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A GLOBALLY AND SUPERLIEARLY CONVERGENT
FEASIBLE SQP ALGORITHM FOR DEGENERATE
CONSTRAINED OPTIMIZATION
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ABSTRACT. In this paper, A FSQP algorithm for degenerate inequality con-
straints optimization problems is proposed. At each iteration of the pro-
posed algorithm, a feasible direction of descent is obtained by solving a
quadratic programming subproblem. To overcome the Maratos effect, a
higher-order correction direction is obtained by solving another quadratic
programming subproblem. The algorithm is proved to be globally con-
vergent and superlinearly convergent under some mild conditions. Finally,
some preliminary numerical results are reported.
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1. Introduction

In this paper, we consider the following nonlinear inequality constrained opti-
mization: '

(P) s.t. filz) <0, jel={1,2,...,m}, ’

where the functions fo, f;(j € I) : R® —R are all continuously differentiable.
It is well known that sequential quadratic programming (SQP) algorithms
are widely acknowledged to be among the most successful algorithms for solving
(P)(See[5]-[10], [12], [14]-[16] and [17]). A good survey of SQP algorithms by
Boggs and Toll can be found in [4]. Many existing SQP algorithms for handling
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constrained optimization problems focus on using penalty functions, while a fea-
sible sequence of iterates is very important for many practical problems, such
as engineering design, real-time applications and that problems whose objective
functions are not well defined outside the feasible set. To overcome this short-
coming, In [12], variations on the standard SQP algorithms for solving (P) are
proposed which generate iterations lying within the feasible set of (P), which is
called as feasible sequential quadratic programming (FSQP) algorithm. FSQP is
proved to be globally convergent and superlinearly convergent under some mild
assumptions including the strict complementary condition. However, at each it-
eration, these algorithms require to solve two QP subproblems and a linear least
squares problem, or two linear systems of equations and a linear least squares
problem. Clearly, their computational cost per single iteration is relatively high.
Recently, Another type of FSQP algorithm in [13] is proposed. In this algorithm,

the following QP subproblem is considered, for an iteration point z*:
(min) Lo
Z, d z+ -2-d de
(QP) s.t. V fo(z*)Td < z, (1.2)

fi(@®) + Vi) Td<orz, jel,

where H} is a symmetric positive definite matrix and an approximation of the
Lagrangian Hessian matrix for (P), and oy is a positive parameter. In [13],
it is necessary to solve an equality constrained QP subproblem to update the
parameter oy such that o = O([|di"!]|?). On the other hand, in order to ac-
cept the unit step size, a correction direction is obtained by solving another
equality constrained QP subproblem. Furthermore, the algorithm is proved to
be locally two-step superlinearly convergent under certain conditions including
the strict complementary condition. Ref [11] proposed a similar algorithm to
solve the problem (P) too, it needs to solve two QP subproblems with inequality
constraints, and like [13], it is proved to be locally two-step superlinearly con-
vergent under certain conditions including the strict complementary condition,
furthermore, it is required that o) approaches to zero fast enough as d* — 0,
i.e., ox = o(||d*|]). In [18], Zhu proposed a algorithm, in his algorithm, a feasible
direction of descent is obtained by solving the QP subproblem (1.2), in order to
avoid the Marotos effect, a high-order revised direction is computed by solving a
reduced linear system. Furthermore, it is proved to be globally convergent and
superlinearly convergent under some certain conditions including the strict com-
plementary condition. Different from [11], [13], it needn’t compute any auxiliary
problem to update oj. In [7, 8], Wright presented an infeasible SQP algorithm
for degenerate inequality constraints optimization problems(i.e.,The strict com-
plementary condition or linear independence condition at the solution is not
assumed) by modifying the QP subproblem, the proposed algorithm is proved
to be local superlinear convergent under some weaker conditions. However, lit-
tle attention has been given to the FSQP algorithm for degenerate inequality
constraints optimization problems.
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In this paper, we have proposed a FSQP algorithm for degenerate inequality
constraints optimization problems. At each iteration of the proposed algorithm,
a feasible direction of descent is obtained by solving a quadratic programming
subproblem. To overcome the Maratos effect, a higher-order correction direction
is obtained by solving another quadratic programming problem. The algorithm
is proved to be globally convergent and superlinearly convergent under some mild
conditions.

The remainder of this paper is organized as follows. The proposed algorithm
is stated in Section 2. In Section 3 and Section 4, under some mild assumptions,
we show that this algorithm is globally convergent and locally superlinear conver-
gent, respectively. In section 5, some preliminary numerical results are reported.
Finally, we give concluding remarks about the proposed algorithm.

2. Description of algorithm

We denote the feasible set X of (P) by
X ={z€R": fi(z) <0,i€ I},
and define the active set by |
Iz) = {i € I: fi(z) = 0O},

In this paper, we suppose the feasible set X is not empty and the following basic
hypothesis holds.

Assumption A;. We assume that the Mangasarian-Fromovitz constraint qual-
ification (MFCQ) holds at x € X. That is, there is some d € R™ such that
Vii@)Td <0,V j€ I(z).

Remark 1. This constraint qualification is weaker than Linear Independent
constraint qualification which is a common assumption for global convergence
analysis of many kinds of SQP methods.

The following algorithm is proposed for solving (P).
ALGORITHM

Parameters 7 € (2,3),0€(0,1), « € (0,3), v €(0,1), o1 > 0.

Data Choose an initial feasible point z! € X, a symmetric positive matrix
Hl. Set £k =1.

Step 1 (Compute the search direction). For the current iteration point z¥,
solve

min z 4+ %dTH 1d
(QP)  st. Vfo(z")Td < 2, (2.1)
fi@®) + V@M Td<opz, jel,

to obtain an optimal solution (z,d*), let (u5, u’} ) be corresponding KKT multi-
pliers. If d* = 0, then x* is a KKT point for (P) and stop; otherwise go to Step
3.
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Step 2. Compute the higher-order direction d* by solving the following
quadratic programming subproblem:

(QP)  min  1dTHd + Vfo(z*)T(d - d¥)

s.t. fj(xk-f-dk)-f-ij(xk)T(d—dk) < __”dkHT jel (2.2)

If there exists no solution or ||Zl7z — dF|| > ||d*||, set d* = d*.
Step 3 (Do curve search). Compute the step size Ay, which is the first number
A of the sequence {1, 8, 3%, ...} satisfying

fo(@* + Ad* + X2(d* — d*)) < fo(a¥) + eV fo(z*)TdF, (2.3)
£i(@F 4+ AdF + X2(d* — dF)) <0, Vjel. (2.4)

Step 4. Set a new iteration point by zF 1 = g%+ ApdF + A2 (dF — d*), opqy =
min{o1, |d¥||*}. Compute a new symmetric positive definite matrix Hy1, set

=k + 1, and go back to Step 1.

We now show that the proposed algorithm is well defined.

Lemma 2.1. Suppose that Hy, is symmetric positive definite. Then (QP) always
has a unique optimal solution.

The proof is similar to the one of Lemma 1 in [18].

Lemma 2.2. Suppose that the conditions in the above lemma are satisfied and
(zk,d*) is an optimal solution of (2.1). Then

(i) z + %(dk)Tdek <0 and z; <0;

(ii) zr, = 0 <= d¥ = 0 <= z* is a KKT point for (P);

(iii) z;, < 0 = d* is a feasible direction of descent for (P) at point z*.

The proof is similar to the one of Lemma 2 in [18].

Lemma 2.3. The line search in Step 3 of the proposed algorithm yields a stepsize
e = [ for some finite j = j(k).

It is not difficult to finish the proof of this lemma.

3. Global Convergence

In this section, we analyze the global convergence of the proposed algorithm.
The following assumptions are necessary.

Assumption A;. The sequence {x*}, which is generated by the proposed algo-
rithm, is bounded.

Assumption A;. There exist a, b > 0 such that a||d||* < dT Hyd < b||d||? for
all k and all d € R™.

We suppose that =* is a given accumulation point of {z*}. In view of J;. being
a subset of the finite and fixed set I, there exist an infinite index set K such that

1 k: * . = v ¢ .
glenf}x v, Jpy=J, VkekK, (3.1)



A globally and superliearly convergent feasible SQP algorithm 827

where
Ji = {_] el: fj(CEk) + ij(xk)Tdk = akzk}.

Lemma 3.1. Suppose that Assumptions As and As hold. Then the sequences
{d* ke K},{z:k € K} and {d* : k € K} are all bounded.

Proof. Firstly, from V fo(z*) — Vfo(z*), k€ K, there exists a constant co > 0
such that || Vfo(a:k) |< co, Vk € K. Furthermore, from Lemma 2.2, formulas

(2.1) and Assumption Aj, one has

02>z, + %(dk)TH;idk Vfo(xk)Tdk + %”dk”2 .
=1V fo(=™)] - lld*]| + §l1d*]®

—colld®l| + §dH1%, k€ K.

This shows that {d* : kK € K} is bounded.
Secondly, the boundedness of {z; : k € K} follows from the boundedness of
{d* : k € K} as well as the following inequalities

02> 2 2 Vfol@")Td* 2 —|Vfo(a®)] - d*] = ~colld*ll, ke K.  (3:2)

IV IV IV

Lastly, the boundedness of {J" : k € K} follows immediately from the bounded-

ness of {d* : k € K}. O
We know that the KKT conditions of (QP) can be formulated as follows:
Hyd* +ugV f(z*) + Eu;?ij(:ck) =0, (3.3)
JE
Jel
0 <uk L (2 — Vfo(zF)TdF) >0, (3.5)
0 <wufl(opze — fi(aF) — Vfi(a*)Td*) >0, jel, (3.6)

where the notation 1y means z7y = 0.

Lemma 3.2. (i) The multiplier sequence {u§}$2, is bounded.
(i1) Let multiplier vector u* = (u’}k,OI\Jk). If %m& k¥ = z* and lim d* = 0,
€

LeK
then {u"C :k € K} is bounded under Assumptions Ay, As and As.

Proof. (i) From the KKT condition (3.4), one has

1=u’3+20ku§2ul§, OSUSSL
J€Jk

(ii) Suppose by contradiction that the given statement is not true, then there
exists an infinite index XK' C K such that || «* ||=| u® |- 00, k € K.
Therefore, dividing (3.3) by ||[u?]| to yield

us

L.
S HRd + -V fo(zR) + Y0 )
[k Tl iy Tl

e

Vfi(z*) = 0. (3.7)

«
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K /
Noting that the sequence {ﬁ,ﬁ : k € K } is bounded with norm one, we can
J

assume without loss of generality that

uk

AR keK, jed, 0<(u;,jeJ)#0. (3.8)
Thus, passing to the limit k € K and k — oo in (3.7), and taking into account
Assumption A3 as well as the given conditions, we have
> 4 Vfi(z*) = 0. (3.9)
JjeJ

On the other hand, from the given conditions, one has J C I(z*), so we
can bring a contradiction from (3.8), (3.9) and Assumption A;, therefore the
boundedness of {u* : k € K} is at hand. O

Lemma 3.3. Suppose that {z*} is a sequence generated by the proposed algo-
rithm, ]];lnf} zF = z* and Ilg% d* = 0 hold. Then z* is a KKT point of (P).
€

Proof. Taking into account the boundedness of {uf : k € K}, {u* : k € K} and
{ok}, we can assume without loss of generality that

ukz(uf,jel)—»u*z(u;,jel), uf —ul, op—o. keK.
Moreover, the fact lim z¥ = z* and lim d* = 0 implies lim z¥ = 0. Thus,
keK keK keK

passing to the limit £ € K and k£ — oo in (3.3)—(3.6) and the given conditions,
we obtain

uSVfo(LE*) + ZJ’U,;‘Vf](:(;*) =0,
j€
uifi(z*) =0, uj >0, f;i(z*)<0, je (3.10)
1=ug+o0o« ) uj, uy>0.
JEJ

From the third formula of (3.10), we know that (ugj,u%) # 0, furthermore,

ug > 0 from Assumption A;, which together with (3.10) shows that (z*, u—*) is a
U
KKT pair of (P). The proof is complete. O

Based on Lemma 3.1, Lemma 3.2 and Lemma 3.3, we now can present the
global convergence theorem of the proposed algorithm as follows.

Theorem 3.1. Suppose that Assumptions A1, A2 and Az hold, then the proposed
algorithm either stops at a KKT point z* for problem (P) in a finite number of
steps or generates an infinite sequence {z*} of points such that each accumulation
point x* is a KKT point for problem (P). Furthermore, there exists an infinite

index K such that the sequence {Z—: : k € K} converges to a KKT multiplier
0

associated with =* and l}m& uf > 0.
€
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Proof. The first statement is obvious. Thus, assume that the proposed algorithm
generated an infinite sequence {z*} and (3.1)holds. The cases 0. =0 and o, > 0
are considered, separately.

A. o, = 0. From step 4, there exists an infinite index set K; C K such that

lim d*~! = 0. By step 4, it holds that
keK,

fa* —a* T < | &5 | e} || @* T =@t < 268 [ @ 1= 0, K € K

So, the fact that lim z* = z* implies that klim z*~1 = z*. Moreover, we know
€

kEKl Kl
that z* is a KKT point for problem (P) from Lemma 3.3.

B. . > 0. Obviously, it is sufficient to show I}lr% d* = 0. For this, we suppose
c€

by contradiction that %n}l{ d¥ # 0, then there exist an infinite subset K "C K
€

and a constant A > 0 such that || d* ||> A holds for all k € K. The remainder
proof is divided into two steps as follows, and we always assume that k € K~ is
sufficient large and A > 0 is sufficient small.

a. S,how that there exists a constant A > 0 such that the step size Ay > A for
ke K.

fo(z® + AdF + N2(d* — d%)) — fo(z") — oAV fo(a*)T d*
=V fo(z")T(Ad* + N2(d* — d*)) — aAV fo(z*)Td" + o(N)

=\1 — )V fo(zr)Td* + o(N)
<A1 — @)z +o(A)

<_ %)\(1 — a)(d*)T Hyd* + o(N)
<_ %a/\(l —a)[|d¥|% + o(\)
<- —;-a)\(l — &) A%+ o(N).

The last inequality above shows that (2.3) holds for k € K’ and A > 0 small
enough.

Analyze (2.4): if j € I(z*), i.e., f;(z*) < 0. from the continuity of f;(z) and
the boundedness of {d* : k € K} and {d* : k € K}, we know fi(z® + MdF +
A%(d* — d*)) <0 holds for k € K’ large enough and A > 0 small enough.

Let j € I(z*), i.e., fj(z*) = 0. By using Taylor expansion and (2.1), we have
Fi(@® + Ak + €2 (dF — db)) Fi(2) + AV f3(a*)Td* + o(N)

£ (@F) + Mowzr — fi(z%)) + o(A)

(L= X)f;(@") + Aoz + o(N)

Aoz + o( ).

IA A
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Therefore, from (2.1) and Assumption As, we have
£i(@k + Adk + \2(dF — d*)) —251(d¥)T Hed® + o())

—q0opa || d* |[* +o())
—50.aA% + o(A).

IAINAIA

Thus, from the inequality above, we can conclude the search inequality (2.4)
holds for k € K large enough and A > 0 small enough.

Summarizing the analysis above, we conclude that there exists A > 0 such
that Ay > X for all k € K.

b. Use A\x > X > 0 to bring a contradiction. From (2.3), (2.1) and Assumption
Az, we have

folz®t) < folzF) + ale Vfo(zF)TdF < fo(2¥) + adrz
<

o(z®) — Lad(d¥)THid® < fo(zF) — Sadea | d¥ |12, V.

S S

Therefore the sequence { fo(z*)} is decreasing, furthermore combining klinI} fo(z®)
‘E 1

= fo(x*), one knows klim folz®) = fo(z*). On the other hand, one also has
—0

. 1 - ,
fo(z"*1) < fo(a®) — §aaAA2, Vke K.

Passing to the limit £ € K "and k — oo in the inequality above, we have
—%aa)\Az > 0, which is a contradiction. So, d* = 0. According to Lemma
3.3, z* is a KKT point for problem (P). O

4. Rate of convergence

In this section, we will analyze the convergent rate of the proposed algorithm,
for this, the following further hypothesis is necessary.

Assumption A, (i) The functions fj(z)(j € I) are all second-order continuously
differentiable.

(i1) The sequence {z*} generated by the algorithm possesses an accumulation
point o* such that KKT pair (x*,u*) satisfies the strong second-order sufficiency
conditions, i.e.,

dTV2 L(z*,u*)d >0, Vde QY {de R*:d#0,Vf+(z*)Td=0}, (41)
where
L(z,u) = fo(z) + ;rujfj(x), It={jel:u}>0} (4.2)
FASS

Lemma 4.1. (i) Suppose that Assumptions A;, Az hold. Then klim d¢¥ =

0, lim d*=0, lim z, =0, lim o, =0 and lim |[z*+! —2*|| = 0.
h—nc k—oc PO k—c
(i) If Assumptions Ay,As and Aj are satisfied, then lim z* = z*.

k—x
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Proof. (i) Similar to the proof of Lemma 4.2 in [18]. We have that lim d¥ =

k—oc

~

0, klim z* = 0. Furthermore, it is easy to conclude that klim d¥ = 0 from Step
C—OC c— OO0

On él?e other hand, from the conclusion above, one has
lim ||z"™ — 2% = lim [|Aed® + X2(d® — d¥)|| < lim (2]|d"] + ||d*])) = 0.

(ii) Under Assumption A, (ii), one can conclude that the given limit point z*
is an isolated KKT point of (1.1)(See Theorem 1.2.5 in [16]), therefore z* is an
isolated accumulation point of {z*} from Theorem 3.1, and this together with
leIIolo |z¥*t! — z*|| = 0 shows that lim z* = z*. The proof is finished. O

k—oo

Lemma 4.2. Suppose that Assumptions Ay, As and Az hold. Then
|zl = O(la*])), N|d* — d*|| = O(lla"|1*), (4.3)
It C J, CI(z"). (4.4)

Proof. Firstly, from the first inequality constraint of (2.1), we have
ISl N S s T < IV Aol
So it is not difficult to verify that |z;| = O(||d¥])).

Secondly, we shall show the second equation of (4.3). In view of Assumption
Ay and dF — 0, and the constraints of (QP) is consistent for large enough k ,
furthermore, these can be denoted as follows

1i(@*) + ViR d < -M | d¥ || %, e,
for some M > 0. Similar to the proof in [1], we obtain ||d¥ — d*|| = O(||d*||?).
To show the relationship (4.4), one first gets Jr, C I(z*) from klim (z*, d*, z,

or) = (0,0,0,0). Furthermore, one has lim )\1’;’+ = A7, > 0 from Theorem 3.1,

k—oo

SO )\’j+ > 0 and I C Ji holds for k large enough. The proof is complete. O

Lemma 4.3. Suppose that Assumptions Ay, Asand Az hold. Then {u*} con-
verges to the KKT multiplier associated with x* for (P), where {a*} is corre-
sponding KKT multipliers for (2.2).

The proof of the lemma is obviously, and is omitted. To ensure the step size
Ar = 1 for k large enough, an additional assumption as follows is necessary.

Assumption A;. Suppose that ||(V§xL(33k,ﬂ’}k) — Hyp,)d*|| = o(||d¥|), where

L(z, W% ) = fo(z) + Y U f;(w),

JE€Jn

Jp={j €I: fj(a"+d") + Vf;(a")T(d* — d*) = —||d"|"}.
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Remark 2. This assumption is similar to the well-known Dennis-More Assump-
tion [2] that guarantees superlinear convergence for quasi-Newton methods.

Lemma 4.4. Suppose that Assumptions Ay, Az, A3, Ay and As hold. Then the
step size of the proposed algorithm always equals one, i.e., A\ = 1, if k is suffi-
ciently large.

Proof. We know that it is sufficient to verify (2.3) and (2.4) hold for A = 1, and
the statement “k large enough” will be omitted in the following discussion.
We first prove (2.4) holds for A = 1. For j ¢ I(z*), i.e., fj(z*) < 0, in view of

(zF,d*) — (z*,0)(k — 00), we can conclude fi(zF + d¥) < 0 holds.
For j € I(z*), from Taylor expansion, (2.1), (2.2) and formula (4.3), we have

fi(a* + d¥) Fi(ak +d®) + V f(z* + d)T(dF — d¥) + O(||(d* — d¥)|12)
£i(@* + d¥) + V 5(a*)T(d* — d*) + O(||d¥|[]| (d* - d¥)|)
+O(||(d* — d*)||?)

audknT +O(||d*[1*)

IAINA

(4.5)
This shows that (2.4) holds for A = 1.
The next objective is to show (2.3) holds for A = 1. From Taylor expansion
and taking into account relationship (4.3), we have

we = folak +d¥) — fo(z*) — aV fo(zF)TdF

= Vio(a")Td* + Vfo(a) (d* — d¥) + 3(d") Vi, fo(ab)d*  (46)
—aV fo(z*)"d* + o([|d*]1?).
On the other hand, from the KKT condition of (2.2) and formula (4.3), one has

Viol@) (@ —d¥) = —(d*)THi(d* —d*) - 3 @V ()T (d" - d)
JE€Jk
= ¥ ajfi(z* +d*) +o(lld*]?).
J€Jk
» (4.7)
Via*)Td* = —(d*)"Hxd" — 3 @V fi(a*)"d*
_ JEJk
= —(d*)THpd"* + > uk fi(a*) - > oz
JEJ JEJk
Again, from Taylor expansion, we have

1

fi(@* +d") = (") + V(T d" + S (@) TV f(Nd + o(ldM)®), € T

Thus
> wifi(ah +d¥) = 3 oz + 5(d)T (X @V fi(zh)d" + of]|d* ().
JEJK FETn ek

(4.8)
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Substituting (4.8) into (4.7), one has
Vho(ah)T(d* = d) = 3 Wonzs + 3(d)T (X WYL F(")d" + o).

j€T J€Tk
(4.9)
Substituting (4.9) and the third equation of (4.7) into (4.6), we obtain

(a — 1)(d¥)T Hy.d* + L(d¥)TV2, L(zF, 7F)d*
(1-a) ¥ @fi(@) +a ¥ Worz + of||d*]?)
jéj;,- jEJk
((a@ — 1) + 3)alld®||? + 3(d*)T(V2,L(z*,u*) — Hy)d*
1-a) > Hé?fj(:ck) +a ), ﬂfakzk + o(||d*||?).
jeTx €Tk

Wk

+IN +

So, using Assumption A5 and the given conditions, one has
1 .
wg < ((e—1) + —2-)alld;‘ll2 + o([ld"[1?).

Therefore, according to o € (0, 5), we know (2.3) holds for A = 1. The whole
proof is finished. O

Theorem 4.1. Under all above-mentioned assumptions, if ||(uft, ub ™) —(uf, uf)||
— 0(k — o0), the algorithm is superlinearly convergent. i.e., the sequence {z*}
generated by the algorithm satisfies ||z*+1 — x*|| = o([|z* — z*|)).

Proof. Similar to the proof of Theorem 5.3 in [8], we can conclude that
Iz +d* — 2" = o(l|z" — z”)-
In view of Lemma 4.2, one gets

ekt =z |2t 4+ dt — 2+ ||d* - d¥

e =% — z*]]
¥ +d* =z | (14" —d¥|| 14"
laF — z*]] [d* Jle* — 27|
ofllz* — )  Nd" —a* "l _ o, oo
S | lds Jla® == '

5. Numerical experiments

In this section, we test some practical problems based on the proposed al-
gorithm. The numerical experiments are implemented on MATLAB 6.5, under
Windows XP and 1000MHZ CPU. The (2.1) and (2.2) are solved by the Opti-
mization Toolbox. The BFGS formula, which is proposed in [3], is adopted in
the algorithm.

During the numerical experiments, we set

7=25, v=01 =06, a=03, o1 =0.6.
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The test problem in Table 5.1 are selected from [19] and [20]. The initial points
for the selected problems are as same as the ones in [19] and [20]. The columns of
Table 5.1 have the following meanings: The (n, m) is the the number of variable
and constraints of the test problems. The prob column lists the test problem
taken from [19] and [20] in order. The columns labelled Ni, Nf0 and Nf give the
number of iterations required to solve the problem, objective function evaluations
and constraint function evaluations(including linear and nonlinear constraints),
respectively. The columns labelled objective, dnorm and eps denote the final
objective value, the norm of d¥ and the step criterion threshold e, respectively.
The detailed information of the solutions to the test problems is listed in the

following Table 5.1.

Table 5.1 Numerical results

Prob | (n, m) | Ni | Nfo | Nf | objective dnorm eps

hs001 (2, 2) 20 59 156 | -0.0100e+4-02 | 4.1528e-012 | 0.1e-05
hs12 (2, 1) 19 | 56 74 | -0.3000e+02 | 6.4675e-007 | 0.1e-05
hs29 (3,1) | 22| 63 84 | -0.2263e+02 | 8.1949e-007 | 0.1e-05
hs35 (3, 4) 11 ] 21 124 | 0.1111e400 | 1.4208e-006 | 0.1e-05
hs43 (4,3) | 29| 88 | 348 | -0.4400e+02 | 5.5220e-007 | 0.1e-05
hs100 (7, 4) 25 87 444 | 0.6806e4-03 | 5.6542e-007 | 0.1e-05
hs108 | (9, 14) 1 1 14 | 0.0000e4-03 | 1.1124e-016 | 0.1e-05
s225 (2, 5) 17 85 0.00204-03 | 3.1656e-012 | 0.1e-05
5264 (4,3) | 28 | 84 | 312 | 0.4411403 | 7.6810e-007 | 0.1e-05
s388 | (15,15) | 50 | 173 | 3330 | -0.58214-03 | 6.7815e-007 | 0.1e-05

6. Concluding remarks

In this paper, we have presented a feasible sequential quadratic programming
algorithm for degenerate inequality constraints optimization problems. At each
iteration of the proposed algorithm, a feasible direction of descent is obtained
by solving a quadratic programming subproblem. To overcome the Maratos
effect, a higher-order correction direction is obtained by solving another quadratic
programms. The algorithm is proved to be globally convergent and superlinearly
convergent under some mild conditions. Preliminary numerical results in Section
5 also show that the proposed algorithm is effective.
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