subject to the constraint conditions (11).
This can be expressed as the following QP problem:

an

,J=1, . ,m,

"

)
min J=k 2 (y-a'x)
a,c.d ‘j:l(’y’ ’)

+k, (1-h) ,-,zi:, (c’[xj|+ d'[le) +E(c+dd)
(11, (
cz0,d 20, i=0,..
where & is a small positive number such thatk, k, >> &.
The term E(c‘c+d'd) is added to (10) so that the
objective function in (12) becomes a quadratic function
with respect to decision variables a, ¢, andd. This is a
well-known technique in obtaining the optimal solution
by QP. By this approach, we can obtain a regression
model with more central tendency comparing to the ones
with symmetric triangular fuzzy coefficients by the LP
problem [6].

12)

s. L
9n7

3. Integrated QP approach for upper and
lower approximation models

Let us consider a data set composed of crisp inputs-
fuzzy ouiputs denoted as
(xl;Y,):(l,x”, e X5 Yj), j=1,..m (13)
where the fuzzy output is defined by Y, =(y, e),witha
center (y;) and a spread (ej.), andm is a datasize. For the
data set (13), two approximation models called as a lower
approximation model (LAM) Y, (x;) and an upper app-
roximation model (UAM) Y'(xj) can be considered as

Y.(xj)=A.0+A.lle+ +A,"xj"= A,xj (14)
Y (x)=A+Ax, + o +Ax, = A'x, (15)

where cocefficients A.iandA‘.' are non-symmetric



triangular fuzzy numbers.

From the concept of lower and upper approximation
models, the following inclusion relation between
coefficients A,;and A: should be satisfied

A DA, i=0,..,n, (16)
which are defined as ,
[A: ]h 2 [_A,,.]h, i=0,..,n, foranyh. a7

Therefore A, of LAM and A: of UAM (i =0, ..., n)can
be defined as

A=, 1 8

A=, f+p.8+q)y i=0,...n
which are depicted in Fig. 1.

(18)

b
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Fig. 1. Fuzzy coefficients A’ and 4,,

By simple fuzzy arithmetic, the inclusion relation
between A,,andA; can be extended to the inclusion
relation between LAM Y, (x) and UAM Y (x)), thatis

Y (x)2Y.(x)foranyx=(l, x,, ..., x.)' (19
if A DA, (=0,..,n).

Using the coefficients A, = (b, {,g);, (=0, ..,n) in
(18), LAM Y, (x].) (14) can be expressed as

.= (b'x, 6., 0.,x))

where 6, (x)= xj,-zz() fx; —,ﬂZ(O gx, (20)

B.R(xj) = Iﬁzzo 8% - -.-2<0 fxﬂ
and b=(by, ..., b,)". The spread of [Y.(x)] can be
denoted as
(1=h) (6.,0x)+ O.4(x))
=0-n('|x]+glx)
where f=(f, .., 'andg=(g, .., g,)" Using the

coefficients A: =(b, [+ p.g&+q) (=0, .. ,n) in
(18), UAM Y’ (x)) (15) can be expressed as

v @)= (b'%, 0.0, 6.4x))
T
where
8,(x)= XEO fx; +Xﬁ220 P, _xj,%o gx —XEO 9%

@n

(22)

.X. = X+ o X — X ..
Oulxp= 2 8+ 2 47~ 2 1% - 2 P,

i
J x

The spread of [Y '(xj)] can be denoted as
h
1 -h (6,0xc)+ 6x))

=(1-h) (f’le| + g’lx}l+p'lle +q’lxj|)

where p=(p,, ..., p) andg=(gy, ., q,)"
The h-level set of the given output Y; should be
included in the /-level setof the estimated UAM Y (x ),

ie., satisﬁcs[Y'(xj)]hQ [Yf];.' We should consider to

minimize the sum of spreads of the estimated | Y™ (x )
I 1y

(23)

for all data. Thus. the following objective function
should be minimized:
Jy=1,2 (¢, ~b'x)
L, (24)
+1,(1-h) g‘ (f |x,|+ &|x,|+ P +q’|xj|)
where the term Z (y].-b'arj)2 is inserted to obtain the
i=1
property of central tendency in least squares. Thus, the
optimization problem for obtaining UAM Y (x,) canbe

described as follows:
[UAM]: min
b, J,8 P q
5. 1. [y'(xj)JhQ[Yj]h
f=20, 2,20, p 20,4920, i=0,.. ,n.
On the contrary to UAM, the h-level set of the
estimated LAM Y.(x)) should be included in the
h-level sct of the given output Y, i.e., satisfies
[Y. (xf)];. Q[Y,]h. We should consider to maximize the

sum of spreads of the estimated [Y.(xj)] for all data.
h

Thus, the following objective function should be
maximized:

J,=1,(1-h) }>:I x|+ glx D=1 };‘I @,~b'x)’".
i= j=
(26)
Thus, the optimization problem for obtaining LAM

Y.(x ;) can be described as follows:
[LAM}: max (26)

5. t. [)’,(xj)]h_(; [v]
[20.g =200 i=0,..,n.
If the coefficients A, of UAM and A,, of LAM (i =
0,...,n) are obtained separately by solving two optimi-
zation problems (23)and (27), thereis a possibility that
the inclusion relation
[r.e)] €[r )], (28)
does not be satisfied for some new input vector as
discussed in {2]. Thus, in order to integrate these two
{min, max) optimization problems into a single problem,
letting weight cocfficients k, =2¢ and k,=1,, a new
objective function combining (24) and (26) can be
introduced as

(24

(25)

27



(29)

min (7, - J,)

=min k 2 (y, —b'.)c])2 +k, (1-h) 2] (p’lle + q'lx}.l).
IS =
Using (29), to determine the optimal fuzzy
coefficients A,, of LAM and A: of UAM (i =0, ..., n)
simultaneously, we propose the following Integrated QT
(IQP) problem by combining two optimization
problems (25) and (27):
[1QP] : =k 2 0-b'x)
=

min
b fg,pq

k(] —h)]i] (p’lx,|+q’|x,.|)+§(f’f+g’g+ p'p+aq)
s. L b'x!+ (1-h 9;(xj)z y; +(1 —h)ej,

bx ~(1-M6,(x)sy ~(1-hye,

b’xl+ (1-h) 6,R(.r]) sy, +( ~-hye,

b'x/—(l -n 0, x)zy, —(l-h)e, j=1 .. .m,

fz0. g 20, p=0 q =0, i=0, .. ,n

(30)

where £ is a small positive number such thatk,, k, >> &.
Theterm E(f'f+ g'g+ p'p+4q'q)is inserted to (29)
so that the objective function in (30) becomes a
quadratic function with respect to decision variables
b, f, g, p. and q. The obtained UAM and LAM by the
above IQP always satisfy the inclusion relation
Y.)C Y (x)at h-level(Osh <1) foranynew input
vector x= (1, x,, ..., x)".

4. Discussion on sensitivities of weight
coefficientsin QP (12) & IQP (30)

In this section, let us investigate sensitivities of
weight coefficients in the proposed QP approaches in
Sections 2 and 3. The gross domestic product (GDP) data
are given in Table | where inputs are income (X,),
working population (x,), and output (y) is GDP of Japan
during 1975 - 1992. All inputs-outputs are ratios formed
by assigning the year 1970 a value of 100. Furthermore,
to apply IQP to the fuzzy data, we formed fuzzy outputs
Y, =(y,, ¢)); in the last column of Table 4 by assigning
5 % of each output y, as the corresponding spread e . It
should be noted that Y =(y,e), is a symmeltric
triangular fuzzy number.

Crisp inputs - outputs:

First, let us analyze crisp inputs-outputs data with

the fotlowing fuzzy linear system:
Y(x)=A,+Ax +Ax, 3
where the coefficients A,=(a, c,d), (i=0,1,2) are
non-symmetric triangular fuzzy numbers. By solving
QP (12) with three combinations of weight coefficients
k andk, (h = 0), optimal coefficients are obtained as
shown in Table 2. It can be noticed in Table 2 that the
obtained center vector @ is not so sensitive to weight
coefficients k, and &, in QP (12), while the spread

Table 1. GDP of Japan related to income and working

population (1970: 100)

No Year Income Working po- GDP GDP

) (x,) pulation(x) (v,) Y =@,e)
1 1975 137.0 102.5 124.5 (124.5,6.23)
2 1976 138.1 103.5 129.4 (129.4,6.47)
3 1977 141.5 104.8 135.1 (135.1,6.76)
4 1978 144.8 106.1 142.3 (142.3,7.12)
5 1979 148.1 107.5 150.1 (150.1,7.51)
6 1980 146.0 108.7 154.3 (154.3,7.72)
7 1981 148.8 109.5 159.2 (159.2,7.96)
8 1982 151.0 110.7 164.0 (164.0, 8.20)
9 1983 1514 112.5 167.9 (167.9,8.40)
10 1984 153.7 113.2 174.4 (174.4,8.72)
11 1985 155.6 114.0 182.1 (182.1,9.11)
12 1986 158.8 114.9 187.4 (187.4,9.37)
13 1987 161.9 116.0 195.2 (195.2,9.76)
14 1988 166.1 118.0 207.3 (207.3,10.37)
151989 169.1 120.3 217.3 (217.3,10.87)
16 1990 173.0 122.6 228.3 (228.3,11.42)
17 1991 176.0 125.0 237.0 (237.0,11.85)
18 1992 174.8 126.3 239.4 (239.4,11.97)

coefficients ¢ and d are slightly related to weight
coefficients.

As the proposed QP method (12) combines the
properties of least squares and fuzzy regression where
MFZ()’,-”“”‘): represents a measure of central

J

tendeﬁcy in least squares and M, =2 (c’lle + d'|xj|)
J

represents a measure of the possibilistic property in
fuzzy regression analysis, it is meaningful to check
values of M, and M, as weight coefficients k andk, in
QP (12) change. Thus, using the optimal coefficientsin
Table 2, M, and M, are shown in Table 3. Comparing
the case (a) against the case (b)in Table 3, M, is reduced
by 0.1 % while M, is increased by 0.2 %. On the other
hand, comparison of the case (c) against the case (b) in
Table 3 shows that M, is increased by 0.4 % while M,
is reducedby 0.3 %. Thus, it can be said that fluctuations
of M,andM, comesponding to change of weight
coefficients are very small. Furthermore, it can be
noticed that values of M, + M, for the cases (a), (b}, and
(c) in Table 3 are almost same.

To summarize results in Tables 2 and 3, weight
coefficients k and k, in QP (12) are not so sensitive in
determining an optimal model. Insensitivity of weight
coefficients are caused by constraint conditions in QP
and the assumption of non-symmetric fuzzy coeffi-
cients. Considering that valuc of M, in conventional
least squaresis 34.5, the optimal models of the cases (a),
(b), and (c) in Table 2 represent good central tendency.

For the case (b) in Table 2 , the optimal model can be
denoted as



Table 2. Optimal coefficients by QP (12) for GDP data with crisp inputs-outputs

Case| Weights Optimal coefficient vectors
k‘ k2 a'l c’ d’
(@ { 10 1 (-341.571, 1.418, 2.641) (0.383,0,0.018) (0.393,0,0.013)
(b) 1 I (-341.507, 1.417, 2.643) (0.455,0,0.018) (0.541,0,0.012)
@ | 1 10 | (-340.588, 1.430, 2.617) (2.305, 0, 0) (1.967, 0, 0)
Table 3. Comparison results using the optimal coefficients in Table 2

~ Z
Case | k, k, M]:JZ(yj_atxj) Mz‘—‘z(;lle'*d’lxd) M +M,
1
(a) | 10 1 34704 (99.9 %) 77.293 (100.2 %) 111.997
(b) 1 1 34.724  (100.0 %) 77.175 (100.0 %) 111.899
(c) 1 10 34.872 (100.4 %) 76.909 (99.7 %) 111.781
Y(x)=(-341.507,0.455.0.541), 32) shown in Table 5. In Table 5, we can notice that M,

+(1.417,0, 0), x, + (2.643,0.018,0.012), x,
which is depicted in Fig. 2.
Crisp inputs-fuzzy outputs:
Let us analyzc crisp inputs-fuzzy outputs data where
the given outputs are fuzzy numbers Y, =0, e); as

shown in the last column of Table 1. The two
approximation models are considered as
LAM: Y, () =A, + A, x + A, x,

( / O il 'Jx_ (33)

UAM: Y (x)= A} + ALx + Ax,
where coefficients A, and A: (i=0,1, 2) are defined as
(18). Applying IQP (30) with three combinations of
weight coefficients k and &, (h = 0), optimal coefficient
vectors are obtained as shown in Table 4. In Table 4,
comparison of the casc (a) against the case (b) shows that
weight coefficients k andk, are not so sensitive to
determine the optimal coefficient vectors, while the
optimal coefficients in the case (c) are slightly changed
comparing (o the case (b).

Using the optimal coefficients in Table 4, values of
M,=2(, ——b’xj)2 and M, = ; (p’lle + q'Ile) are

! E

GDP (Y)

240 é ¢

24 6 8 10 12 14 16 18 °
Fig. 2. Estimated outputs by QP (12) (k, =k, = 1) for
GDP dala when the given outputs (y,) are crisp

dccreases as the ratio &,/ k, increases while M, increases
as the ratio k, / k, increases. It can be noticed that values
of M, + M, for the cases (a), (b), and (¢) in Table 5 donot
indicate so much differences.

Thus. from results in Tables 4 and 5, it can be said
that weight coefficients &, and k, in IQP (30) are not so
critical in determining an optimal model since
constraint conditions in IQP (30) and assumption of
non-symmetric fuzzy coefficients aliow good central
tendency and minimum spreads in the obtained
regression model.

For the case (a) in Table 4, estimated outputs of
LAM Y.(x) and UAM Y"(x) are depicted in Fig. 3
where it can be noticed that UAM Y (x ) includes LAM
Y. (x ) forany j.

GDP (y)
260
240! N I
220 . ] e
| , ‘;h 'gll'
200° o 'l '
180 il I I
': ‘l || ‘
160 - ;"5 r
140
120 |
2 4 6 8 10 12 14 16 18 7
=== : Estimations by UAM ¥ (x))
. Estimations by LAM Y.(x)
— : Givenoutputs Y,
Fig. 3. Estimated UAM and LAM by IQP

(k, = 10, &, = 1) and the given outputs Yj= (y], e].)r



‘Table 4. Optimal coefficients by 1QF for GDP data with crisp inputs-fuzzy outputs
Case | Weights Optimal coefficient vectors
kK b’ f g p' q'
(a) 10 1 (-339.392, 1.465,2.558) (0,0.0342,0) (0,0.0340,0) (0,0.0401,0) (0,0.0375,0)
() 1 1 (-340.009, 1.376.2.686) (0,0.0362,0) (0,0.0344,0) (0,0.0363,0) (0,0.0388,0)
) 1 10 (-331.216, 1.463.2.489) (0,0.0338,0) (0,0.0.0502) (0,0.0433,0) (0,0.0310,0)
Table 5. Comparison results using the optimal coefficients in Table 4
N 1oN\2
Case | k k, Ma:g@j—bx;) M4=J2(p'|xj'+q’|xj|) M, +M,
(a) 10 1 34.578 (96.0 %) 216.779 (103.2 %) 251.357
(b) 1 1 36.016  (100.0 %) 209.957  (100.0 %) 245.973
(c) i 10 40.512 (1125 %) 207.804 (99.0 %) 248.316

5. Conclusions

In this paper, fuzzy approximation models with
non-symmetric fuzzy coefficients can be obtained by QP.
By assuming non-symmetric triangular fuzzy coeffi-
cients and using the QP formulation, the obtained fuzzy
regression models attain more central tendency compared
1o the ones with symmetric triangular fuzzy coefficients.
For a dataset with crisp inputs-fuzzy outputs, the upper
and lower approximation models can be obtained to
reflect fuzziness of outputs in the analyzed pheno-
menon. If the two approximation modcls are obtained
by solving two separate optimization problems, it is
possible that the upper approximation model does not
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