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POLYNOMIAL COMPLEXITY OF PRIMAL-DUAL
INTERIOR-POINT METHODS FOR CONVEX QUADRATIC
PROGRAMMING

ZHONGYI LIU*, WENYU SUN AND RAIMUNDO J.B. DE SAMPAIO

ABSTRACT. Recently, Peng et al. proposed a primal-dual interior-point
method with new search direction and self-regular proximity for LP. This
new large-update method has the currently best theoretical performance
with polynomial complexity of O(n% log Z). In this paper we use this
search direction to propose a primal-dual interior-point method for con-
vex quadratic programming (QP). We overcome the difficulty in analyz-
ing the complexity of the primal-dual interior-point methods for convex
quadratic programming, and obtain the same polynomial complexity of

241
O(n 24 log ) for convex quadratic programming,.
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1. Introduction

In this paper we consider the following convex quadratic programming prob-
lem

1
(P) min{c’ z + ExTQ:c : Az =0, © >0}

and its associated (Wolfe’s) dual form

1

(D) max{pTy — §xTQx ATy + 2 —Qxr=c, 22> 0},
m7y7z

where @ is a given n x n symmetric matrix, ¢ € RX, b € R>, and A is a

given m x n matrix. Primal-dual interior-point methods (IPMs) are among

the most efficient algorithms to solve linear programming (LP), semidefinite
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programming (SDP), complementarity problems (CP) (see [7, 8]). Recently,
many interior-point methods have been proposed for solving LP problems.. These
methods are based on new search directions and self-regular proximity with
attractive theoretical properties such as polynomial time complexity and efficient
practical implementations, see ([3, 4, 5, 6]). In [1], the author extends an interior-
point method to QP and proves that the small-update algorithm finds an e-
solution in a polynomial time. In this paper, we continue this idea by using the
search direction from Peng’s work, extend it to QP, and prove its polynomial
complexity. Usually, for QP problems, the property of orthogonality between
the two scaled directions in the primal and dual spaces is not satisfied. This
is the main difference of complexity analysis between LP and QP, and this will
make the problem a little difficult.

The main aim of this paper is to extend a new class of primal-dual methods
with new search direction from LP to QP. Our main effort is to deal with the
case of dfdz s 0 which is different from the case in LP. Usually, it needs to
solve a high-order equation if we want to find the maximal feasible step length
(see (24) in Lemma 8). In this paper we succeed in transforming this problem
into finding a suitable step size by applying Lemma 3. Therefore the difficult
problem is solved.

This paper is organized as follows. In the next section, the state of the
problem is described. Section 3 provides some technical lemmas and Section 4
estimates the maximal feasible step size. In Section 5, a damped Newton step
on the proximity is presented, and its effect is evaluated. Based on the above
discussions, in Section 6, the primal-dual interior-point algorithm for convex
quadratic programming is built, and the polynomial complexity of O(n% log %)
is established. Finally, in Section 7, a brief conclusion in contained.

Here we introduce some notations. R* denotes the space of real n-dimensional
vectors. Given u, v € R™, uTv is the inner product, and uv denotes Hadamard-
product. ||u|| is the Euclidean norm, |lulle is the I, norm. Given a vector
u € R*, U=diag(u) is an n x n diagonal matrix with U;; = u,, e is the all-one
vector. And for a vector d,, the componentwise expression dg; 1= (dz):, and so
on. Finally, we define the vector {(d,d,) := (dz1,. .. ,dzn,ds1,-.. 1 dzn) € RFx
and the norm

ey d)l = | Y d2,+ D a2,
and so on.

2. The state of the problem

We first assume that both (P) and (D) satisfy the following conditions:
¢ Positive semidefiniteness (PSD). The matrix Q is symmetric and positive
semidefinite.
o Interior-point condition (IPC). There exists (2%, y°, 2°) such that Az = b,
ATy0 420 —QaP =¢, 2% > 0, 20 > 0.



Interior-point methods 569

¢ The full rank condition (Full-Rank). The m x n matrix A is of rank m.
Finding an optimal solution of (P) and (D) is equivalent to solve the following
system:

Ar = b, x>0,
ATy+2-Qz = ¢, 2>0, (1)
zz = 0.

The basic idea of primal-dual IPMs is to replace the third equation in (1) by the
parameterized equation xz = pe, (4 > 0). Thus we consider the system

Az = b, x>0,
ATy+2-Qx = ¢ 2>0, (2)
Tz = pe.

It is shown, under our assumptions, that there exists one unique solution (z(u),
y(p), z(p)) called as p-center. The set of y-centers (with p running through all
positive real numbers) gives a homotopy path, which is called the central path
of (P) and (D).

IPMs follow the central path approximately. Without loss of generality, we
assume that (z(p), y(u), 2(1)) is known for some positive p. Then p is updated
and reduced to p4 = (1 —60)u for some 6 € (0, 1) and with Newton’s method one
constructs a new triplet (z,y, z) that is ‘close’ to (x(p+), y(t+), 2(+)). This
process is repeated until the point (z,y, 2) is in a certain neighborhood of the
central path.

Usually, if 6 is a constant independent of n, for instance § = %, then we call
the algorithm a large-update (or long-step) method. If § depends on n such as

= ﬁ, the algorithm is named a small-update (or short-step) method. It is

known that small-update methods for (LP) have an O(+/nlog ) iteration bound
and large-update methods have the worst case iteration bound as O(nlog %)

In the analysis of IPMs we need to keep control of the ‘distance’ from the
current iterates to the current u-centers. In other words, we need to quantify
the ‘distance’ from the vector zz to the vector pe in some proximity measure.
Usually the proximity measure is defined as follows:

In the algorithm we use a threshold value 7 for the proximity and we assume
that we are given a triple (z°,9°, 2°) such that §(x°,4°, 20) < 7 for u® = 1. This
can be done without loss of generality [7]. Let Az, Ay, Az denote the solutions
of the following Newton equations for the parameterized system (2):

AAx = 0,
ATAy+Az—QAz = 0, (3)
rAz+2zAx = pe—czz.



570 Z. Liu et al.
For convenience, let us introduce the vector v defined as
[xz
V= ';,
de =X 'VAz, d, = Z7'VAz, dy = Ay,
and the matrix

A= lAv-lx, Q= lV‘lXQV‘lX,
7 p
then the system (3) reduces to
Ad, = 0,
-ATd,—d, +Qd, = 0, (4)
d.+d, = vi—w,

which leads to the system

I+Q -AT d: N\ _ [ vi-v
which is nonsingular since Q > 0 and A4 is of full rank.
The third equation in (4} is
de +d, =v"1 — 0.

1

When dealing with the squared proximity, i.e., [[v~! — v||?, the search direction

is
dy +4d, = —V(%Hv_l —oP) =v% —w.
According to [4], the Newton equation is modified as follows:
de+d,=v79—v
with g > 1.
3. Technical results

As we know, a key issue in the analysis of an interior-point method, partic-
ularly for a large-update IPM, is the decreasing property of a positive sequence
of values of the proximity measure. This is crucial for the complexity of the
algorithm. In this section we consider a general positive decreasing sequence.
First, several available lemmas are required.

Lemma 1. ([4, Lemma 2.1]) Suppose that o > 1. Then
l—at < (1-8t)% tel0,1],
alt—1) < t*—1,t>0.
If a1 > ag >0, then
[t—t=21] > |t —t2|, t > 0. (5)
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Lemma 2. ([6, lemma 1.3.1]) Suppose that a € [0,1]. Then
Q1+t)*<l+oat, Vt>-L

Lemma 3. ([2, Lemma 3]) Suppose that f(z) = fi(x) + fa(x), both fi(z) and
fo(x) are strictly monotonically increasing in the interval [a, b]. The roots of
fi(@) = 0 and fa(x) = 0 are z1, xo respectively. Then the root x* of f(z) =0
satisfies that

z* > min{zy, z2}.

The following proposition is important for our discussion.

Proposition 1. ([6, Proposition 1.3.2]) Suppose that tx >0 (k=0,1,2,...,k)
is a given sequence satisfying the inequalities

thin <te—pt], B>0, k=0,1,....,k
k

with vy € [0,1). Then
_ t(l)—“Y
k< | =———1.
~ |8 =7)

Moreover, for any fized p > 0, ti > p implies
l—y _ 15
E< L/l_ .
Bl —7)
4. Bounds for v and the step size

In the analysis of the algorithm, we use a well-known norm-based proximity
measure §{v) according to
§:=6(v):=|lv! —v. (6)
In addition, we also define
o(v) :=|lde +de|| = [[v7¢ — v]. (7)
Letting Az, Ay, Az denote the displacements in the original space, the result
of a damped Newton step with damping factor « is denoted as

zy =z+aldzr, yr=y+aldy, zy=z+alAz

Lemma 4. ([3, Lemma 3.1]) Let o := o(v) as defined by (7). And we write
Umin = MiNV; and Vmax = maxv;. Then

Vmin > (14 0)7%,  Umax < 140

In the sequel, we use the following notations:

- dy A - d, A
dm:_:_ma dz:_:_z (8)
v T v z
and du A di A
R
v; T; (% 23
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We then may write
zy =xle+ady), 24 =z2(e+ad,). (9)

Hence the maximum step size is determined by the vector (dz, d,): the step size
@ is feasible if and only if e + ad, > 0 and e + ad, > 0, and this will certainly
hold if

1 - a/(dg dz)]| = 0. (10)
Since pd.d, = AzAz and
dld, = d} (Qd, — A"d,) = d; Qd; > 0. (11)
This enables us, by use of (7), to write
o(v) = ||de + ds|| > ||(dz, d)l|- (12)

Now we are ready to give the following lemmas.

Lemma 5. One has

(e, &) < o(1 +0)5. (13)
Consequently, the mazimal feasible step size, Qmax, Satisfies
Qmax = "‘—L—l
o(l+o)7
Proof. Using Lemma 4 and (7), we may write
7y dJ dz “(dﬁv dz)” g L
de, )| = ||(—, =) £ ——= < — <ol .
(e, )l = 1= — -~ o(1+0)
From (10) we derive that
1
Omax 2 5757
7 (de, )|
Hence the lemma. follows. O
Lemma 6. One has
0<dld, < %02. (14)

Proof. Using (11), the left-hand side of (14) is obvious. Also,
- I 1 1 1
Tq d. <= 2 2\ . > 2t 2 __ 2.2
dyd. = ;:1 doidzi < 5 ;:1(% +d;;) = 2ﬂ(dw,dz)u < 2\}% +d:| = 507,

where the first inequality is due to

n

Y (o ~ dei)? = (d2; + d2; — 2dpidzi) 2 0,
i=1

i=1
and the last inequality due to (12). u

Lemma 7. One has
o264 (15)
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Proof. Tt follows from (5) in Lemma 1 that
o? = Z(U’ —v; 9% > Zn:(vi —v; ) =62
; i=1
The lemma follows. O

5. Effect of a damped Newton step on the proximity
Recall from (6) that

62 := 8% (zz, 1) = T (V¥ + v — 2e), (16)

8% 1= (zyzp, p) = el (V2 4017 —2e), vy =, /w—jji. (17)
Using (8) and (9) we find

and

9  TyZy zz(e + ad,)(e + ad,)
v = s
oo f ]
= v (e+ ad,)(e+ad,)
= (v+ady)(v+ad,).

Hence we obtain

e"vd = eT (v + av(d, + d,) + a?dyd,) = eTv? + v’ (v —v) + a?dfd,.

Furthermore,

e p—
v? + a(v!=7 —v?) + a?d.d,
We define the difference between the proximities of two neighboring steps as a
function of e, i.e., f(a) = 6% — 6%. From (16) and (17), we get

& = el (v? + a(w'™1 —v?) + o®d.d, +

2e).

n

_ 1 1
Z (a(vil ?—0?) + o2dyid,; + 5 = _2)

fl@)

i=1 v? 4+ afv; ! = v?) + a?deid - Uj
- 1 1
2d7d, g2y, b , _ 1)) 18
oy G ¥ ; oy, vi)+ v2 \ (1 + ady) (1 + ady;) (18)

Obviously, f(a) is a twice continuously differentiable function of « if the step is
feasible. The next result shows that in the interval [0, amax) the function f(a)
is a convex function of «, where ap.x is the maximal feasible step size.

Lemma 8. Let the function f(a) be defined by (18), a € [0, (tmax). Then f(a)
18 convex. Furthermore,

‘ ’Uiz <(1 + adxi)3(1 + acizi) (1 + ozcizi)?’(l + Oé(jm) -
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and ‘
o) < 0?43 ( G ) 20
ey s o ; v7 \(1+ adz)3(1 + ady) (1 + adzz)?’(l + adyi) 20
hold.

Proof. By direct calculations, we have

@) = 2dld+ Z ( = P -
- L+ad,)(l+ady)  (1+ad,)?(1+ad)?

. m%
(1+ad:)3(1 +ady; )

By using the well-known inequality |2¢1t2| < 3 + 2, we have

2did.; dz, d?,
(14 ady:)?(1 + ad,;)? (1 + ad)3(1 + ad.,;) (1 + ad,;)3(1 + ady)
By using Lemma 6, the result follows. [

Denote w; = y/d2, +d?, and w = ||(w1, ... ,ws)|. Obviously, we have w =
l(dz,d.)||- From Lemma 5, it follows that

w<

7 <o(l+a)h. (21)

Umin

Now recalling (19) and (20) in Lemma 8 we can conclude that for any a €
[0, Otmax),

n e )

1 1 w?
- < fll@)<o*+3) 53—t — 22
;vf 1+aw)4 s fle)ysot+ ;’vf(l—aw)‘l (22)

3w?
O - (23)
12mn (1 - CXUJ)4

A direct calculation gives f/(0) = —o?. It follows from (22) and the convexity of

fle) that

f@) = 50+ /:f'@)dg

ed 13

/O (f(0)+ /0 f(@czc) dt
o €

f'(©)a+ / / () dcde

fi{a) —f(0a+/ /cr + 3 C )4dCd§.

mln

I

Il

IA
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The second equality is due to f(0) = 0. Obviously, f/'(a) =% + 023—“2)—4 >

n(I—aw
0. Hence fi(a) is convex and twice differentiable with respect to a. Since
f1(0) =0, f1(0) = f/(0) < 0, and f}'(a) goes to infinite if o approaches 1/w, the
function f;(a) attains its minimal value at some positive value & of «, and & is
the stationary point of fi(«). Since fi(&) =0, we get

& 3LU2
(0 / 2 dE =0
fl( )+ o o +,Ur2nin(1_€w)4 é. i
which is equivalent to
—o? 0%+ (1 —aw) ® —1) =0, (24)

Note that in the case of LP, where dZd, > 0 holds, the equation (24) reduces to

ot (1 —aw) - 1) =0.

min

And we can get the root & exactly. But in the case of QP, it is not easy because
the equation is of fourth order. Luckily, we can estimate a lower bound of a.

Let us define
2

wi(a) = —%— + o*a
and
2
wola) = —%— + v;) (1 —aw)™—1).

min

Note that both functions w;(«) and wo(c) are strictly monotonically increasing
for a € [0,@), & := 1/w. And the root o of wi(a) =0 is af = 1/2. By simple
calculations, we find that the root aj of wa(a) = 0 can be represented as

1

1 1 s
=1 | ————— . 25
125 w <1+02U2_ > ( )

2w

Since the right-hand side of (25) is monotonically increasing with respect 0 vmin
and monotonically decreasing with respect to w, respectively. By Lemma 4 and
(21) one can get

Wl

oo 1 , 1
a = — —
? o(1+0)7 —”2‘%'
14 _le_
20(14+0)4

By use of Lemma 2 we can write
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e

3 — s\ ¥
1 . 1 |1 2049
—t - 14 —2 1+ —<2—
14+ (14019 2(140)9 2(140) 9
20(1+9)9
o
_ 1 2(1+40)4
- 3 14—
2{1+40)2
Hence we have
ar > L 1 1
T3 (14+0)i 20+0)i+o
By using Lemma 3, one can get
1 1 1 1
dZmin{aI,a§}21~ 17 3 > i 3
3 (14+0)7 2(14+0)s+0 607 160740
where the last inequality is due to o > 1. So, We can use
1 1
o = —_— {(26)

- T 3
60¢ 1607 + 0
as a default step size.

Lemma 9. ([6, Lemma 1.3.3]) Let h(t) be a twice differentiable convez function
with h{0) = 0 and h'(0) < 0, and let h(t) attain its (global) minimum at t* > 0.
If W'(t) is increasing for t € [0,t*], then

th'(0)
2

h(t) < , for 0 <t <t

We apply this lemma with h = f; and t = a. First, we verify that the
hypotheses of the lemma are satisfied: we have f;(0) = 0 and f{(0) < 0. Fur-
thermore, fi’(a) > 0, and

12w3 1

{'(a) =R(a) = 2 (awf >0,

Vmin

where the inequality is due to a € [0, %) Hence the lemma applies. Using also
(5}, we obtain

. . ot / 0 a*0.2
flat) < Aary < O _
2 2
Finally, by substitution of (26), we immediately have
1 o2
f(a*) < - T

607 1604 + 0
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3
When ¢ > 3, noting that o > 1, we have ¢ > o9, and furthermore
1—-1
g9
o) < — .
flo?) < 102

6. Algorithm and complexity analysis

(27)

Lemma 10. ([4, Lemma 3.11]) Let (z,y, 2) be strictly feasible and pn > 0. If
pg = (1= 0O)p, then

In the algorithm we monitor the progress of inner iterations by the proximity
8(xz, ). The algorithm can be stated as follows.

Primal-dual algorithm

Input:
A proximity parameter T;
an accuracy parameter € > 0;
a variable damping factor «;
a fixed barrier update parameter 6, 0 < 6 < 1;
a strictly interior point (2°,°, 20)
and p® = 1 such that §(x°2°, u%) < 7.
begin
=2y =y z:=2
while ny > ¢ do
begin
= (1 - 0)p;
while 6(zz; u) > 7 do
solve the system (3);

0 0

S =

begin
r:=1z+ aAu;
y =y + aAy;
z:=z+ alz
end
end
end

Lemma 11. Let §(zz,u) < 7 and 7 > 1. Then, after an update of the barrier
parameter, no more than

a1
204q (T2 4+ 210/n+ 6%n)\
q+1 1-6

(28)
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iterations are needed, where g > 3.

Proof. By Lemma 10, after an update,

(20(z2, p) + 0y/)*
i1-9

(5(.’172, ,Lb+)2 <

i

) -
Each damped Newton step decreases 62 by at least 0 2(, . Hence, by Proposition

1 withy =1 — %, B=1/102, and t5 = (%)2, after at most

204q [ 7%+ 2160/ + 0*n %=
g+1 1-0

iterations, the proximity will have passed the threshold 7. This implies the
lemma holds. [

Theorem 1. If ¥ > 1, the total number of iterations required by the algorithm

18 no more than
2 2.\ %
(204(1 ('r + 278+/n + 0 n) ] P log g] ) (29)

qg+1 1-6 8

Furthermore, O(n% log 2) (¢ > 3) can be as an upper bound of iteration num-
ber.

Proof. It can be shown that the number of outer iterations is given by

e
é gs

(see [7, Lemma 11.17]). Multiplying this number by the bound in Lemma 11
yields (29).

For large-update IPMs, omitting the part of the round-off brackets in (29)
does not change the order of magnitude of the iteration bound. Hence we may
consider the following expression as an upper bound for the number of iterations:

0 204q (72 +270\/n 4+ 6*n %1 n —O(ngzi‘ll ﬁ) >3
g+1 1-6 R g 4=2

which is as the currently best iteration bound for interior-point methods of LP
with large-update. a

7. Conclusion

We have extended the primal-dual interior-point methods with new search
direction from LP to QP. In the case of LP, the scaled Newton directions d,
and d, are orthogonal, but it is not true in the case of QP. There exists a little
difficulty to analyze the complexity of QP when evaluating the step size. We
observed that the step size is bounded below. Hence, a suitable lower bound
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which can be regarded as a suitable step size is obtained. The iteration bound

obtained is O(n%1 log2) for ¢ > 3 which is the same as that in the case of
LP. Note that in this paper, we only prove that this result holds for ¢ > 3. We
expect that the further research by ourselves will deal with the case of ¢ > 1. In
addition, we will, in the future, deal with the numerical implementation of this
algorithm for convex quadratic programming problems.
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