Bull. Korean Math. Soc. 42 (2005), No. 4, pp. 837-849

A SUCCESSIVE QUADRATIC PROGRAMMING
ALGORITHM FOR SDP RELAXATION OF
THE BINARY QUADRATIC PROGRAMMING

XUEWEN MU, SANYANG Liu, AND YALING ZHANG

ABSTRACT. In this paper, we obtain a successive quadratic pro-
gramming algorithm for solving the semidefinite programming (SDP)
relaxation of the binary quadratic programming. Combining with
a randomized method of Goemans and Williamson, it provides an
efficient approximation for the binary quadratic programming. Fur-
thermore, its convergence result is given. At last, We report some
numerical examples to compare our method with the interior-point
method on Maxcut problem.

1. Introduction

In this paper, we present a successive quadratic programming al-
gorithm for solving the semidefinite programming (SDP) relaxation of
the binary quadratic programming, which is a fundamental problem in
optimization theory and practice. VLSI design, statistical physics, and
combinatorial optimization are all sources of the binary quadratic pro-
gramming ([1, 2, 3]), which can be naturally relaxed to SDP problem.
The idea has been used by several authors. For example, Goemans and
Williamson[4] developed a randomized algorithm for the maximum cut
problem, based on solving its SDP relaxation, which provides an approx-
imate solution guaranteed to be within a factor of 0.87856 of its optimal
value whenever the associated edge weighs are nonnegative. Efficient
algorithms for solving the SDP have been recently developed. One ap-
proach is with the use of interior-point methods ([5, 6]). Other nonlinear
programming methods have also been proposed. For instance, Helmberg
and Rendl[7] introduce the spectral bundle method which builds on the

Received April 9, 2004. Revised June 21, 2005.

2000 Mathematics Subject Classification: 90C22, 90C55.

Key words and phrases: binary quadratic programming, successive quadratic pro-
gramming algorithm, semidefinite programming, randomized method.



838 Xuewen Mu, Sanyang Liu, and Yaling Zhang

framework of the proximal method of Kiwiel; The approach by Homer
and Peinado|[8] for using the change of variables X = VVT vV c ®»*",
where X is the primal matrix variable of the maxcut SDP relaxation,
is to transform the maxcut SDP relaxation into a constrained nonlin-
ear programming problem in the new variable V. More recently, Samuel
Burer and Renato D. C. Monteiro[9] propose a variant of Homer and
Peinado’s method based on the constrained nonlinear programming re-
formulation of the maxcut SDP relaxation obtained by using the change
of variable X = LLT, where L is a lower triangular matrix. In this paper,
we consider the binary quadratic programming and its corresponding re-
formulation of the SDP relaxation directly. A successive quadratic pro-
gramming algorithm for solving SDP relaxation of the binary quadratic
programming is provided by using the SDP relaxation and the change
of variables X = VVT V c ", Furthermore, its convergence result
is given. The step-size in our algorithm is obtained by solving n easy
quadratic equations without using the linear search technique. The com-
putational experience with our method indicates that it is substantially
faster than the interior-point method.

The paper is organized as follows. In Section 2, we present the binary
quadratic programming problem and its relaxations. In Section 3, the
successive quadratic programming algorithm of the relaxation problem
is obtained and its convergence result is given. Some numerical examples
are offered in the last section.

1.1. Notation and terminology

In this paper, &, ", and R"*" denote the space of real numbers, real
n-dimensional column vectors, and real n x n matrices, respectively. By
S™ we denote the space of real n x n symmetric matrices, and we definite
S% and S7 | to be the subsets of S™ consisting of the positive semidefinite
and positive definite matrices respectively. We write A = 0 and A > 0
to indicate that A € ST and A € S7 ., respectively. We let tr(A) denote
the trace of a matrices A € R™*", we defined Ae B = (A, B) = tr(AT B),
and the Frobenius norm of A € R7*™ is defined to be || A [|r= (A0 A)Y/2.

We adopt the convention of denoting matrices by capital letters and
matrices entries by lowercase letters with double subscripts. For exam-
ple, a matrix A € R™*™ has entries a;; for ¢,j = 1,...,n, In addition, we
denote the rows of a matrix by lowercase letters with single subscripts.
For example, A € R"*™ has rows a; for i = 1,...,n. In this paper, we



A successive quadratic programming algorithm 839

will often find it necessary to compute the dot product of two row vec-
tors a; and b; which arise as rows of the matrices A and B. Instead of
denoting this dot product as aib?, we will denote it as (a;, b;).

2. Binary quadratic programming and its relaxations

In this section, we consider the following binary quadratic program-
ming and describe some of its relaxations.

max zlCx
(1) 8.t 22=1fori=1 n
. ;= =1,...,

Without loss of generality, we assume that C is a positive definite matrix,
because of the equivalence between Maxxe{l,_l}anCa: and

n
Maxme{l,_l}nxTC:E + Z yl(w;2 -1)
i=1
for all y € R. In mathematical term, it means that C' > 0.
Let X = z2T, the above problem equals the following problem,

max CeX
@) st. (eel)eX=1fori=1,...,n,
rank(X) =1
X >0

where e; is the unit vector whose i-th component is 1 and others are
all 0.

Because rank one constraint is nonconvex, dropping rank one con-
straint yields a semidefinite programming relaxation of (1) as follows,

max CeX
(3) st. (eel)eX =1fori=1,...,n.
X>0
Now, we consider the following problem,
max CeX
(4) st. (eel)eX <1fori=1,...,n.
X0

Obviously, any feasible solution to the problem (3) is a feasible so-
lution to the problem (4), say, the problem (4) is a relaxation of the
problem (3).

Conversely, we assumed that X is an optimal solution to the problem
(4) and let Y be a matrix which is satisfied that y;; = 1, fori =1,...,n



840 Xuewen Mu, Sanyang Liu, and Yaling Zhang

and y;; = x5, # j, for 4,5 = 1,...,n. By using the C = 0 and the
fact that xz;; < 1lfori=1,...,n, we have Ce X < C oY. Along with
that Y is a feasible solution of the problem (3), the optimal values of
the problem (3) and (4) coincide. This shows the problem (3) and (4)
are equivalent.

We now present the nonlinear programming reformulation of the
problem (4) which is the basis of our algorithm for finding an approxi-
mate solution of the binary quadratic programming. For every X € S%,
there exists a matrix V € R"%" such that X = VV7T. Thus the problem
can be stated as the following one,

max Ce (VVT)
(5) st.  (eel)e(VVTY<1 fori=1,...,n.
V E §Rn><n

Notice that we have replaced the requirement X > 0 with X =
VVT,V € %" So the objective function of the problem (5) is non-
convex, but the feasible set of the problem (5) is convex.

3. The successive quadratic programming algorithm to the
relaxation problem

In this section, we develop and discuss the successive quadratic pro-
gramming algorithm to solve the problem (5). Before giving the basic
steps of the algorithm, we definite some functions as follows.

fR® s R f(V)=Ce(VVT),

G : RV o R gi(V)=eel o (VVT) =1, i=1,...,n.
Obviously,the gradient of function f(V') at a point V' is G = 2C'V ,the
gradient of function g;(V) at a point V is H; = 2(e;el )V, i=1,...,n.
Given a matrix V* feasible for the problem (5), the feasible ascent

direction D* of the function f(V) at a point V* will be obtained by
solving the following quadratic programming.

max t— ;E‘D oD
6) st. —-GFeD+t<0
(e;el) o (VE(VEYT) — 1+ 2(e;el )VFe D+t <0

for i = 1,...,n, where u is a constant which is less than 1. (¢,D) €
R x poxn, ‘



A successive quadratic programming algorithm 841

PROPOSITION 3.1. Given (tF, D*) € R x R"*" is a optimal solution
for problem (6), and if D* # 0, then D¥ is the feasible ascent direction
DF of the function f(V) at a point V*.

Proof. Since t = 0, D = 0 is a feasible solution for problem (6),
(t*, D¥) is a optimal solution for problem (6), and D* # 0, so we have
tk — LDk e Dk > 0, that is to say t* > %—D’%Dk > 0. Furthermore, since
—G* o DF +t* < 0, we have GF « DF > t* > 0. From the assumption
DF # 0, we obtain that D¥ is the ascent direction of function f(V)
at a point V*. Next, we will prove DF is the feasible direction. Let
0; >0,i=1,...,n, and we have

gi(Vk + 51Dk) = (eie?) L (Vk + 51Dk)(Vk + 5ka)T -1
= (e;el) o VE(VF)T — 1 4+ 26;(e;el )V @ D*
+ 512(61'6?) . Dk(Dk)T.

If (e;e] )V* e D* > 0, let 6; < 1, and satisfy 62(e;e] ) @ D¥(DF)T < k|
we obtain

9i(VF + 6;DF) < (e;el) o (VE(VF)T) — 1+ 2(eel ) V¥ e D+t <0
If (e;e] )V* @ D¥ < 0, let §; satisfy
26;(e;el \V* o D* + §2(e;el) o D¥(DF)T < 0,

we obtain

—~2(e;e] )VE @ D*
(e;el’) @ DX(DF)T"

0<é; <

We have g;(V* + §;DF) < 0.

Based on the analysis, we select § = min{d;, i = 1,...,n}, which
must satisfy

g,-(Vk + 5Dk) < 0.

Furthermore, since the feasible region of problem (5) is convex, so DF is
the feasible ascent direction DF of the function f(V) at a point V*.



842 Xuewen Mu, Sanyang Liu, and Yaling Zhang

It is difficult to solve problem (6) directly because of its large scale.
Now, we consider the dual problem of problem(6)
2

max - ([-A\G*+ E Ai(2e;-1eF )VF
=2 F
(7) + Z: Ai((eim1ef_y) @ VE(VF)T — 1)
n+1_
s.t. Z Ai=1

)\>0forz—1 ,n+ 1.

We can obtained the optimal solution of problem (6) by solving prob-
lem (7), which is easier than problem (6). Based on the reference [10],
we have the proposition as follows.

PRrROPOSITION 3.2.

1) Problem (6) has optimal solution (t*, D¥) € R x R™*".

2) Problem (6) has optimal solution (t*, D¥) € ® x R™*" if and only
if there is a matrix P* and the multipliers )\f, fori=1,...,n+1,
which satisfy the following conditions.

a) EAk—land)\k>0forz—1 Ln+ L

b) A’“( G* e D¥ 4 t¥) = 0.
c) A ((eie]) o VE(VF)T — 1+ 2(e;el)VE @ DF +tF) =0,

fori=1,...,n.
k vk "k T \yk
d) Pr = _A].G + Z A’L (2€i_1€i_1)V .
i=2
e) DF=-1ipk
f) ¢ =ZlIP*I% + Z X((ei-1e]_) @ VE(VF)T —1).

g) GFe Dk 4tk <0
h) (e;el)eVF(VF)T —142(e;el)V*keDE+t*F <0 fori=1,...,n.
3) the multiplier Af fori =1,. n—l—l satisfy the conditions a),. .., h)
if and only if they are the optima] solution of problem (7).

Proof. See Reference [10].

By Proposition 3.2, we obtain the feasible ascent direction D¥ of the
function f(V) at a point V*. Now, we will give a simple method to
obtain an appropriate step-size.

From Proposition 3.1, we know that if D* # 0, there is a step-size
§ > 0, which satisfy g;(V* +dDF) <0for i=1,...,n+1.



A successive quadratic programming algorithm 843
Given &; > 0, by solving the equations g;(V* + 6D*) = 0 for i =
1,...,n 4+ 1. we obtain
5 = —(eieiT)Vk [ Dk
* " (eieT) o DE(DK)T
V(€] )VE e DE)2 — ((eseT) o VE(VEYT — 1)((ese]) @ DE(DF)T)
i (e:eT) & DF(DR)T

We choose the step-size

(8) d =min{d;,;i=1,...,n}

PROPOSITION 3.3. Given G # 0,the step-size from (8) is an appro-
priate step-size.

Proof. Given scalar h > 0, We define ¢ : R — R by p(h) = f(VF +
hD¥), and we have

o(h) = f(VE + RD¥) = f(V*) + htr(GFD*) + h2C « D*(DF)T,

¢ (h) = tr(G*D¥) 4+ 2nC o GF(GF)T.

Based on the Proposition 3.1 and D¥ # 0, we have tr(G*D*) >
0. Furthermore, since C = 0, so C e G¥(G*)¥ > 0, Thus, when h >
0,¢'(h) > 0, then ¢(h) is a monotone increasing function. Directly
following from (8), the step-size is an appropriate search step-size.

We are now ready to write the successive quadratic programming
algorithm.

THE SUCCESSIVE QUADRATIC PROGRAMMING ALGORITHM. Let VO
be a feasible solution of the problem (5), which is satisfied that (e;el) e
(VO(VOT) =1 fori =1,...,n. And a prespecified constant ¢ > 0. Let
u=0.5/n.

(1) Compute the gradient G* = 2CV* for the function f at the point
VE,

(2) Compute the feasible ascent direction D* by solving problem (8).
By the proposition 3.2, we obtain D.

(3) Compute ||D*||f.

(4) If ||D*||r < ¢, then stop; otherwise, go to 5.

(5) compute § by formula (8). Let V! = V¥ + 6D* k =k +1. go
to 1.



844 Xuewen Mu, Sanyang Liu, and Yaling Zhang

Now, we will prove the convergence of the above algorithm.

PROPOSITION 3.4. If D* = 0, there are some multipliers ,uf, which
satisfy

n
20VF =2 uf(2e;e])V*
i=1
pE((eel) o VE(VHYT —1) =0, and ufF >0 fori=1,...,n.
That is to say the matrix V* is the KKT point of the problem (5).

Proof. When D¥ = 0, in assertion with the conclusion g) of the
Proposition 3.2, we have t* < G* ¢ DF = 0, But by Proposition 3.1, we
obtain t* > 0, So t* = 0. From the conclusions ), d) of the proposition
3.2, we have

n+1
(9) —uDF = P* = —XiGF + 3 " AF(2e;1€] ) VF = 0.
=2

k
If \¥ #0, Let pF = ’\;‘—? fori=1,...,n. We have
n
2CVFk =2 Z ik (2e;elVE.
i=1
Furthermore, by the conclusions ¢) of Proposition 3.2, we have

pE((eeF) o VE(WVHYT —1)=0,and pf >0 fori=1,...,n.

n+1
If \¥ = 0, Following from (9), we have S A\¥(2e;_1el ;)V* = 0. Thus

=2
n+1
3 X ((2ei-16l,)VF 0 VE) =00
=2

Based on the above formula and conclusion f) of Proposition 3.2, we
have
n+1

1
tF = Z[|PF|F + ) M ((2ei-16]1) o VE(VE)T - 1)
u =2
n-+1
= Y A((2ei—1ef ) o VE(VE)T — 1)
=2
n+1 n+1 n+1 n+1

= Y Meiciel ) e VEVHT -3 A== M=-3 A
i=2 =2 =2 i=1



A successive quadratic programming algorithm 845

Following from the conclusion a) of proposition 3.2, we have t*¥ =
n+41

— 3> Af = —1, which contradicts t; = 0. So A £ 0.
i=1

Based on the Proposition 3.4, the algorithm will terminated at the
KKT point of problem (5) if the termination criterion is || D¥||p < e.
Where, ¢ is a constant which is enough small.

Not every KKT point of the problem (5) is a global solution. The
following proposition give sufficient conditions for a KKT point of the
problem to be a global solution.

PROPOSITION 3.5. Assume that V* is a KKT point of problem (5)
and Let

n
ufZO forizl,...,n;Sk:Zﬂf(eieiT)—

If S* = 0, then VF(VF)T is a global solution to the problem (4).

Proof. Since V¥ is a KKT point, together with Proposition 3.4, we
have

GF =20V* = Zuf(eie?)Vk, pk>0fori=1,...,n
i=1
Thus

(e % VE) = <Zul eiel \W*, Vk> Z,uZ
i=1
That is (C, VF(VE)T) = Z pk If SF = 0, let X be feasible for (4), then

(S*, X) > 0, that is Z pk > (C, X). Therefore, VE(VF)T is a global
i=1
solution of the problem (4).

4. Numerical results

In this section we present computational results by comparing our
method with earlier method to find approximate solutions to the max-
cut problem based on solving its SDP relaxation. As stated in the in-
troduction, the purpose of the results presented here are to show that
our successive quadratic programming algorithm is considerably faster
than interior-point method.



846 Xuewen Mu, Sanyang Liu, and Yaling Zhang

4.1. Maxcut problem

The maxcut problem is one of the standard N P-complete problems
defined on graphsl'l. Let G = (V, E) denote an edge-weighted undi-
rected graph without loops or multiple edges. We use V = {1,...,n},
ij for an edge with endpoints ¢ and j, and a;; for the weight of an
edge ij € E. For S C V the cut 6(S) is the set of edges ij € E
that have one endpoint in S and the other endpoint in V' \ S. The
maxcut problem asks for the cut maximizing the sum of the weights
of its edges. Here, we only work with the complete graph K,. In
order to model a graph in this setting, define a;; = Oforij ¢ E.
A = (a;j) € S™ is referred to as the weighted adjacency matrix of the
graph. An algebraic formulation can be obtained by introducing cut
vectors € {—1,1}"withz; =1 fori € Sand 2; = -1 fori € V'\ S.

The maxcut problem can be formulated as the integer quadratic pro-
gram.

max % Z aij(l - ximj)

1<j

st. xze{-1,1},i=1,...,n.
The matrix L(G) = Diag(Ae) — A is called the Laplace matrix of the
graph G, where e is the unit vector whose every component is 1. And
Diag(Ae) is the diagonal matrix whose diagonal elements are Ae. Let
C = %L, the maxcut problem may be interpreted as a special case of
the problem (1).

4.2. Numerical examples

We report the numerical example in this section. In the numerical
example, we compare the computational results between our method
and interior point method!®). As stated before, the purpose of the results
presented here is to show that our algorithm is substantially faster than
interior point method. All the algorithms are run in the MATLAB 6.1
environment on a AMD AthlonXP1600+ personal computer with 128Mb
of Ram. In all the test problems, we choose the initial iterate L to be
n x n identity matrix, u to be 0.5/n. In interior-point method, we solve
the SDP relaxation by using SDPpack software!!2).

We adopt the randomized cut generation scheme of Goemans and
Williamson!l. The iteration number of this algorithm is n which is the
scale of max-cut problem considered.

Here all the tested problems are random graphs with two different
edge density 0.7 and 0.3. which denote the dense random graphs and
sparse random graphs respectively. We select problems in size from n =



A successive quadratic programming algorithm 847

50 to n = 300 to compare the suboptimal value of maxcut problem,and
the total time of the three methods. In our algorithm, the iteration
stops once | D¥||p < ¢ is found. The result is shown in Table 1.

In Table 1, we use “SDP” presents for interior point algorithm based
on semidefinite programming, “SQA” for our successive quadratic pro-
gramming algorithm, “time” for the total time of two methods, “value-f”
for the suboptimal value of the maxcut problem based these methods,
“density” for edge density of the random graphs.

The Table 1 shows our method can generally reach solutions of the
problems much faster than the interior-point method whether to the
dense random graphs or the sparse random graphs.

Table.1 Comparison of the two method

Size of graph | density | algo value-f time
50 0.7 SQA | 381.316300729441 | 0.1720
SDP | 381.222818884658 | 1.2970
50 0.3 SQA | 384.343853121280 | 0.4220
SDP | 384.343853121280 | 3.2190
100 0.7 SQA | 1385.94015100020 | 1.4530
SDP | 1388.66226246641 | 13.7190
100 0.3 SQA | 7179.35285955398 | 10.0000
SDP | 7184.64381700424 | 149.2200
150 0.7 SQA | 3027.47658904186 | 3.5470
SDP | 3030.60112063104 | 75.6090
150 0.3 SQA | 1527.69134585512 | 3.7500
SDP | 1528.54917463768 | 82.5470
200 0.7 SQA | 5323.36289231888 | 18.3750
SDP | 5318.11148873339 | 184.5470
200 0.3 SQA | 2676.47956117645 | 15.1250
SDP | 2672.86837035170 | 200.8750
250 0.7 SQA | 8156.16895709477 | 45.4850
SDP | 8162.65641905066 | 440.6560
250 0.3 SQA | 4129.85944356911 | 14.8750
SDP | 4135.51356364934 | 480.8120
300 0.7 SQA | 11686.0672820264 | 100.1720
SDP | 11697.2745314466 | 2116.0620
300 0.3 SQA | 5884.30709295320 | 80.6100
SDP | 5889.15827541389 | 1892.8590




848 Xuewen Mu, Sanyang Liu, and Yaling Zhang

5. Conclusion

In this paper, we have proposed a successive quadratic programming
algorithm for solving SDP relaxation of the binary quadratic program-
ming. In the algorithm, we give a simple method for selecting the step-
size. Using the randomized cut procedure of Goeman and Williamson,
it can give a sub-optimal of max-cut problem. It is able to obtain a
moderately accurate solution more quickly than interior point method.
This paper has demostrated the single case of max-cut SDP relaxation,
but we believe that the same results are apt to hold elsewhere.

References

[1] F. Barahon and M. Grotschel, An application of combinatorial optimization to
statiscal optimization and circuit layout design, Oper. Res. 36 (1998), no. 3,
493-513.

[2] K. C. Chang and D. H., Eifficient algorithms for layer assignment problems,
IEEE Trans. on Computer Aided Design. CAD-6 (1987), no. 1, 67-78.

[3] R. Chen, A graph theoretic via minimization algorithm for teo layer printed cir-
cuit boards, IEEE Trans. Circuits Systems CAS 30 (1983), no. 5, 284-299.

[4] M. X. Goeman and D. P. Williamson, Improved approzimation algorithms for
mazimum cut and satisfiably problem using semidefinite programming, J. ACM
42 (1995), 1115-1145.

[5] S. Benson, Y. Ye, and X. Zhang, Solving large scale sprase semidefinite program-
ming for combinatorial optimization, SIAM J. Optim. 10 (2000), no. 2, 443-461.

[6] C. Helberg and F. Rendel, An interior point method for semidefinite program-
ming, SIAM J. Optim. 10 (1990), 842-861.

[7] C. Helberg and F. Rendl, A spectral bundle method for semidefinite programing,

. SIAM J. Optim. 10 (2000), 673-696.

[8] M. Peinadoo and S. Homer, Design and performance of parallel and distributed
approzimation algorithms for maz-cut, Journal of Parallel and Distributed Com-
puting. 9 (1998), 141-160.

[9] S. Burer and R. D. C. Monteriro, A projected gradient algorithm for solving the
maz-cut relazation, Optim. Methods Softw. 15 (2001), 175-200.

[10] M. Marko, Makeka, and Pekka Neittaanmaki, Nonsmooth optimization: analysis
and algorithms with application to optimization control, World scientific, Singa-
pore, 1992.

[11] C. Helmberg, Semidefinite programming for combinatorial optimization, Konrad-
Zuse-Zentrum fur informationstechnik Berlin, Germany, 2000.

[12] M. V. Nayakakuppam, M. L. Overton, and S. Schemita, SDPpack user’s guide-
version 0.9 Beta, Technical Report Yr 1997-737, Courtant Institute of Mathe-
matical Science, NYU, New York. NY. 1997.



A successive quadratic programming algorithm 849

XUEWEN Mu, SANYANG LIU, DEPARTMENT OF APPLIED MATHEMATICS, XIDIAN
UNIVERSITY, XI’AN 710071, CHINA
E-mail: xdmuxuewen@hotmail.com

liusanyang@263.net

YALING ZHANG, DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY, XI'AN
UNIVERSITY OF SCIENCE AND TECHNOLOGY, XI'AN 710054, CHINA
E-mail: zyldella@126.com



