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ON THE GLOBAL CONVERGENCE OF A MODIFIED

SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

FOR NONLINEAR PROGRAMMING PROBLEMS WITH

INEQUALITY CONSTRAINTS†

BINGZHUANG LIU

Abstract. When a Sequential Quadratic Programming (SQP) method
is used to solve the nonlinear programming problems, one of the main
difficulties is that the Quadratic Programming (QP) subproblem may be
incompatible. In this paper, an SQP algorithm is given by modifying the
traditional QP subproblem and applying a class of l∞ penalty function
whose penalty parameters can be adjusted automatically. The new QP
subproblem is compatible. Under the extended Mangasarian-Fromovitz
constraint qualification condition and the boundedness of the iterates, the
algorithm is showed to be globally convergent to a KKT point of the non-
linear programming problem.
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1. Introduction

Consider the following nonlinear programming problem:

(P )
min f(x)
s.t. gi(x) ≤ 0, i = 1, · · · ,m,

(1)

where f : Rn → R and gi : Rn → R, i = 1, 2, · · · ,m, are all continuously
differentiable functions in Rn.

It is well known that SQP method is a very popular and important method
among all the effective methods for (P). The procedure of the traditional SQP
algorithm is as follows.
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At a current iteration point xk, we usually solve the following QP subproblem:

min 〈f ′(xk), d〉+ 1
2 〈Hkd, d〉

s.t. gi(x
k) + 〈g′i(xk), d〉 ≤ 0, i = 1, · · · ,m,

(2)

where Hk is a symmetric positive definite matrix. Then the next iterate has the
form

xk+1 = xk + γkd
k,

where dk is a solution of the problem (2), γk is a step length which is chosen to
make the value of some penalty function descend.

Except for the specific feasible descent SQP algorithm such as [?], most of
SQP methods do not need that the approximate solution obtained at each iter-
ation is feasible for (P). However, this is possible to make the QP subproblem
(2) incompatible, that is, the feasible set of (2) is possible to be an empty set.
By using some techniques, Burke and Han [?] modify the QP subproblem of
their SQP method and make the feasible set of the QP subproblem nonempty
for each x ∈ Rn, and get the global convergence of their SQP algorithm. Jiang
and Ralph [?] also make the QP subproblem compatible by adding a variable
to the subproblem. Similar situation can be found in [?, ?, ?, ?, ?, ?, ?, ?].
In[?], Solodov propose an SQCQP method that the QCQP subproblems are
compatible and have quadratic approximations to the constraint functions that
are assumed to be convex. In[?], the SQP algorithm enjoys the global conver-
gence and the boundedness of the primal iterates based on the strong conditions
for the constraints, including convexity and the boundedness of the level set.
Here we consider the QP subproblem with linear constraints without convexity
of constraint functions in the problem (1). The QP subproblem of our paper is
as follows.

At a current iterate xk, we consider the following QP subproblem:

min 〈f ′(xk), d〉+ 1
2 〈Hkd, d〉+ βkt

s.t. gi(x
k) + 〈g′i(xk), d〉 ≤ t, t ≥ 0, i ∈ Ik,

(3)

where βk is a penalty parameter, Hk is a positive definite matrix, t ∈ R is a
nonnegative variable added to make the QP subproblem compatible (In practical
calculation, t ≥ 0 is sometimes taken as (t1, · · · , tm)T to get better results.), and
Ik is an index set that satisfies that

I(xk) ⊂ Ik ⊂ {1, · · · ,m},
I(xk) = {i | gi(xk) = p(xk)}, p(xk) = max

i=i,··· ,m
[gi(x

k)]+, (4)

where [z]+ = max{0, z}. It is useful that the index set Ik ⊂ {1, · · · ,m}, since it
decreases the number of the constraints of QP subproblem. In [?], Zheng et.al
give a QP subproblem without penalty parameter βk in the objective function.

Let (dk, tk) ∈ Rn ×R be the solution of (3), then the next iterate is given as

xk+1 = xk + γkd
k,
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where γk is obtained by using Armijo-type linear search to an l∞ penalty function

ψβk
(x) = f(x) + βkp(x).

For the general SQP method, it is difficult to choose the penalty parameter
βk when we add a variable to ensure the feasibility of the subproblem. [?] gives
a very simple update formula to adjust the size of βk. In this paper, we still use
this formula.

Throughout in this paper, we suppose that the extended Mangasarian-Fromovitz
constraint qualification (EMFCQ) holds for (1) at any x ∈ Rn, that is, there ex-
ists a vector p ∈ Rn, such that

〈g′i(x), p〉 < 0, i ∈ I+(x) = {i | gi(x) ≥ 0}. (5)

It is obvious that EMFCQ implies the more familiar MFCQ condition, that is,
there exists a p ∈ Rn such that

〈g′i(x), p〉 < 0, i ∈ I0(x) = {i | gi(x) = 0}.
The remaining of this paper is as follows. In Section 2 we establish the model

of our SQP algorithm, and get the global convergence of our algorithm under
very mild conditions. We get some computational results of the algorithm. Some
conclusion Remarks for this paper are given finally.

In the following we give some denotations in this paper.
— For a directionally differentiable function ψ : Rn → R, let ψ′(x; d) denote

the directional derivative of ψ in d ∈ Rn at the point x ∈ Rn;
— Let ‖ · ‖ denote 2-norm, ‖ · ‖1 denote l1-norm, and ‖ · ‖∞ denote l∞-norm

in Euclidean space Rn, respectively;
— For two positive semi-definite matrices A and B, if A−B is positive semi-

definite, we denote that A º B; and we let E be the identity matrix;
— t/0 = +∞ is considered to be well defined, where t > 0;
— a = o(b) means that for b → 0, a/b → 0.

2. Main results

2.1. Model of an Algorithm. In this section we give the model of our SQP
algorithm. First we note that the problem (3) is always feasible and has unique
solution. In fact, it is easy to see that for each fixed d ∈ Rn, the minimum with
respect to t in (3) is attained at

tk(d) = max
i∈Ik

[gi(x
k) + 〈g′i(xk), d〉]+. (6)

So (3) is equivalent to

min
d∈Rn

〈f ′(xk), d〉+ 1/2〈Hkd, d〉+ βkt
k(d). (7)

Since Hk is positive definite, the objective function of (7) is strongly convex
and has the unique minimizer dk. It follows that (dk, tk) with tk = tk(d) is
the unique solution of (3). Furthermore, since the constraints in (3) satisfy the
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EMFCQ condition (see (5)), the KKT optimality conditions hold, that is, there
exist some µk

i ∈ R, i ∈ Ik, and νk ∈ R such that

f ′(xk) +Hkdk +
∑

i∈Ik

µk
i g

′
i(x

k) = 0, (8)

βk −
∑

i∈Ik

µk
i − νk = 0, (9)

gi(x
k) + 〈g′i(xk), dk〉 ≤ tk, µk

i ≥ 0, i ∈ Ik, (10)

µk
i (gi(x

k) + 〈g′i(xk), dk〉 − tk) = 0, i ∈ Ik, (11)

tk ≥ 0, νk ≥ 0, tkνk = 0. (12)

In the following we state our algorithm.
Algorithm 1
Initial. Choose x0 ∈ Rn, β0, δ1, δ2 ∈ (0,+∞), σ ∈ (0, 1/2), and θ ∈ (0, 1),

set k := 0.
Step 1. Choose an index set Ik according to (4). Choose a n × n matrix Hk

(positive definite). Compute (dk, tk) as the solution of (3), and the associated
Lagrange multipliers (µk, νk).

Step 2. If dk = 0 and tk = 0, stop.
Step 3. If dk = 0 and tk > 0, let jk = 0, and go to Step 4. Otherwise, find

jk, the smallest nonnegative integer j, such that

ψβk
(xk + θjdk) ≤ ψβk

(xk) + σθj∆k, (13)

where ψβk
(x) is the l∞ penalty function

ψβk
(x) = f(x) + βkp(x)

given in section 1, and

∆k = 〈f ′(xk), dk〉+ 1/2〈Hkdk, dk〉+ βk(t
k − p(xk)). (14)

Step 4. Let γk = θjk , xk+1 = xk + γkd
k.

Step 5. Compute rk = min{‖dk‖−1, ‖µk‖1 + δ1}. Set

βk+1 :=
{ βk, if βk ≥ rk;

βk + δ2, otherwise.
(15)

Step 6. Let k := k + 1, Go to Step 1.
From the above algorithm it is clear that if {βk} is unbounded, then it must
have ‖µk‖ → +∞ and dk → 0. We will show that this situation cannot occur,
thus lead to the boundedness of {βk}. In [?], the penalty parameter {βk} with
another update rule is not guaranteed to be bounded.
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2.2. Global Convergence. In this section, we get the global convergence of
the algorithm given in Section 2. We suppose in this section that f : Rn → R and
gi : R

n → R, i = 1, 2, · · · ,m in Problem (P ), are all continuously differentiable
functions in Rn and the constraint qualification condition EMFCQ holds for (P ).

First we give a useful lemma that is given in [?].

Lemma 2.1. Let {x|gi(x) ≤ 0, i = 1, 2, · · · ,m} 6= ∅, then for any x ∈ Rn

satisfying

I++(x) := {i|gi(x) > 0} 6= ∅,
we have that ∑

i∈I++(x)

µig
′
i(x) = 0, µi ≥ 0, i ∈ I++(x)

if and only if

µi = 0, i ∈ I++(x).

In the following we show that Algorithm 1 is well-defined.

Lemma 2.2. Let {x|gi(x) ≤ 0, i = 1, 2, · · · ,m} 6= ∅,
(i) if we get that dk = 0, and tk = 0 in Algorithm 1, then (xk, µk) is a KKT

point of (1);
(ii) if dk = 0 and tk > 0, then there exists a finite integer q such that Algo-

rithm 1 generates dk+q 6= 0.

The proof of this lemma is similar with Proposition 1 in [?], so we omit it.
The following result shows that whenever dk 6= 0, it is a descent direction

for ψβk
at xk, which in turn implies that the line-search step is well-defined.

Combining this fact with the above lemma, it follows that Algorithm 1 is well-
defined.

Lemma 2.3. In Algorithm 1 it holds that

ψ′
βk
(xk; dk) ≤ ∆k − 1/2〈Hkdk, dk〉

≤ −〈Hkdk, dk〉 − νkp(xk),
(16)

therefore Step 3 of Algorithm 1 is well-defined and terminates with some finite
integer jk.

Proof. It is easy to see that

ψ′
βk
(xk; dk) = 〈f ′(xk), dk〉+ βk





0, if I(xk) = ∅;
max

i∈I(xk)
〈g′i(xk), dk〉, if p(xk) > 0;

max
i∈I(xk)

[〈g′i(xk), dk〉]+, if p(xk) = 0, I(xk) 6= ∅.
(17)

Then we consider the three possible cases in (17).
If I(xk) = ∅, then p(xk) = 0 (i.e. gi(x

k) < 0, for any i). Therefore,

0 ≤ tk = tk − p(xk).
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If I(xk) 6= ∅, from (10), for any i ∈ I(xk) ⊂ Ik, we have

〈g′i(xk), dk〉 ≤ tk − gi(x
k) = tk − p(xk),

where the equality follows from that gi(x
k) = p(xk), i ∈ I(xk).

Furthermore, if p(xk) = 0, then 〈g′i(xk), dk〉 ≤ tk. From the monotonicity of
[·]+, it follows that

[〈g′i(xk), dk〉]+ ≤ [tk]+ = tk − p(xk).

Combining the above three cases, we have from (17) that

ψ′
βk
(xk; dk) ≤ 〈f ′(xk), dk〉+ βk〈tk − p(xk)〉

= ∆k − 1/2〈Hkdk, dk〉, (18)

then the first inequality in (16) holds.
Multiplying both sides of (8) by dk, we have that

〈f ′(xk), dk〉 = −〈Hkdk, dk〉 −
∑

i∈I(xk)

µk
i 〈g′i(xk), dk〉. (19)

Furthermore, we have that

− ∑
i∈I(xk)

µk
i 〈g′i(xk), dk〉 =

∑
i∈I(xk)

µk
i (gi(x

k)− tk)

≤ (p(xk)− tk)
∑

i∈I(xk)

µk
i

= (βk − νk)(p(xk)− tk)
= βk(p(x

k)− tk)− νkp(xk),

(20)

where (11) was used in the first equality, (9) was used in the second equality,
and (12) in the last. Combining (20) with (18) and (19), we get (16).

If dk = 0, by Step 3 of Algorithm 1, we have that jk = 0. If dk 6= 0, then for
γ ∈ [0, 1], we have that

ψβk
(xk + γdk) = ψβk

(xk) + γψ′
βk
(xk; dk) + o(γ)

≤ ψβk
(xk) + γ∆k + o(γ),

(21)

where the inequality was by (16). It follows that (13) is guaranteed to hold
whenever γ = θj > 0 satisfies that

(1− σ)γ∆k ≤ o(γ).

Since dk 6= 0 when ∆k < 0, the above inequality holds for all γ = θj sufficiently
small. Hence, Step 3 of Algorithm 1 terminates with finite integer jk. ¤

We next show that when close to the feasible region of (1), the solution of
the subproblem (3) is given by the solution of the subproblem without the slack
variable:

min 〈f ′(xk), d〉+ 1
2 〈Hkd, d〉

s.t. gi(x
k) + 〈g′i(xk), d〉 ≤ 0, i ∈ Ak,

(22)
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where Ak ⊂ {1, 2, · · · ,m}. This fact will be used latter to establish that the
penalty parameters βk stay fixed from some point on. We first make the following
assumption:

(A) there exist ρ1, ρ2 such that the matrices in (22) satisfy ρ2E º Hk º ρ1E,
for all k, where ρ2 ≥ ρ1 > 0.

Lemma 2.4. Let {xk} be any sequence converging to some x̄ ∈ Rn such that
p(x̄) = 0 and the assumption (A) hold. Then the problem (22) is feasible for
all sufficiently large k and any Ak ⊂ {1, 2, · · · ,m}. Moreover, if (sk, λk) is a
KKT point of (22), then for any βk ≥ ‖λk‖1, (sk, 0) is the unique solution of (3)
(Ik = Ak). Conversely, if (dk, 0, µk, νk) is a KKT point of (3), then (dk, µk) is
a KKT point of (22). Furthermore, the sequences {sk}, {λk} are both bounded.

Proof. Since p(x̄) = 0, we have that gi(x̄) = 0, for i ∈ I(x̄). By the EMFCQ
conditon (5), there exists a vector p ∈ Rn such that

〈g′i(x̄), p〉 < 0, i ∈ I(x̄). (23)

For each i ∈ {1, 2, · · · ,m}, there exists ηi > 0 and ci > 0 such that

ηi〈g′i(x̄), p〉 ≤
{ −2ci, if i ∈ I(x̄);

−gi(x̄)/4, otherwise,
(24)

where (23) is used for i ∈ I(x̄). Then for each i ∈ {1, 2, · · · ,m}, there exists an
index ki such that for all k ≥ ki,

εki := gi(x
k) + ηi〈g′i(xk)− g′i(x̄), p〉 ≤

{
ci if i ∈ I(x̄);
gi(x̄)/2 otherwise.

Denoting k̄ = max
i=1,2,··· ,m

ki, η = min
i=1,2,··· ,m

ηi, c = min{ min
i∈I(x)

ci,− max
i/∈I(x)

gi(x̄)/4},
and using the two relations above, we have that d = ηp satisfies

gi(x
k) + 〈g′i(xk), d〉 ≤ −c < 0, ∀k ≥ k̄, i = 1, 2, · · · ,m. (25)

It follows that d is (strictly) feasible in (22), for any choice of Ak ⊂ {1, 2, · · · ,m}
and k ≥ k̄.

Therefore, (22) is a feasible strongly convex program. Hence, it is uniquely
solvable. Thus, there exist some λk

i ∈ R, i ∈ Ak such that

f ′(xk) +Hksk +
∑

i∈Ak

λk
i g

′
i(x

k) = 0, (26)

gi(x
k) + 〈g′(xk), sk〉 ≤ 0, λk

i ≥ 0, i ∈ Ak, (27)

λk
i (g

′
i(x

k) + 〈g′(xk), sk〉) = 0, i ∈ Ak. (28)

If βk ≥ ‖λk‖1, then the conditions (26)-(28) imply that dk = sk, tk = 0, νk =
βk − ‖λk‖1 and µk

i = λk
i , i ∈ Ak = Ik, satisfy KKT conditions (8)-(12). There-

fore, (sk, 0) is a solution of (3). Conversely, if (dk, 0, µk, νk) is a KKT point of
(3), then for Ak = Ik, (d

k, µk) is a KKT point of (22).
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Next, note that since d = ηp is feasible in (22) for all k ≥ k̄, we have that

〈f ′(xk), d〉+ 1/2〈Hkd, d〉
≥ 〈f ′(xk), sk〉+ 1/2〈Hksk, sk〉
≥ ‖sk‖(ρ1‖sk‖2/2− ‖f ′(xk)‖),

where the second inequality is by Hk º ρ1E. Since {f ′(xk)} is bounded and
ρ2E º Hk, the above relation implies that {sk} must be bounded.

Suppose now that {λk} is unbounded. Let λk
i = 0, for i ∈ {1, 2, · · · ,m} \Ak.

Passing onto a subsequence if necessary, we can assume that ‖λk‖ → ∞, and
{sk} → s̄, {Hk} → H̄. Dividing both sides of (26) by ‖λk‖ and passing onto the
limit as k → ∞, we obtain that

0 =

m∑

i=1

λ̄igi(x̄), λ̄ ≥ 0, ‖λ̄‖ = 1.

The latter is equivalent to that there doesn’t exist s ∈ Rn, such that

〈g′i(x̄), s〉 < 0, i ∈ {i|λ̄i > 0}. (29)

Clearly, λ̄i > 0 means that there exists an infinite subsequence of indices {kj}
such that i ∈ Akj and λ

kj

i > 0. For such i, (28) implies that

gi(x
kj ) + 〈g′i(xkj ), skj 〉 = 0, ∀j.

Passing onto the limit as j → ∞, we obtain that

gi(x̄) + 〈g′i(x̄), s̄〉 = 0, i ∈ {i|λ̄i > 0}. (30)

Passing onto the limit in (25) as k → ∞, we also have that

gi(x̄) + 〈g′i(x̄), d〉 ≤ −c < 0.

Subtracting (30) from the above inequality, we have that

〈g′i(x̄), d− s̄〉 < 0, i ∈ {i|λ̄i > 0},
which is a contradiction. We conclude that {λk} is bounded. ¤

By (15), we can obtain that either βk is a constant starting from some iteration
index k0, or it diverges to +∞. We next show that the latter case cannot occur.

Lemma 2.5. Let the sequence {xk} generated by Algorithm 1 be bounded and
the assumption (A) hold. Then there exists some iteration index k0 such that

βk = βk0 , ∀k ≥ k0.

Proof. Suppose the opposite, i.e., βk → +∞, as k → ∞. Then from that

βk < rk = min{‖dk‖−1, ‖µk‖1 + δ1},
it follows that there exists a subsequence of iteration indices {kj} such that

lim
j→∞

dkj = 0 and lim
j→∞

µkj = +∞. (31)
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Taking a further subsequence, if necessary, we can assume that {xkj} → x̃, as
j → ∞. We next consider the two possible cases: p(x̃) > 0 or p(x̃) = 0.

Let p(x̃) > 0, and denote

I++(x̃) := {i|gi(x̃) > 0} 6= ∅.
Note that, by the continuity of g, I++(x̃) ∩ Ikj

6= ∅ for all j large enough. By
(10),

gi(x
kj ) + 〈g′i(xkj ), dkj 〉 ≤ tkj , i ∈ Ikj

.

For i ∈ Ikj \ I++(x̃), as j → ∞ the left-hand side of the inequality above tends
to gi(x̃) ≤ 0 (notice (33)), while the right-hand side tends to p(x̃) > 0 (recall
(6)). Hence, such constraints are inactive for all j large enough and, by (11),

µ
kj

i = 0, i ∈ Ikj \ I++(x̃).

Formally setting µ
kj

i = 0, i ∈ I++(x̃) \ Ikj
, we can write (8) as

f ′(xkj ) +Hkjdkj +
∑

i∈I++(x̃)

µ
kj

i g′i(x
kj ) = 0.

Dividing both sides of this equality by ‖µkj‖ and let j → ∞, by (31) and
ρ2E º Hkj , we obtain that

∑

i∈I++(x̃)

µ̃g′i(x̃) = 0, µ̃i ≥ 0, i ∈ I++(x̃), ‖µ̃‖ = 1.

which contradicts with Lemma 1.
Suppose now that p(x̃) = 0. By Lemma 2.4, the subproblem (22) with Ak =

Ikj , is solvable for all indices j large enough. Let (skj , λkj ) be a KKT point

of (22). In particular, by Lemma 2.4, {λkj} is bounded. Since βk → +∞, we
have that βkj > ‖λkj‖, and the unique solution of (3) is (dkj , tkj ) = (skj , 0),

with multipliers (µkj , νkj ) generated by Algorithm 1. But then (skj , µkj ) is a
KKT point of (22), again by Lemma 2.4. However the unboundedness of {µkj}
contradicts with Lemma 2.4. Then the proof is completed. ¤

We are now ready to establish the global convergence of Algorithm 1. First
we have an important conclusion as follows.

Lemma 2.6. Suppose that the conditions assumed in Lemma 2.5, are satisfied,
then we have that

γkd
k → 0, k → ∞.

Proof. First from Algorithm 1, it follows that

ψβk+1
(xk+1) ≤ ψβk

(xk) + σγk∆k

≤ ψβk
(xk)− σ/2γk〈Hkdk, dk〉, (32)

where the second inequality is by (16) (νk ≥ 0, p(xk) ≥ 0). Therefore, {ψβk
(xk)}

is a non-increasing sequence. Since {xk} is bounded, ρ2E º Hk º ρ1E, where
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ρ2 ≥ ρ1 > 0, from Lemma 2.5, we know that there exists an index k0, such that
βk+1 = βk = βk0

, as k ≥ k0. Then from (32), we have that for all k ≥ k0,

ψβk0
(xk)− ψβk0

(xk+1) ≥ σγkρ1‖dk‖2/2.
Since {ψβk

(xk)} is non-increasing and {xk} is bounded, we have that γkdk → 0,
as k → ∞. ¤

In the following we give the main result of the global convergence of our
algorithm.

Theorem 2.7. Suppose that (A) holds and there exists an index k1 such that
for all k ≥ k1, Ik = {1, 2, · · · ,m}. If the sequence {xk} generated by Algorithm
1 is bounded, then the sequence {µk} which is obtained by Algorithm 1 is also
bounded, and every accumulation point of the sequence {(xk, µk)} is a KKT point
of the problem (1).

Proof. First from Lemma 2.6, we have that γkd
k → 0, as k → ∞. Now we prove

that dk → 0, as k → ∞. Suppose it is not so, then there exist a subsequence
{dki} of {dk} and a constant ε > 0, such that

‖dki‖ ≥ ε, ∀i. (33)

We next prove that there exists γ′ such that

γki ≥ γ′, ∀i. (34)

Suppose that (34) does not hold, then there exists a subsequence of {γki}, which
without loss of generality, is set by {γki} itself, such that

γki → 0, i → ∞.

From Step 3, Step 4 of Algorithm 1, and Lemma 2.5, we know that if i is
sufficiently large (i > k0), then

ψβk0
(xki +

γki

θ
dki) > ψβk0

(xki) + σ
γki

θ
∆ki ..

On the other hand, from that γki → 0, i → ∞, it follows that

ψβk0
(xki +

γki

θ
dki) = ψβk0

(xki) +
γki

θ
ψβk0

(xki ; dki) + o(
γki

θ
)

≤ ψβk0
(xki) +

γki

θ
∆ki + o(

γki

θ
),

where the inequality above is obtained by (21) in the proof of Lemma 2.3. There-
fore, we have that

γki

θ
∆ki + o(

γki

θ
) ≥ ψβk0

(xki +
γki

θ
dki)− ψβk0

(xki)

> σ
γki

θ
∆ki .

Thus,

(1− σ)∆ki + o(
γki

θ
)/

γki

θ
≥ 0.
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Since ∆ki ≤ −1/2〈Hkidki , dki〉 (by (16)), and from (33), we obtain that

−(1− σ)ρ1ε
2 + o(

γki

θ
)/

γki

θ
≥ 0.

Let i → ∞, noting that γki → 0, then we have that

1− σ ≤ 0,

which contradicts with σ ∈ (0, 1/2), therefore (34) holds. From (33) and (34),
we know that γkd

k 6→ 0, which contradicts with Lemma 2.6. Therefore,

lim
k→∞

dk = 0. (35)

Furthermore, from Step 5 of Algorithm 1, and Lemma 2.5, we know that

βk0 ≥ rk = min{‖dk‖−1, ‖µk‖1 + δ1},
then there exists k2 ≥ max{k0, k1}, such that

βk0 >
∑

i∈Ik

µk, ∀k ≥ k2,

which implies that {µk} is bounded. From (9), it follows that

νk > 0, ∀k ≥ k2.

Furthermore, by (12), we obtain that

tk = 0, ∀k ≥ k2. (36)

Let k → ∞ in (8)-(12), where Ik = {1, 2, · · · ,m}, we obtain that every accumu-
lation point of {(xk, µk)} satisfies the KKT condition of (1). This completes the
proof. ¤

2.3. Numerical results. In this section, we tested two typical problems taken
from [?] and [?] by using our algorithm. The parameters in the algorithm were
selected as β0 = 10, δ1 = 1, δ2 = 1, σ = 0.1, and θ = 0.5. And the numerical
results are given in Table 1 and Table 2, whose columns have the following
meaning:

x0—– the initial point;
Ni —– the number of iterations;
Nf —– the number of objective function evaluations;
Ng —– the number of constraints evaluations;
obj—– the optimal value of the objective function.
Problem 1. Example hs100 [?]

min f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

s.t. g1(x) = 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 − 127 ≤ 0,

g2(x) = 7x1 + 3x2 + 10x2
3 + x4 − x5 − 282 ≤ 0,

g3(x) = 23x1 + x2
2 + 6x2

6 − 8x7 − 196 ≤ 0,
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g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0.

Table 1. Results for Example hs100 with different initial points.

x0 Ni Nf Ng obj
(10, 10, 10, 10, 10, 10, 10) 43 89 356 6.806300573632109e+002

(5, 5, 5, 5, 5, 5, 5) 37 91 364 6.806300574685115e+002
(1, 1, 1, 1, 1, 1, 1) 25 66 264 6.806300573898336e+002
(1, 2, 0, 4, 0, 1, 1) 12 31 124 6.806300572078540e+002

Problem 2. Example s264 [?]

min f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

s.t. g1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 − x3 − x4 − 8 ≤ 0,

g2(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 9 ≤ 0,

g3(x) = 2x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5 ≤ 0.

Table 2. Results for Example s264 with different initial points.

x0 Ni Nf Ng obj
(1, 1, 1, 1) 8 18 54 -44.11340764633566e-002
(0, 0, 0, 0) 8 16 48 -44.11340754856773e-002
(2, 2, 2, 2) 11 18 54 -44.11340879313437e-002
(4, 4, 4, 4) 12 16 48 -44.11340683863549e-002

From Table 1 and Table 2, we can see that the initial points can be chosen
arbitrarily, which shows the algorithm is numerically stable for the above two
problems.

3. Conclusions remarks

In this paper we propose a modified SQP algorithm with global convergence.
The algorithm enjoys well properties. Firstly, the QP subproblems are always
compatible. Secondly, only first order derivatives of the problem functions are
needed. Thirdly, simple automatic adjustment rules for the penalty function
parameters are used. Finally, the line search of the step length is well-defined in
Algorithm 1.
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